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1. INTRODUCTION

1.1. Backround

      Several  theories  have  been  developed  over  the  years  for  predicting  the  three-

dimensional  structure  of  proteins.  This  need  originated  from the  importance  the  three-

dimensional  structure  plays  for  the  function  of  a  protein,  its  interaction  with  other

molecules, its biological importance in health and disease. Understanding this procedure

would provide insight on how little changes lead to different properties, on an otherwise

identical sequence, and what impact that had on evolution. Additionally, it would allow us

to manage usefully data emerging from genome sequencing and, more importantly even

design proteins with on-demand properties.

     Early  in  the  history,  it  was  simply  assumed  that  proteins  fold  through  distinct

intermediate states in a distinct pathway. It was Anfinsen who demonstrated that proteins

can  fold  spontaneously,  without  any  outside  intervention  and  also  reversibly.  Then,

Levinthal perceived that the native structure could not be reached by random searching

through the vast number of structural options. He placed the protein folding problem as two

mutually excluding goals,  either  this  happens after thorough undergoing of all  different

structures to find the most thermodynamically stable one, that takes a lot of time to achieve,

or after  quick transition on a predetermined pathway that may lead to local optima.(1,2,3)

Baldwin  took  up  the  challenge  and  tried  to  experimentally  define  kinetic  folding

intermediates  and  pathways,  combined  with  theory.  He,  thus,  helped  to  establish  the

multipath funneled energy landscape.

         The energy landscape is a theory by which proteins obtain their native structure. This

theory suggests that folding occurs through an ensemble of trajectories rather than through

only a few uniquely defined structural intermediates. The energy landscape represents the

possible  trajectories  as  a  funnel-shaped  landscape,  each  point  symbolizing  the

thermodynamical state of the protein in regard with time, biased down toward the native,

most  thermodynamically  stable,  structure.(4) Through  small  random  changes  made

repeatedly, the system moves to conformations of lower energy. The folding trajectory is

therefore formed by many moves, carried out in succession, driven by the principal of the

protein being more thermodynamically stable.

Defining how the three dimensional structure is encoded in the sequence of the protein is a

great challenge, mainly because the basis is the weak-local preference for one structure over
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another.  During  the  first  stages  of  folding,  the  weak-local  preferences  of  secondary

structures along the sequence, together with the free-energy preferences that tend to bury

hydrophobic amino-acids in the center of the peptide, while exposing the polar ones on the

surface, lead the peptide to conformation. (5)

       As far as forces are concerned, the interactions stabilizing a protein structure also guide

the protein in attaining that structure. The folding of polypeptide chains is determined by

many noncovalent interactions i.e. canonical forces: the hydrophobic effect, conventional

hydrogen bonding, Coulombic interactions, and van der Waals interactions.

      The challenges that continue to arise in the field of protein structure prediction suggest

that there is an incomplete understanding of the topic. Apparently, canonical forces alone

seem  to  be  insufficient  when  it  comes  to  protein  biophysics.  Therefore,  researchers

suggested that  additional  interactions are  to be taken into consideration,  contributing to

protein folding.(1) These are the secondary forces and consist  of n→π* Interactions, C–π* Interactions,  C–

H···O  Hydrogen  bonds,  π–π  Interactions,  C5  Hydrogen  bonds,  Cation–π  interactions,

Sulfur–arene interactions, Anion–π interactions, Chalcogen bonds, X–H∙∙∙π Interactions, but

describing them in more detail is not within the aim of this paper. (6)

       The folding rate for small proteins has been linked to the contact order. That is measure

of the locality of the contacts between the amino acids in tertiary structure. It is equal to  the

average sequence distance between residues in the folded protein divided by the total length

of the protein. Higher contact orders indicate longer folding times and low contact order has

been suggested as a predictor of folding that occurs without a free energy barrier.

      Since folding is a reaction that is rate-limited by an entropic barrier, increasing the

proportion  of  contacts  that  are  short-distance  in  the  native  state  and  thus  during  the

transition state, accelerates folding through two mechanisms: by locating the transition state

with diffuse search and by lowering the entropic barrier.

      Generally, a-helices fold faster, because they have a larger proportion of sequentially

short-range contacts. In other words, the transition states of a-helices include many of the

native interactions, so that the transition state has a conformation close to that of the native

state.

      For small proteins, there is usually a single folding nucleus, around which the entire

folding procedure occurs, meanwhile, peripherally, the protein is able to explore different

conformations . For larger proteins, multiple sites serving as folding nucleus are likely to

exist and lead to more complex procedures, including a range of intermediates. For proteins
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with  multiple  nucleation  sites,  this  step  is  often  the  slowest  one  in  the  entire  folding

process.

      Point mutations affect significantly the folding rate, because the interactions involved in

the folding nucleus depend on specific features of the side chains. This is the basis for

protein engineering experiments, which show that folding rates exhibit an approximately

exponential  dependence on changes in free energy, changing with regard to these point

mutations.

      The encorporation of computers in the field gave rise to molecular dynamics simulation,

that  is,  the  in  silico  prediction  of  the  atom position  and  movement  of  a  biomolecular

system, e.g a protein in water, by calculating the forces each atom pose on each other, given

an original position. As far as proteins are concerned, molecular dynamics simulation is the

trajectory a peptide would follow to end up having its final atomic-level configuration. The

ability of in silico simulation over exprerimental laboratory work is more powerful, in the

sense of it being able to presicely control the conditions and also being able to capture the

position and motion of every atom at every moment. (5, 7)

1.2. Protein folding motifs

       Each protein is a unique sequence of amino acids and this sequence is the fingerprint of

the protein, meaning that it  defines its structure and, thus, its function. The sequence is

called the primary structure of the protein, in other words, the linear way the amino acids

are bound to one another with peptide bonds. It is worth mentioning that a peptide bond has

the character of a double bond, meaning it cannot freely rotate.

     The next step to protein folding is secondary structure. In this step, proteins form folding

patterns locally, as a result from its backbone interactions. This means that these motifs are

the result of interactions between components of amino acids that are common to all amino

acids,  more  specifically,  through  hydrogen  bonds  between  the  amino  hydrogen  and

carboxyl oxygen atoms in the peptide backbone.

      The secondary structure includes several motifs that have been observed in protein

folding. The most common motifs are alpha helices and beta sheets. Other motifs, that are,

however, more rare to encounter, are 3 10 helices, pi helices, α/β/γ/δ/π turns, polyproline

helices, alpha sheets. Finally, a structure called coil is observed, but is  not strictly a motif,

rather than a conformation not fitting to the aforementioned structures.

-the alpha helix:
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this is a conformation of the backbone rotating around an axis clockwise as a helix, forming

a cylinder. In this pattern, a hydrogen bond is formed between every fourth peptide bond (i

→π* Interactions, C– i + 4 hydrogen bond), linking the C=O of one peptide bond to the N–H of the fourth in

line, taking 3,6 amino acids to complete a full turn. Alpha helices can fold around each

other forming coiled coils.

-the beta sheets

this is, the backbone of the polypeptide chain forms a zigzag (β conformation) rather than

helical structure. The arrangement of several zigzags side by side is called a β sheet. The

individual polypeptide segments that have a zigzag form lead to a pleated appearance of the

overall  shape.  Hydrogen  bonds  form  between  adjacent  chains  within  the  sheet.  The

individual zigzags that unite to form a β sheet are usually close together on the polypeptide

chain but can also be distant from each other in the linear sequence of the polypeptide; they

may even be in different polypeptide chains. 

-the 3 10 -helix

It is the fourth most common type of secondary structure in proteins, commonly found as

N- or C-terminal extensions to an α-helix and have been proposed to be intermediates in the

folding/unfolding  of  α-helices.  It  is  characterized  by  an  i  →π* Interactions, C– i  +  3  hydrogen bond,  in

contrast to alpha helix.

- pi helices

This is a helix with i →π* Interactions, C– i + 5 hydrogen bond. (8,9,10,11)

1.3. The peptide

   The peptide that will be used for the purpose of this essay is a 12-mer peptide with

SVSVGMKPSPRP sequence.

     This peptide has been prove to adhere to DNA after an experiment conducted by Wolcke

and Weinhold . For this purpose ,Wolcke and Weinhold selected this peptide from a random

peptide phage display with competitive elusion using DNA methytransferase M TaqI and

then ELISA. (12)

      The SVSVGMKPSPR peptide provided the base for many studies and patents based

on its affinity to organic and inorganic targets.

     Some of the properties this peptide was proven to have, is that it recognized tumor-

related neovasculature, but not normal blood vessels in mice bearing human tumors. Also,

it increased the survival rates of xenografted mice with human lung and oral neoplasms
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when it was linked to the liposome-carrying doxorubicin. In other works, the  peptide was

founded  to  have  affinity  for   a  monoclonal  antibody  against  the  envelope  protein  of

Japanese encephalitis virus and for monoclonal antibody 2G12, which neutralizes human

immunodeficient  virus  1  (HIV-1).  Additionally,  it  was  found  to  bind  specifically  to

carboxypeptidase B from pig pancreas and to endothelial cells, to the cationic amino acid

transporter 1, the human prostate cancer cell line DU145, Torpedo acetylcholinesterase, and

HIV-1 Virion infectivity factor protein. The SVSVGMKPSPRP peptide was found to bind

to the Eph family of receptor tyrosine kinases, but its affinity was not evaluated.

      Numerous publications have also suggested the adhesion of SVSVGMKPSPRP onto

inorganic targets. The SVSVGMKPSPRP peptide was identified for binding on GaN and

hydroxyapatite with strong affinity and specificity and was able to function as a template

for the synthesis of cobalt-platinum nanoparticles. It was isolated as single- walled carbon

nanotubes (SWNTs) binding peptide and was also identified as a pigment-binding peptide

and proposed as a seed for metal nucleation. Furthermore, the peptide was identified for

binding to various semiconductor materials like gallium arsenide, gallium antimonide, zinc

telluride, zinc selenide and cadmium selenide. Small polypeptides as such, with specific

identities, could be incorporated into materials science and engineering. (13)

1.4. Principal Component Analysis

     Principal  Component  Analysis  (PCA) is  is  a  statistical  technique  used  to  identify

patterns  in big data sets. It finds use in determining similarities and differences. Especially

when  when high dimensions  of  data  are  concerned,  PCA can  surpass  the  difficulty  of

representing the data in graphics and compress them without significant loss of information.

        The first step is calculating PCA1, which is the line that passes through the data in the 

direction  of  the  biggest  variance,  given  that  the  data  are  represented  on  a  Cartesian

coordinate system. Then PCA2, which is perpendicular to PCA1, describes  in a linear form

what is not described in PCA1. If a third dimension is to be taken into consideration, that

would be perpendicular to the previous two PCAs and so on.

    The first  step to  calculating PCA1, is  to  find the minimum of the sum of  squared

distances  the data have from the beginning of the system. The sum of squared distances is

called  the eigenvalue of PCA1 and the unit vector that represents PCA1 (a vector is parallel

to  the line that best describes the data and has a length of 1 unit of measurement) is called
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the eigenvector of PCA1. The higher the eigenvalue, the higher is the variance of the data in

that direction, eg how much the data are spread on the line. (14)

1.5. Root Mean Square Deviation (RMSD)

    Root Mean Square Deviation (RMSD) or Standard deviation of the residuals or Root

Mean  Square  Error  is  RMSD  is  a  standard  measure  of  structural  distance  between

coordinate sets. That is, a statistical technique, used broadly in bioinformatics, to  calculate

the distance ie the disagreement, between the atoms of a molecule and a linear  regression

model or a molecule and a superimposed structure. This is a useful tool, when it comes to

grouping  structures  that  have  similar  structures,  as  by  calculating  the  values,  we  can

quantify the similarity of the structures. (15)

2. PURPOSE

     The essay is a hands-on application of molecular dynamics simulation. The purpose  of

this  essay  is  to  explore  the  possible  three-dimensional  states  that  the  peptide

SVSVGMKPSPRP can acquire, using molecular dynamics simulation. Then an attempt to

depict the three-dimensional states with graphics was made.  After the determination of the

thermodynamically most stable forms of the peptide,  the ability of each of these forms to

attach to DNA was assessed.

3. METHOD

    For the completion of this essay, several steps where involved. The first step was the

acquisition of the full  sequence of the peptide,  including  the coordinates of the atoms

involved in the formation of the peptide, in a .dcd form and  two different initial trajectories

where chosen. Along with the sequence, information  about forces, velocities regarding the

peptide was acquired, in a .psf form. All the  subsequent analyses were performed twice,

once for each of the two initial  trajectories, with the fisrt one being 99sb and the second

one star.

      Then, with the use of  grcarma(16), the graphical user interface of a software which

encodes  automated  techniques for  the  analysis  of  of  biomolecular  simulations,   the

secondary structure of the peptide was depicted in relation with time. The conclusion out of
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these diagrams was that amino acids 2-10 had the most  stable structure and thus, were used

for the next step, again with the use of grcarma.  This step included the determination of the

RMSD matrix for each of the two initial  forms of the peptide, showcasing in clusters, the

structures which the peptide tend  to form more often. 

     After RMSD matrix determination, dPCA was performed for the 2-10 amino acids  of

both  the  initial  forms,  and  thus,  isolating  on  a  per  cluster  basis,  average  structures,

representative structures, corresponding to the atomic root mean root fluctuations. 

     With the use of RasMol(17), the representative forms were visualized as three dimensional

structures and a discussion was made, as to how the three-dimensional structure  would

affect the binding of the peptide on DNA.

    The next step evaluated the ability of the peptide to dock onto DNA with the use of the

program  HDOCK(18) and  the  visual  result  was  produced  with  the  use  of  RasMol and

PyMOL(19). All dynamic simulations were performed with the use of the NAMD program.(20)

4. RESULTS

4.1. THREE-DIMENSIONAL STRUCTURE

4.1.1. Secondary structure

       The .dcd and .psf files of the peptide were used as an input to the grcarma software.

Two different initial trajectories were used for the peptide, the 99sb trajectory and the star

trajectory and all calculations were performed twice, once for each trajectory, in order to

eliminate  false  positive  results  and  compare  the  results.  An  estimation  of  secondary

structure was calculated and the results are depicted on  Figure1 for 99sb and Figure2 for

star,  showing the participation of each residue of  the peptide in the different patterns the

secondary structure can acquire, in regard  with time. Appendix1 can be used as a tool for

interpretation of the diagrams. 

 A profound observation is that the peptide is mostly comprised of B/G turns but also, in a

descending order, of B sheets, 3-10 helices, A-helices. 

   What is also clear from figures 1& 2, is that the terminal residues 1, 11, 12 are mostly

involved in coils rather than fixed patterns, meaning they are mobile, thus they do not play

a significant role in  the formation of  the definite three-dimensional structure of the peptide
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and this is the case for both of the  initial formations of the peptide. Therefore, they are not

included in the simulation  experiments that follow.

Figure1. Secondary structure of 99sb trajectory. The y axis represents the residues of the peptide, while  the x
axis is  time. With white color representing coils,  it  is  easily noticed that  residues 1,  11 and 12  are not
involved, for a significant amount of time, in the formation of the secondary structure and  therefore, do not
play an important role in the three-dimensional shape of the peptide.

Figure2. Secondary structure of star trajectory. The same observations as with 99sb trajectory can be induced
from the diagram. Residues 1, 11 and 12 are mostly involved in coils and therefore do not play an important
role in the in the three-dimensional shape of the peptide.
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Appendix1. Different patterns of secondary structure and their color correspondence on the diagrams shown 
in Figure1 and Figure2.

4.1.2. RMSD matrix

  

     With the use of grcarma and the input of .psf and .dcd files, the RMSD matrices of the   

two trajectories were calculated.

   The matrices  are  a frame-to-frame comparison of determined structures,  with a  user

selected number and types of atoms and residues. 

     A step of 1000 between the frames was chosen, i.e . every other 1000th frame was taken

into consideration and the result was a 12458x12458 matrix for the 99sb trajectory and  a

12400x12400 matrix for the star trajectory. The RMSD matrices are depicted on  Figure3

and Figure4 respectively. 

   A color-coded  scale,  visible  in  Appendix2,  represents  the  frequency  by  which  the

different structures are met. Areas with dark blue color represent structures that the  peptide

conforms into more often, while brown areas represent structures being met  less often.

      It is easily observed that the matrices are symmetrical to the diagonal that joins the left

upper corner with the right lower corner, since both the vertical and the horizontal axes  are

the same values compared with each other.

Appendix2. The  color  coded scale  used  in  RMSD matrices  to  describe  the  RMSD value  of  the  frames

compared. Colors placed from left to right correspond to a declining order of RMSD values, i.e. increased

stability.
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Figure3. RMSD matrix of 99sb trajectory. 12458 frames were compared with each other and the result is a

matrix symmetrical to the diagonal passing from left upper corner to right lower corner. Blue areas indicate

low RMSD values between successive structures, and thus indicate that a structurally stable conformer has

been located.
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Figure4. RMSD matrix of star trajectory. 12400 frames were compared with each other and the result is a

matrix symmetrical to the diagonal passing from left upper corner to right lower corner. Blue areas indicate

low RMSD values between successive structures, and thus indicate that a structurally stable conformer has

been located.
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4.1.3. dPCA without Ch1

      During this step the .psf and .dcd files were used again as an input to grcarma and the

dihedral Principal Component Analysis (dPCA) of the trajectories was calculated. For both

of the initial trajectories, the selected step between the frames was 500 and  only residues 2-

10 was taken into consideration, in accordance with the findings of the  secondary structure

on the first step. 

     For this calculation, only the backbone structure was used, without the side chains

(Ch1). The results were 10 clusters for each intitial trajectory, meaning that the calculation

formed  10 different groups with structures similar within the same group, but different

between the 

groups for 99sb and 10 groups for star.

     Further analysis isolated the frames corresponding to each cluster and gathered ,on a per 

cluster basis, the average structures, representative structures and a superposition of 500

equally spaced structures from each cluster.

    A selection of the results is depicted on Figure5, Figure6, Figure7, Figure8 for the 99sb

trajectory and on Figure9, Figure10, Figure11, Figure12 for the star trajectory.

  

Figure5. dPCA for 99sb, cluster1.
A)representative structure of cluster1
B)superposition of 500 structures of cluster1
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Figure6. dPCA for 99sb, cluster3.
A)representative structure of cluster3
B)superposition of 500 structures of cluster3

Figure7. dPCA for 99sb, cluster5.
A)representative structure of cluster5
B)superposition of 500 structures of cluster5
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Figure8. dPCA for 99sb, cluster9.

A)representative structure of cluster9

B)superposition of 500 structures of cluster9

Figure9. dPCA for star, cluster2.
A)representative structure of cluster2
B)superposition of 500 structures of cluster2
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Figure10. dPCA for star, cluster3.
A)representative structure of cluster3
B)superposition of 500 structures of cluster3

Figure11. dPCA for star, cluster8.
A)representative structure of cluster8
B)superposition of 500 structures of cluster8
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Figure12. dPCA for star, cluster10.
A)representative structure of cluster10
B)superposition of 500 structures of cluster10

  

   The diagrams were made with the use of RasMol  and the colors correspond to different

molecular parts of the residues. Thus, grey represents the carbon groups, red the hydrogen

groups and blue the nitrogen groups.

    The peptide shows a preference in “c” shaped structures,  rich in  sheets rather  than

helices, which explains its fitting with the niches of the DNA, in the chapters that follow.

4.1.4 dPCA with Ch1

     For this calculation, the backbone structure was used along with the side chains (Ch1).

The results  were 3 clusters for  the 99sb trajectory and 4 clusters for the star trajectory.

Again, the frames corresponding to each cluster were isolated and on a per cluster basis,

the average structures, representative structures and a superposition of 500 equally  spaced

structures from each cluster were gathered.

     A selection of the results is depicted on Figure13 for the 99sb trajectory and on Figure14

for the star trajectory.

   Again,  the graphs were made with the use of  RasMol   and the colors correspond to

different  molecular  parts  of  the  residues.  Grey  represents  the  carbon  groups,  red  the

hydrogen  groups, blue the nitrogen groups and yellow the sulfur groups.
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Figure13. dPCA with Ch1 for 99sb cluster2.
A)representative structure of cluster2
B)superposition of 500 structures of cluster2

Figure14. dPCA with Ch1 for star cluster1.
A)representative structure of cluster1
B)superposition of 500 structures of cluster1
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4.2. DOCKING ON DNA

    After calculating the dihedral PCA of the two trajectories, the results were used as an

input for the HDOCK program. For this step, only the structures without the side  chains

were used. The below shown docking corresponds to the clusters that were chosen  during

the previous step.

    In order to visualize the ability of the peptide for docking, a part of B-DNA available

in  .pdb form and the  HDOCK program were used. The representative structure of each

cluster  was  chosen  and   HDOCK was  configured  to  produce  10  output  poses  per

representative structure.

     The program PyMOL was used for the visualization of the docking, which is depicted on

Figure15,  Figure16,  Figure17,  Figure18  for  99sb and  Figure19,  Figure20,  Figure21,

Figure22 for star.

                                  

                                  

    

Figure15. Docking of the representative structure          Figure16. Docking of the representative structure

of cluster1 from the 99sb trajectory – model1.                 of cluster3 from the 99sb trajectory – model1.
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Figure17. Docking of the representative structure                 Figure18.Docking of the representatives tructure 

of cluster5 from the 99sb trajectory – model1.                        of cluster9 from the 99sb trajectory – model1.

 

   

Figure19. Docking of the representative structure                 Figure20. Docking of the representative structure

of cluster2 from the star trajectory – model1.                          of cluster3 from the star trajectory – model1.
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Figure21. Docking of the representative structure                Figure22. Docking of the representative structure 

of cluster8 from the star trajectory – model1.                        of cluster10 from the star trajectory – model1.       

    

…

     The peptide has the ability to dock onto the selected DNA, a property that alters in

regard   with  the  structure  of  the  peptide  itself.  Even  though  all  of  the  representative

structures  could  bind  with  the  DNA,  not  the  same DNA position  accounted  for  every

structure. In fact, the binding positions could be on opposite directions.

      As discussed previously, the “c” shape of the peptide enables the binding with the in

between  natural gaps of the DNA. This can be an interpretation of the multiple binding

areas, as the gaps of the DNA repeat themselves throughout the structure.

5. SUMMARY AND CONCLUSIONS

    The main objective of this paper was to present a hands-on experiment of bioinformatics,

applied to a small peptide of multiple scientific interest. Such an analysis, was performed

through automated steps for the complex mathematical calculations and the results were

used as an input to broadly used programs in  bioinformatics, in order to visualize them.     
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 More  specifically,  the  peptide  used  in  this  paper,  SVSVGMKPSPRP,  has  been

experimentaly  proven to bind to DNA by Wolcke and Weinhold.

  With  the  use  of  grcarma,  the  secondary  structure  of  the  peptide  was  calculated  and

residues  1, 11, 12 were excluded from the following simulations, as they were mobile and

therefore,   not  interfering  with  the  three-dimensional  structure.  All  simulations  were

performed twice,  once for each of the two initial trajectories that were used as an input.

Through  the  next  step,  the  RMSD  matrices  were  calculated  and  multiple  clusters  of

structures  with similar trajectories were visibly formed.

   Among those,  ten clusters  for  each initial  trajectory were used and their  dPCA was

calculated, both with and without the side chains of the residues, which seemed to alter the

results, by providing less structures when the side chains were added.

  With the use of  RasMol and the results from the previous step, the three-dimensional

structure   of  the  peptide  was  visualized  in  two ways,  by  presenting  the  representative

structure of the  cluster and by presenting a superposition of 500 structures of that cluster. A

selection of those were included in the paper.

   Finally,  the  ability  of  the  peptide  to  bind  onto DNA was assessed with  the help  of

HDOCK  for the calculations and  PyMOL for the visualization of the docking. Again, a

selection  corresponding to the previous selection was presented in the paper.

   The  simulation  suggests  that  the  peptide  tends  to  form a  “c”  shaped  structure  that

probably enables the affinity of the peptide for the DNA. 

    Further analyses can provide information about the electrostatics of the peptide and their

role in docking, which will help model a more thorough explanation for the mechanisms

behind.
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