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Abstract

X-ray crystallography is a tool used in order to determine small structures such as proteins. The atoms in a

crystal under study cause a beam of incident X-rays to diffract and give a diffraction pattern. In order to

produce a 3-dimensional picture of the density of electrons within a crystal, a crystallographer needs the

amplitudes and also the phases of the diffracted waves. The information of those phases is lost resulting in

the phase problem. Algorithmic operations such as direct methods have been developed to overcome this

obstacle. These methods suggest direct relationships between the structure factors of a crystal. Artificial

Neural  Networks are  computational  models.  They are  presented as  systems of  interconnected  neurons

which exchange messages between each other. These connections have numeric weights that can be tuned

based on experience, making them adaptive to inputs and capable of learning, therefore estimate the phases

of  the  diffracted  waves  using  only  the  observed  intensities.  The  objective  was  for  a  network  to  be

constructed in order that  it  learns the necessary algorithmic operations to estimate the crystallographic

phase  by  means  of  only  the  directly  observed  experimental  data.  If  neural  networks  could  learn

relationships as those used in direct methods, it would greatly enhance the work of crystallographers. 
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Περίληψη

Η κρυσταλλογραφία ακτίνων X αποτελεί ένα σημαντικό εργαλείο για τον προσδιορισμό μικρών δομών

όπως οι πρωτεΐνες και τα νουκλεϊκά οξέα. Τα κρυσταλλογραφικά πειράματα χρησιμοποιούν κρυστάλλους

από την υπό μελέτη δομή. Τα άτομα του κρυστάλλου προκαλούν μια δέσμη προσπίπτουσων ακτίνων X να

εκτραπεί  και  να  αποδώσει  ένα  πρότυπο  περίθλασης.  Το  πρότυπο  αυτό  αποτελεί  έναν  έμμεσο  τρόπο

απεικόνισης μιας μικρής δομής. Προκειμένου να παραχθεί μια τρισδιάστατη απεικόνιση της πυκνότητας

των  ηλεκτρονίων  στον  κρύσταλλο,  ο  κρυσταλλογράφος  χρειάζεται  τα  πλάτη  και  τις  φάσεις  των

ανακλάσεων. Η πληροφορία των φάσεων δεν είναι δυνατό να αποκτηθεί άμεσα λόγω της πολύ μεγάλης

συχνότητας  των  σκεδαζόμενων  ακτινών.  Η  απώλεια  αυτής  της  πληροφορίας  αποτελεί  το  πρόβλημα

φάσεων. Αλγοριθμικές εξισώσεις όπως οι  άμεσες μέθοδοι έχουν αναπτυχθεί με σκοπό να ξεπεραστεί το

εμπόδιο. Οι μέθοδοι αυτές συνιστούν μαθηματικές σχέσεις μεταξύ των παραγόντων μιας δομής, το πλάτος

και τη φάση. Τα τεχνητά νευρωνικά δίκτυα αποτελούν υπολογιστικά μοντέλα βασισμένα στις λειτουργίες

των βιολογικών νευρωνικών δικτύων που φυσικώς συναντώνται στους πολυκύτταρους οργανισμούς και

συνιστούν  το  νευρικό  σύστημα.  Παρουσιάζονται  ως  συστήματα  διασυνδεδεμένων  νευρώνων που

ανταλλάσσουν  μηνύματα  μεταξύ  τους.  Αυτές  οι  διασυνδέσεις  αντιπροσωπεύουν  τις  συνάψεις  των

βιολογικών δικτύων και φέρουν αριθμητικές τιμές, τα  βάρη,  που μπορεί να συντονιστούν με βάση την

εμπειρία,  καθιστώντας  τα δίκτυα προσαρμοζόμενα στις  εισόδους και  ικανά εκμάθησης.  Ως εκ τούτου,

θεωρείται  δυνατή  η  εκπαίδευσή  τους  ώστε  να  εκτιμούν  τις  φάσεις  των  περιθλασμένων  κυμάτων

χρησιμοποιώντας μόνο τις παρατηρούμενες εντάσεις. Η ιδέα βασίζεται στις άμεσες μεθόδους που, όπως

αναφέρθηκε  πριν,  συνδέουν  άμεσα  αριθμητικά  τους  παράγοντες  του  πλάτους  (είσοδος)  με  τις  φάσεις

(έξοδος  του  δικτύου).  Η  εύκολη  προσαρμογή  των  τεχνητών  νευρωνικών  δικτύων  βασίζεται  στην

δυνατότητά τους να προσομοιώνουν συναρτήσεις που συσχετίζουν τις εισόδους με αντίστοιχες εξόδους

κατά τη διαδικασία της εκπαίδευσης. Αυτή προϋποθέτει την προσαρμογή των βαρών των νευρώνων σε

τιμές τέτοιες ώστε το δίκτυο να παράγει τις προτεινόμενες εξόδους. Στόχος της έρευνας είναι το δίκτυο να

μάθει τις απαραίτητες αλγοριθμικές πράξεις μέσω αυτής της διαδικασίας ώστε να αποκτήσει την ικανότητα

να προβλέπει τις φάσεις μιας κρυσταλλογραφικής δομής όταν μόνο μέσω των άμεσα παρατηρούμενων

πειραματικών  δεδομένων.  Αν  τα  νευρωνικά  δίκτυα  μπορούσαν  να  μάθουν  σχέσεις  όπως  αυτές  που

χρησιμοποιούνται στις άμεσες μεθόδους, το έργο των κρυσταλλογράφων θα ενισχυθεί σημαντικά. 
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Introduction

The  following  thesis  deals  with  the  phase  problem  of  crystallography  and  artificial  neural  networks'

applications  in  terms  of  the  defined  problem.  For  understanding  the  purpose  of  this  research  and the

correlation of  these two quite  distinct  concepts,  the  section of  the  Introduction prefacing this  work is

consisted of two parts: the first will refer to the origins of artificial neural networks and the adaptive use of

them, while the second will analyze the question of what crystallography and the phase problem are. The

development of these basic concepts will  prepare the reader for understanding the aim of this research

explained in a third part of the introduction, and the method of experimental tests accompanying this work.

Part A: Artificial Neural Networks

1.1 Biological Neural Networks

Throughout the years, biological systems have been able to adapt, survive and flourish. Evolution

has  given  then  human  brain  features  that  include  massive  parallelism,  distributed  representation  and

computation,  learning  ability,  generalization  ability,  adaptability,  inherent  contextual  information

processing,  fault  tolerance  and  low  energy  consumption  (Jain  et  al.,  1996).  These  properties  have

impressed people who seek to emulate and adapt natural processes for application in the artificial world

(Lewis  et  al.,  2009).  Advances  in  depeloping intelligent  machines  and the understanding of  biological

nervous  systems leaded  researchers  to  design  artificial  neural  networks  (ANNs)  to  solve  a  variety  of

problems in pattern recognition, prediction etc. 

A detailed  analysis  of  how ANNs  work  will  require  principles  of  neurophysiology,  cognitive

science, physics, computer science, statistics, pattern recognition, parallel processing and hardware (Jain et
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al.,  1996).  Artificial  neural  networks  are  in  general  a  result  of  research  in  artificial  intelligence  and

cognitive  science.  As  crude  approximations  to  biological  neural  systems,  ANNs  contribute  to  a  new

paradigm for dialogue among many of the disciplines of cognitive science. As suggested by their name,

ANNs were initially introduced as computational models of simplified biological neural networks. For that

reason, the principles of neuronal physiology and functions should be obtained before trying to understand

how ANNs work. 

1.1.1 Neuron

A neuron (etymology < ancient Greek νε ρονῦ  sinew, cord, nerve, Oxford English Dictionary, 2005)

is  the  fundamental  unit  which,  together  with  glial  cells,  constitutes  a  neural  system.  Neurons’  main

importance is due to their ability to transmit and receive messages in the nervous system (Lodish et al.,

2000). Glial cells consist of astrocytes and oligodendrocytes. Astrocytes are support cells in the mammalian

central  nervous system (CNS).  Their  main function is  structural  and metabolic support  of  the neurons

(Kimelberg & Nedergaard, 2010). Oligodendrocytes are also support cells and provide trophic support by

the production of essential growth factors (Bradl & Lassmann, 2010).

Specialized types of neurons include sensory neurons, motor neurons and interneurons. A typical

neuron consists of a cell body or soma, many dendrites, and an axon (Fig. 1) but their structure may vary

depending on its specialized type. The nucleus is set in the soma, where most protein synthesis takes place.

Its  axon  contains  a  great  density  of  voltage-dependent  sodium channels  (Rutecki,  1992)  and  is  often
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covered with myelin, an electrically insulating layer formed by an outgrowth of glial cells.

A  neuron  is  an  electrically  excitable  cell  that

processes  and  transmits  information  through  electrical  or

chemical  signals.  The  signals,  or  impulses,  occur  via

specialized  structures  between  neurons  where  the  axon

terminal of one cell contacts another neuron's dendrite, soma

or  axon  (Jain et  al.,  1996).  These connections  are  called

synapses.  The  human  brain  contains  hundreds  of  billion

neurons (Herculano-Houel, 2009). Neurons connect to each

other so that they form neural networks.

The nervous system comprises the brain and spinal

cord  (the  central  nervous  system;  CNS)  and  sensory  and

motor nerve fibres that enter and leave or are wholly outside

the CNS (the peripheral nervous system; PNS) (Fig. 2). 

1.1.2 Synapses

The synapse is the functional unit of the brain (Jain

et al., 1996). Synapses are junctions between a pre-synaptic

(transmitter) and a post-synaptic (receiver) neuron. There are two kinds of synapses depending on the form

of the transmitted signal: electrical and chemical. There are fine differences between the two. Electrical

signal may be inversely transmitted through a gap junction without delay, while the most common chemical

signal uses a chemical mediator to be released and subsequently binded by its receptor. 

Synaptic signals may be excitatory or inhibitory. Whether the excitation received is large enough,

the neuron generates a brief pulse called an action potential which originates in the soma or the dendrites

and travels through the axon to the axon terminal (Kandel et al., 2013). Electrical synapses allow neurons

to  communicate  directly  by  electrically  conductive  junctions  between  two  cells.  The  percentage  of

electrical  activity  eventually  transmitted  at  the  post-synaptic  end  is  the  synaptic  weight  (Theodosi-

Kokkinou, 2013). In a chemical synapse, when the action potential reaches the axon terminal, it triggers

calcium uptake by opening its voltage-gated calcium channels. Calcium then causes the neurotransmitter to

release into the synaptic cleft. The neurotransmitters activate receptors on the post-synaptic neuron. The

target cell responds to the electrical or chemical signal depending on its specialized type (Kandel et al.,

2013). 
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Figure 2: Illustration of the nervous
system. c, cerebellum; the large nerve
of the leg is the sciatic; the white line

down the back is the spinal cord. From
the book The Human Body and Health
Revised by Alvin Davison, published in
1908 by Alvin Davison. Work on public

domain.



1.1.3 The principles of learning

Learning is  the process in  which knowledge is  acquired or modified as a result  of  experience

(Kihlstrom et al., 2007). Eric Kandel mentioned in 2000 the idea first suggested by Santiago Ramon y Cajal

(1894) that learning results from changes in the strength of the synapse. Plastic changes occur due to the

synapses' ability to strengthen or weaken in response to their activity. This often results from the alteration

of the number of neurotransmitter receptors (Gerrow K. & Triller A., 2010). Hebbian theory (Hebb Donald,

1949) suggests a basic mechanism for synaptic plasticity, where an increase in post-synaptic efficacy arises

by repeated and persistent stimulation from the pre-synaptic cell. This persistent excitation results in some

growth process or metabolic change in one or both cells. The main idea is that when a driving neuron

participates  in  firing  a  subsequent  neuron,  the  connection  strength  between the  neurons  will  increase,

whereas it will decrease in the absence of correlated firing (Kowaliw et al., 2014). Synaptic plasticity is not

only  a  fascinating  area  in  neuroscience  but  also  constitutes  an  important  medical  issue.  Many

neurodegenerative disorders such as Alzheimer’s disease or dementia have synaptic effects and a great

number of psychiatric medications exert their action on the synaptic receptors. 

The molecular mechanisms for synaptic plasticity are linked to long-term potentiation (LTP), the

long-lasting changes in the efficacy of a synaptic connection (Kandel & Schwartz, 1982). The mechanisms

include  the  activation  of  protein  kinases.  The  activated  forms  phosphorylate  post-synaptics  receptors,

improving cation conduction and thereby potentiating the synapse. Moreover,  genes like  activin βA are

upregulated (Kandel & Schwartz, 1982). The protein derived from this gene alters the cytoskeletal structure

by elongating  the  dendritic  spine,  which  results  in  an  increasing  chance  of  synaptic  contacts  and  the

maintenance of LTP (Shoji-Kasai et al., 2007).

1.1.4 Establishing long-term memory

There  are  two  main  types  of  long-term  human  memory:  implicit  (procedural)  and  explicit

(declarative) memory (Cohen & Squire, 1980). Implicit memory is acquired non-consciously, while explicit

memory  represents  the  actual  knowledge  of  people,  places  and  objects  and  can  be  used  consciously

(Ullman, 2004). Explicit memory are therefore conscious memories that can easily be recalled. Explicit

memory  can  be  further  identified  as  episodic  or  semantic  memory.  Episodic  memory  consists  of
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information  about  personal  experience,  while  semantic  memory  refers  to  facts  and  ideas  in  general.

Semantic memory is acquired through associations and is stored in discrete regions of the cortex (McLeod,

2012).

In  order  for  the  explicit  memory  to  be  processed,  information  is  associated  with  existing

knowledge. The procedure takes place in the left prefrontal cortex. The information is further modified by

protein synthesis in the neuron. The memory is therefore stored and may be recalled. Short-term memory

uses the information after decoding long-term memory. When explicit memory needs to be retrieved, a kind

of short-term memory also known as working memory is able to process the stored information (McLeod,

2012). The hippocampus is a temporary way station for long-term memory. The processing of information

initially takes place in the unimodal or multimodal association areas of the cerebral cortex  (Kandel et al.,

2013).

Moreover, implicit memory is retrieved non-consciously and is involved in training reflexive motor

or perceptual skills. Both sides of temporal lobes are associated with implicit memory. Implicit memory

represents behaviors which are acquired by establishing associations between the behaviors and repeated

environmental stimuli (Kandel et al., 2013). One example of creating implicit memory is explained by an

experiment conducted by Edward Thordike (1898) in which a cat attempted to randomly open a door. After

many attempts,  the cat  had learned how to open the door  (trial  and error).  This procedure is  also an

example of learning. 

1.2 Artificial neural networks

1.2.1 Biologically inspired computational intelligence 

Having previously briefly described the principles of biological neural networks, an artificial model

of  them would  be  introduced;  artificial  neural  networks.  Advances  in  computational  intelligence  have

motivated scientists in developing intelligent systems inspired by biological neural networks. ANNs are

generally characterized as computational models with properties such as adaptability and learning ability,

generalization and ability of parallel processing (Kröse & Smagt, 1996). Artificial neural networks, from

now on referred simply as neural networks, are statistical learning models originally designed as simplified

models  of  the  brain  function.  Interest  in  biological  processes  have  provided  scientists  with  better

understanding  of  biological  properties  and  the  knowledge  gained  was  used  to  improve  computational
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systems (Navlakha & Bar-Joseph, 2011).  For that reason, it is accepted that improvements in the area of

artificial  intelligence  simultaneously  triggers  improvement  on  the  knowledge  of  biological  processes

(Navlakha & Bar-Joseph, 2011). 

Humans throughout  the  ages  have always been concerned about  the  brain functions.  Not  only

neuroscientists but also computer scientists were interested in features of human cognition and wanted to

embed the knowledge in their computational models. Computers usually work following a fixed program

containing an algorithm. However, this in not the only way for a computational machine to work. Certain

problems  cannot  be  solved  using  a  simple  algorithm but  depend  on  many  subtle  factors.  Brains  can

calculate a variety of factors, but traditional computers cannot. 

Evolution  have  given  human  brain  properties  that  lack  from  the  standard  Von  Neumann

architectures. Brain’s adaptivity allows it to learn by means of training samples after a period. Therefore,

biological neural networks are capable to generalize and associate data upon training. Brain is therefore

able to solve problems of the same class. The feature of pattern recognition relies on this principle. The

distinction between two different objects is possible even if the exact objects are not previously presented.

The ability of generalization in turn results in a degree of fault tolerance (Navlakha & Bar-Joseph, 2011).

The property refers to the ability of a system to produce reasonable responses when it is provided with

noisy input data, or when the system has internal errors. External factors such as alcohol or drugs may

cause  destruction  of  neurons,  yet  cognitive  abilities  are  not  significantly  affected  (Kriesel,  2007).

Furthermore, in spite of the high speed of computer’s processing, humans can effortessly solve complex

perceptual  problems  faster  (Jain  et  al.,  1996). This  is  due  to  structural  differences  when  highly

interconnected  neurons  consisting  the  network  working  in  parallel  enables  the  brain  to  achieve  high

performances.  In  contrast,  a  conventional  computer  works  sequentially.  While  in  parallel  computing

multiple processes execute at the same time, sequential processes are run one after another in a succession

fashion (Mivule, 2011). For that reason, the latter form of programming reaches the same result slower than

in parallel computation. 

Artificial neural networks are able to mimic the abilities of biological neural networks and adapt the

mentioned properties. Because of this, neural networks are broadly used by scientists so that they approach

problems by teaching computers to solve them. However, training a neural network consumes considerable

amount  of  time  and  money.  Not  only  the  implementation  of  the  network  is  complex,  but  also  great

processing and storage resources are required. Whether a realistic biological neural network was designed

using artificial  neural  networks,  the amount of inter-connections between neurons would demand great

amounts of computer memory, hard disk space and processing power. Despite the limitations of the neural

networks,  advances  in  computer  technology have  allowed their  usage  to  solve  complex  industrial  and

scientific problems in fields such as engineering, medicine and finance. 

Besides the mentioned similarities, both biological and artificial neural networks consist of simple

building  units,  the  neurons,  which serve  as  computational  devices,  though artificial  neurons  are  much
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simpler that the biological ones. However, the most important feature that biological and artificial neural

networks share is  their  learning ability  (Eluyode et  al.,  2013).  Learning influences the strength of  the

connections between the neurons due to the synaptic plasticity  (Kowaliw et  al.,  2014).  These synaptic

connections  basically  determine  the  function  of  the  whole  network;  upon  training  procedure,  the

appropriate connections between neurons should have been determined (Hagan et al.,2014). The goal of a

learning system is to acquire a function that maps input events to output responses (Matheus & Hohensee,

1987).

1.2.2 Architecture of a neural network

An artificial  neural  network  is  an  information-processing  system that  has  certain  performance

characteristics in common with biological neural networks. A neural network consists of numerous simple

procession elements called neurons, units or nodes  (Gereshenson, 2003). Each neuron is connected with

other  neurons  by  means  of  directed  communication  links.  Imitating  synapses’  function,  the  links  are

associated with numerical values, the weights. Weights represent the strength of the synapses and may be

altered due to synaptic plasticity. The information being used by the network to solve a problem is stored as

the values of the weights. 

Neurons accept and transfer signals. Those signals are the input and the output values respectively.

Neurons  have  an  internal  state  called  the  activation.  The  activation  is  a  function  of  the  inputs  it  has

received, it is therefore called activation function. Whether the activation is identical to the output, the

neuron would be called linear.  However, this is rarely the case. Several activation functions have been

developed that produce the output, which depends only on the activation. The activation in turn depends on

the values of the inputs and their respective weights  (Gereshenson, 2003).  The output of the neuron is

transferred to one or more neurons, but only one at a time. In some cases, the neuron has also an external

input called bias. Bias is an input value usually set to 1 that does not represent a variable of the problem,

nor  a  signal  from other  neurons,  but  is  also connected with the  neuron through a  weighted link.  The

interactions of neurons through the connections lead to a global behavior of the network  (Gereshenson,

2003).

A single input neuron with bias is represented in the  figure 3. The input  p is multiplied with the

weight w and is sent to a summer Σ. All values are scalars. The external input is weighted by a bias b and is

also sent to the sumer. The summer, or net output n goes into a function f which produces the output a of

the neuron. Although the function is set by the designer of the neural network, scalars  w and  b are both

adjustable parameters of the neuron and are adjusted upon training to help the output meet a specific goal.
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In favor of biological synaptic signals, positive values of the weight w are considered as an excitation of the

neuron, while negative values as inhibition (Gereshenson, 2003). The process of adjusting the weights is

called learning or training.

In most problems, neural networks usually implement more than one values of inputs. In this case,

the output a of a neuron which has R inputs p1, p2…pR with weights corresponding to these input w1, w2…wR

and a bias b will be: 

Equation 1

Due  to  the  large  amount  of  processing  data, a  single  neuron  does  not  provide  the  necessary

flexibility in a neural network to adjust its weights and approach acceptable solutions. A larger amount of

neurons is usually needed to operate in parallel in what is called a layer of neurons. Both the output and the

biases include S values as the number of neurons (Fig. 4). However, the number of neurons in a layer is not

always equal to the number of the inputs. Also, the activation function in a layer may alter among neurons.

This property is similar to combining more of one neural networks in parallel. 
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Figure 3: A simple one-input neuron representation
with bias. Equation at the bottom of the figure is the
matrix form of the following equation 1 (Hagan et

al.,2014).



Layers  of  functions  can  also  be  combined  to  create  various  architectures  of  neural  networks.

Multilayer neural networks are layers of neurons combined in series. In this case, the output of the first

layer serves as input to the second layer, and the output of the second layer serves as input to the third layer.

The last  layer  is  usually  called the output  layer.  The first  and second layers  are called hidden layers,

because there is no access to them trough inputs or outputs (Fig. 5). 

The connections in this neural network are characterized as directed links, in the sense that signals

are always propagated from the first layer to the second and from the second to the third, and not in the

opposite  direction  (Matheus  &  Hohensee,  1987). These  networks  are  called  feedforward  networks.

Bidirectional neural networks may also be implemented, when the information flows in either sense. 
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Figure 4: A layer of S neurons with R inputs. S
biases are used and S outputs are produced (Hagan

et al.,2014). 



1.2.3 Training an artificial neural network

As mentioned before, the values of the weights possess the information used by the network to

solve a class of problems. The values are altered and determined upon training, meaning that the aim of the

training procedure is the adaptation of a neural network’s weights to meet the needs of a particular problem.

There are several ways of training an artificial neural network. The procedures are unsupervised training,

reinforcement learning and supervised training. 

In  the  first  case,  the  neural  network  is  being  trained  by  means  of  only  the  input  data.  In

unsupervised training, the network is trying to identify similar patterns and to classify them into similar

categories. No output data is presented to the network  (Matheus & Hohensee, 1987). In comparison, in

reinforcement learning the network receives the real value of output after network completion of a sequence

and then decides whether the produced result is accurate (Kowaliw et al., 2014). 
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Figure 5: A multilayered neural network. Three layers constitute the network. Each layer’s output a is 
theinput of the next layer. Third layer, or output layer, produces the final a3S output (Hagan et al.,2014).



Supervised learning, however, is the procedure where both input and output data is presented to the

network  before  training.  Training  data  is  presented  as  training  patterns  of  the  input  values  and  the

corresponding,  desired,  correct  output  values.  The  network  reads the  data  and then the output  can  be

directly compared with the correct solution while the network’s weights are being adjusted according to the

difference  (Kowaliw et al., 2014).  The purpose of the training is to alter the weights in a way that the

network will  not only remember the correct values for the inputs it  has been trained with, but  also to

provide plausible answers to unknown, similar input data. This process is called generalization (Matheus &

Hohensee, 1987).

Backpropagation  algorithms  have  been  developed  so  that  a  feedback  of  error  is  propagated

backwards in layered feedforward networks. The algorithm constitutes parallel distributed processing and is

used  in  supervised  learning.  The  algorithm  evaluates  the  network’s  performance  by  calculating  the

difference  between  the  produced  and  the  desired,  correct  results  via  an  error  function.  The  function

produces an error value which is  used to guide the modification of weights appropriately  (Matheus &

Hohensee, 1987). The idea of the backpropagation algorithm is to reduce this error, until the network learns

the training data. The training process begins with random weights, and the goal is for them to be adjusted

so that the error will be minimum (Gereshenson, 2003). Weight initialization, though, has been possible via

initialization algorithms that adjust the weights in an initial value previously determined to substantially

reduce the initial error (Yam & Chow, 2000).  

Part B: Crystallography

1.3 Principles of crystallography

X-ray crystallography is a tool with which scientists can identify the atomic and molecular structure

of  a  crystal.  Those  kinds  of  structures  are  not  to  be  seen  with  the  usual  methods  due  to  their  small

components of matter (atoms and molecules). X-ray crystallography uses X-rays (x-radiation), a form of

electromagnetic  radiation  (Als-Nielsen  &  McMorrow,  2011).  Microscopes  also  use  electromagnetic

radiation to picture small objects,  though their resolution is low. In order for two defined details of an

object  to  be seen with a  microscope,  they should be separated by at  least  half  the  wavelength of  the

radiation used to view them (Porter, 1906). Objects under study are atoms separated by distances of the

order of 1 Å (0.1 nm). For atoms to be seen, an appropriate radiation should be used. X-rays are this kind of
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radiation, with wavelengths ranging from 0.1-100 Å  (Als-Nielsen & McMorrow, 2011). For the reasons

mentioned, X-rays are a much more suitable type of radiation to view atoms rather than visible light. 

Microscopes are designed so that a beam of radiation falls into the object under study and this

radiation is then scattered by the object  (Drenth, 2007). The scattered radiation is then recombined by an

appropriate lens system and results in an image of the scattering matter appropriately magnified. An optical

microscope using visible light, recruits a series of lenses which diverge and focus the light passing through

them, while an electron microscope uses magnetic lenses in an analogous matter. On a smaller scale, X-rays

whose wavelengths are much shorter are scattered by the electrons in atoms. Scattered X-rays cannot be

focused normally by any currently known experimental technique, hence direct visualization of an image

cannot be conducted. 

For  that  reason,  the  phenomenon of  diffraction  is  an  alternative  but  indirect  way  to  view the

molecules.  Diffraction  involves  solids  in  a  crystalline  arrangement  (Müller,  2008).  This  crystalline

arrangement is essential because the diffraction pattern of a single molecule is too weak to be observed.

When molecules are arranged in a crystal,  this  pattern is  easily observed at  specific points due to the

repeating units (molecules). The points have a direct relationship with the shape and form of the crystal. A

diffraction pattern has potentially the same information as a direct image, though it is not easily observed.

The result of the analysis of this pattern is a complete three-dimensional elucidation of the arrangement of

atoms in the crystal under study. The information is obtained as two elements; the first one is the atomic

positional  coordinates  while  the  second is  the  atomic displacement  parameters.  The first  indicates  the

position of each atom in the  repeated units  of  the crystals.  From these a scientist  is  able  to precisely

calculate  inter-atomic distances  and angles  of  the  atomic components.  The latter  element indicates  the

extent of atomic motion or disorder in the molecule (Chatzidimitriou, 2015). 

Diffraction effects are observed only if the obstacle used is not greater than the wavelength of the

waves that impinge on it. Each wave has a periodic displacement, which is called the amplitude of the

wave, and a distance between crest, which constitutes its wavelength (Serway & Jewett, 2013). When an

object scatters a beam of radiation, the disturbance of the beam may be assessed by the knowledge of the

relative phases (phase difference) of all the scattered waves (Als-Nielsen & McMorrow, 2011). This is due

to the fact that the relative phases have a profound effect on the intensities of the scattered beams because

of  the  principle  of  superposition,  meaning that  a  total  wave  disturbance  is  the  sum of  the  individual

disturbances due to each source (Sherwood & Cooper, 2010). The beams scattered by an object or crystal

upon an X-ray experiment  are  captured on a  detector,  or  photographic  films.  The relative  phases  and

intensities of the scattered beams are determined by nature and depended on the atomic arrangement in the

crystal. X-ray detection devices, however, can only sense the intensity of the waves. The values of the

corresponding phases cannot be determined experimentally (Hauptman, 1983). 

In X-ray diffraction scattered beams by electrons in the crystal are essential in order to see small

objects such as atoms. The diffraction pattern can be directly obtained on the detection device by measuring
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the intensities of the scattered beams. However, the relative phases cannot be determined. The lack of the

phase information is called the phase problem. Only upon knowledge of the lost phases, crystallographers

would  be  able  to  recombine  all  the  information  (intensities  and  phases)  with  proper  mathematical

computation  techniques  (Fourier  synthesis)  and  obtain  an  electron  density  map  which  in  turn  gives

information about the structure of the molecules in the crystal under study. 

1.3.1 Crystals

Crystals  are  defined  as  solids  composed  of  a  regularly  repeated  arrangement  of  atoms

(Chatzidimitriou, 2015). Solids which possess well-defined, three-dimensional ordering of molecules which

are in proximity to one another and have relatively strong interactions between them belong to a state

known as crystalline state  (Sherwood & Cooper, 2010) and results in its macroscopic geometrical shape.

Crystals are bound by plane faces as a consequence of the regular stacking of molecules in layers. Every

face in a crystal represents a plane parallel to a molecular layer. In order that a molecular structure of a

material is studied with X-ray diffraction, crystals are to be used. 

A regularly repeated structure such the internal  of  a crystal  is  called the motif.  The motif  is  a

structural  unit  which  may be  a  single  molecule,  a  group of  several  molecules  or  a  group of  ions.  A

conceptual array of points which defines the geometrical relation between the motifs is called the lattice

(Sherwood & Cooper, 2010). A crystal structure is therefore expressed as the convolution of the lattice and

the motif.  Two-dimensional  lattices are called plane lattices while three-dimensional  lattices are called

space  lattices.  Both  kinds  of  lattices  are  defined  in  terms  of  crystallographic  unit  vectors  and

crystallographic unit  cells.  Unit  cells  constitute the basic building units  of  a crystal  and their  repeated

pattern represents the regularity and symmetry of the lattice. 

An example of a unit cell in three dimensions is depicted in figure 6 which is described by the unit

vectors a, b, c which define the crystallographic axes respectively. Any point in a three-dimensional lattice

may be described using the crystallographic unit vectors as (Eq. 2): 
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Equation 2

Crystal  structures  may be characterized by a  set  of  symmetry elements  which is  an important

property of well-ordered, geometrical objects. The symmetry of the lattices is such that in two dimensions

only five (5) lattices exist  (Fig. 7), while in three dimensions fourteen (14) lattices are defined  (Ladd &

Palmer, 2013). 

An example of the oblique p2 space group is illustrated above as appeared in International Tables

for X-ray crystallography. The twofold axis is at the origin of the cell and it will reproduce one of the

structural units. Symmetry elements are represented at the right-hand diagram; the twofold axis manifests

itself in two dimensions as a center of symmetry. Three additional centers of symmetry are generated at the

points (x, y) = (1⁄2,0), (0,1⁄2) and (1⁄2,1⁄2). The four centers of symmetry are all different in that the structural

arrangement is different as seen from each of them (Fig. 8).
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Figure 7: The five (5) 2-D lattices described by crystallographic unit vectors a,b
(Chatzidimitriou, 2015).

Figure 6: 3-D crystallographic unit
cell with axes a,b,c (Chatzidimitriou,

2015).



1.3.2 X-rays as electromagnetic waves

Both X-rays and visible light are electromagnetic waves where an electric field E and a magnetic

field B oscillate in a wave-like form in two mutually perpendicular planes (Serway & Jewett, 2013). The

difference between light and X-rays is the range of their wavelengths, with X-rays having much shorter

ones. 

A simple wave may be expressed as a sine wave by the equation: 

Equation 3

where A is the amplitude, meaning the peak deviation of the function from zero, f is the frequency, ω equals

2*π*f  and represents the angular frequency and  φ is the phase in radians. The phase is an expression of

relative displacement between the corresponding wave and an origin. 

1.3.3 Defining an electron density map

When an electromagnetic wave passes through matter, the electric field E causes charged particles
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Figure 8: The 2-D space group p2.



such as protons and electrons to oscillate. The oscillation of a particle creates wave-like disturbances in the

electric field. In consequence, the particles become secondary sources of electromagnetic radiation. This

effect  is  known  as  scattering.  The  combination  of  scattering  of  X-rays  in  crystals  gives  rise  to  the

macroscopic event of diffraction (Sherwood & Cooper, 2010). 

X-ray scattering is mainly a result of electrons (Sherwood & Cooper, 2010). The high frequencies

of the X-rays ranging from 3x1016 Hz to 3x1019 Hz and the weight of protons being much more than of the

electrons are the reason that electrons scatter more efficiently X-rays to the point where the total diffraction

pattern is considered a product of electron scattering only. The diffracted waves form a pattern which is

determined by the nature and structure of the obstacle. This pattern of radiation scattered by the object is

called its diffraction pattern. 

The  diffraction  pattern  contains  information  of  the  structure  of  the  diffracting  obstacle

(Chatzidimitriou, 2015). If an obstacle can be described by an amplitude function f(r), where r is a vector in

two or three-dimensional space and f(r) is zero everywhere outside the boundaries of the obstacle, then the

diffraction pattern amplitude F(k) is given by the Fourier transform of f(r):

Equation 4

This equation gives us the diffraction pattern if the obstacle (f(r)) is known. Conversely, if  the

diffraction pattern is known, then using the Fourier inversion theorem, the amplitude function f(r) can be

inferred in terms of F(k) as follows:

Equation 5

The definition  of  the  electron  density  map  of  the  crystal  is  the  purpose  of  a  crystallographic

experiment. The electron density map of a crystal is a three-dimensional description of the electron density

in a crystal structure (Usón & Sheldrick, 1999). This map describes the contents of the unit cells averaged

over the whole crystal and not the contents of a single unit cell (Drenth, 2007). 

The diffraction of X-rays by the contents of the unit cell is determined by the electrons. Since the

unit  cell  is  associated  with  the  lattice  and  the  diffraction  pattern  is  sampled  at  specific  regions  (the

reciprocal lattice points  hkl) the amplitude of the diffraction pattern is associated with particular lattice

points.  These  specific  amplitudes  of  the  diffraction  pattern  at  the  reciprocal  lattice  points  are  called

structure factors and are given by: 
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Equation 6

where  V represents the volume of the unit cell and  ρ(x,y,z) is the electron density map as a function of

position  x, y, z. The set of structure factors is in fact the Fourier transform of the electron density map

ρ(x,y,z) (Cochran,  1952).  Whether  the  structure  factors  are  determined  as  a  result  of  an  X-ray

crystallographic  experiment,  the  electron  density  map  may  be  conducted  through  an  inverse  Fourier

transform. The electron density map is therefore given by: 

Equation 7

The calculation of the electron density map using structure factors is called Fourier analysis and it

is the ultimate purpose of a crystallographer who performs a crystal structure analysis. 

1.3.4 The phase problem

The aim of a crystallographer who performs an X-ray diffraction experiment, is to determine the

molecular  structure  of  a  crystal  by  calculating  the  electron  density  function  according  to  the  Fourier

synthesis.  In  order  to  calculate  this  equation  the  values  of  the  structure  factors  are  all  needed;  their

magnitude and phase:

Equation 8

where ahkl represents the phase of the structure factor. Therefore, the calculation of the electron density map

requires  the  knowledge  of  all  structure  factors  in  both  magnitude  and  phase.  In  X-ray  diffraction

experiments however, only the intensities of the reflections are measured, and information of the relative

phases is lost because the intensity of a structure factor is equal to |Fhkl|2. The phases cannot be obtained

directly  from physical  measurements  (Hauptman,  1983).  Thus  half  the  information  is  lost  during  this

procedure. The lack of the phase information constitutes the phase problem (Taylor, 2003). 
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The relationship between structure factor magnitudes and electron density may be defined from the

molecular structure or electron density. Therefore, the values of the phases can be obtained by a prior

knowledge of the electron density or structure  (Taylor, 2003). Various methods have been developed to

deduce the relative phase angles of the structure factors. The interpretation of inter-atomic vectors is a

method in which an initial trial structure is obtained through Patterson and heavy atom methods. From these

structures calculated phase angles can be derived (Ladd & Palmer, 1980). An alternative method is the use

of  isostructural  crystals.  Two  isomorphous  crystals  are  used  consisting  the  same  atoms  expect  for  a

replacement of one or more atoms in one structure with different types of atoms than the other, such as

heavy atoms, or the presence of one or more additional atoms in one of them. Phases can be therefore

estimated by comparing such crystals and this method is the method of choice for macromolecular phase

determination (Chatzidimitriou, 2015). 

A  third  method  of  phase  determination  are  direct  methods.  These  methods  are  based  on  the

positivity and atomicity of electron density and leads through statistical methods to phase relationships

between normalized structure factors (Hauptman, 1983). Direct methods are mathematical techniques that

attempt to solve the phase problem from the observed amplitudes through purely algorithmic relationships,

with no recourse to any structural information (Hauptman, 1997). This is the feature that these techniques

have in common with the neural networks,  since the neural  network will  not have access to structural

chemical information upon training but only previously presented to observed amplitudes, just as the case

of direct methods. 

Direct methods have already the ability to solve small-molecule structures of up to about 100 atoms

(Usón & Sheldrick, 1999).  The methods are based on two basic criteria. The first is that given a set of

observed amplitudes  |Fhkl|,  the corresponding phases must be such as to produce non-negative electron

density values everywhere. The second criterion is that, if the atoms is a structure are identical and in close

distance but  do not  overlap in  space,  a  relationship among diffracted amplitudes and therefore  among

phases exists (Hauptman, 1997). The second criterion may be extended in a probabilistic sense to the case

of unequal atoms (Giacovazzo, 2013). 

Direct methods involve the comparison of the structure factors magnitude and in oder to generalize

the  mathematics,  the  normalized  structure  factor  Ehkl (E-value)  can  be  derived  corresponding  to  each

amplitude (Giacovazzo, 2006). The advantage of E-values is that it has been shown that its use is equivalent

to structure points but without suffering from thermal motion (Drenth, 2007). In centrosymmetric crystals,

all structure factors Fhkl are real, as a result of the Fourier transform properties (Sherwood & Cooper, 2010).

This means that the structure factors have 0 or π phases and therefore can be assigned with positive or

negative signs respectively. In consequence, the corresponding Ehkl is assigned with the same sign. 

Another powerful approach to the problem of phase determination is provided by the probability

relationships. An algorithmic equation shows the relationship between the structure factor and the sign in

order that phase information is extracted. These sign relationships are based on the Sayre’s equation: 
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Equation 9

The implication of Sayre’s equation is that any structure factor Fhkl is determined by the products of

all the pairs of structure factors whose indices add to give (hkl) (Sayre, 1952). Sayre pointed out that for the

case  where  Fhkl is  large,  the  series  must  strongly  tend  towards  one  direction  (positive  or  negative in

centrosymmetric cases) and that this direction is generally determined by the agreement in sign among

products between large structure factors. Sayre’s equation can be therefore extended in the case of non

centrosymmetric crystals. Certain linear combinations of the phases are defined as following: 

Equation 10

where φhkl is the phase of the hkl reflection. This is known as the sum of angles formula and reflections (-h-

k-l), (h’k’l’), (h-h’ k-k’ l-l’) define a triplet of reflections whose angles are related (Ladd & Palmer, 1980).

The relative phase combinations are of great importance in direct methods and they are called structure

invariants, because they are uniquely determined by the crystal structure but are independent of the choice

of origin (Hauptman, 1983). 

Part C: Objective

Crystallography as a tool provides great knowledge to molecular biologists regarding features of

proteins, DNA and RNA, and the relationships among such molecules by allowing the structural depiction

of them and analyzing their functions. Despite the development on X-ray crystallography, crystallographers

face a fundamental obstacle; the phase problem. The phase problem is called upon the lack of the phases’

information after an X-ray crystallographic experiment. Various techniques of phase determination have

been developed to overcome the problem. Direct methods is an example technique that uses solely the

observed intensities of the diffraction pattern of a crystal without prior knowledge of the molecule under

study or other structural and chemical information. 

Artificial neural networks are algorithmic models with the ability to learn by means of the observed
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data. This feature is similar to the algorithmic operations represented by the direct methods. Therefore,

neural networks might be able to learn the appropriate relationships between the observed data, thus the

amplitudes, and their corresponding phases suggested by direct methods. A trained neural network with the

ability to approximate estimate the phases on a set of amplitudes regarding a diffraction pattern would be a

great tool and subsequently enhance the work of crystallographers. 

The aim of this research is to examine whether neural networks could be sufficiently trained to

reach the specific target. To this end, hypothetical 2-dimensional, centrosymmetric structures were used to

simplify the problem. Neural networks were implemented and trained upon structural data of the simplified

structures.  Then,  the  networks  were  evaluated  for  their  performance,  thus  their  ability  to  produce  the

desired, correct phases corresponding to a set of amplitudes. Whether the network has the ability to be

trained  for  the  simplified  structures,  it  could  be  possible  for  additional  research  to  be  done  for  more

complicated structures. 
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C hapter  2

Network’s  implementations

The nature and arrangement of the connections between neurons determined both what types of

functions a network is able to compute and what it is able to learn with respect to a given learning rule

(Matheus & Hohensee, 1987). For the purpose of this research, neural networks were implemented using

Fast  Artificial  Neural  Network  (FANN)  Library.  FANN is  an  open  source  library  which  implements

multilayer  neural  networks.  It  supports  cross-platform  execution  and  it  is  easy  to  use  with  example

networks supplemented in the installation package. The parameters are easy to optimize through simple

functions (Nissen, 2005). While FANN works in many programming languages, C was preferred and used

for  both  creating,  training  and  testing  the  networks.  Experiments  took  place  in  Linux  based  Ubuntu

operating system. FANN’s latest version 2.20 was used for all trials. 

The main benefits of using FANN Library was the speed and the simplicity of its networks. A

newly created network can be trained on a training data set consisting of the input and the output data.

When the data set is introduced to the network, the weights of the network are adjusted to the information

presented in order that it gives the same outputs as seen in the training data. The aim of the training process

is to minimize the mean square  error (MSE) of the training data;  this  would happen by adjusting the

weights appropriately and would be evaluated by investigating whether the trained network produces the

desired, correct output. Genetic algorithms have been introduced to assess the problem. Backpropagation

algorithms examine the current MSE on each training epoch and therefore adjust the weights to minimize it.

However,  training may result  to  an over-fitted network.  The term suggests  a network that  has

memorized the relationship between the input and the output giving precise results for the training data, but

cannot predict the correct output on other data resulting in poor generalization performance. In order to

prevent over-fitting, the network would be evaluated every epoch by using a percentage of the training data

with which the network was assessed for its accuracy (Mitchel, 2005). At the end of the training process,

the network was tested on another  group of data  sets,  the  test  data.  Testing the network examines  its

accuracy to predict the correct signs of the output upon the completion of the training. 
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2.1 Structures under study

For the purpose of this research, simple structures were studied. More specifically, 2-Dimensional

centrosymmetric structures in oblique p2 crystals were employed to assess the network’s ability to process

and learn the appropriate phase relationships. For the simplified problem, the phases were not examined

altogether for the employed structure factors but the network assessed one phase at a time; for a set of

amplitudes, the phase in question was chosen to be a structure invariant. As mentioned before (paragraph

1.3.4), structure invariants are characterized by linear phase relationships suggested by Sayre (1952) when

he employed large structure factors in his equation. By assessing one phase at a time and selecting the

phase that corresponds to a structure invariant, the complexity of the problem was reduced. 

A program in C has been created to produce the structures of interest. The program sets random x,

y coordinates for the position of the atoms. The arrangement of the defined number of atoms in a defined

unit  cell  produce  the  structure  factors,  according  to  the  given  maximum  resolution  at  1.0  Å  which

determines how many the reflections are. A minimum fractional separation between the atoms is also taken

into account and set at 0.15. The factors produced are based on an equation (Eq. 11) that gives the structure

factors of the unit cell with an origin of coordinates at the point 00, the center of symmetry in the particular

unit cell. 

Equation 11

Afterwards, the amplitudes (Fhk for two dimensions) are turned into E-values. E-values Ehk represent

the amplitudes  but  without  the  effects  of  the  temperature  factor.  The temperature  factor  represent  the

uncertainty for each atom. The reason for the selected input data is to simplify the problem. 

Two different crystals were used for this research’s experiments. Their dimensions were 2.0x3.0 Å

and 7.0x12.0 Å.  Structure  factors  were studied for  2  or  4  atoms in the  respective unit  cells.  Random

structures were created representing the mentioned conditions. The program had an output of hk reflections

defined both the amplitude and the phase. For the centrosymmetric structures under study, the phase has the

form of a positive or a negative sign. 

Fourier  synthesis  was  performed  on  structure  factors  produced  by  the  program  using  the

‘Pepinsky’s machine’ program. The electron density maps of some experimental structures are presented

(Fig. 9). 
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Data sets were created using the program in C. Each data file contained multiple training sets or

patterns, a couple of input data and the corresponding sign of the structure factor being negative when

phase=π or positive when phase=0. The number of the training sets used, the number of the input values

and the number of output values were written at the first line of the data set. Following that, each training

set has been displayed into two lines; first was the input and then the desired output. The number of the

input data was determined by the number of the reflections. While the input data was numerous, the output

data was a single digit with a positive or a negative sign. 
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Figure 9: The electron density maps of two random structures created to be used for training neural
networks. There are presented structures of 4 atoms in a 7.0x12.0 Å unit cell.



In this simple case, the data structure factors produced by the program in C were 7 when 2 atoms

are employed and 126 when the atoms are 4. The difference on the amount of the structure factors are not

only because the number of the atoms alters, but also for the size of the cell is importantly smaller in the

first case.

The output of each data set was assigned to be the sign of a single amplitude given as structure

factors. The amplitude of interest was chosen to be a structure invariant. The desired outputs had a bipolar

form (1 or -1). When the structure factor is positive, the desired output value is +1 and when it is negative,

it is -1. The network may produce outputs with low accuracy, as long as these outputs are positive or

negative.

 A data set was fed into the network during its training. The network used the information stored in

the data file in order to associate the input values, meaning the E-values and therefore the structure factors,

with the correct, desired output, thus the sign of a single structure invariant reflection. Upon completion of

the training process, the network should be able to estimate the correct sign corresponding to a newly

introduced input set.  

2.2 Creating the network

2.2.1 Training algorithms

The overall objective of a neural network is to be able to be familiar with problems by means of

only the training and, upon sufficient training, to be able to solve unknown problems of the same class. For

this purpose, an artificial neural network could adapt to these problems and therefore learn by imitating the

learning process of a biological neural network. In this case supervised learning will be used, because the

neural networks are going to be trained with examples with known, inputs and outputs. The training process

aims to alter the strength of the connections, develop new connections or delete existing connections. A

connection may be deleted by assigning a zero value to its weight, while an inactive connection can be

activated  by  changing  its  zero  value  to  something  else.  Higher  values  of  weight  means  a  stronger

connection.

To this end,  a training algorithm is needed which is  going to adjust  the weights and biases to

suitable values. An issue to be determined is when the weights are adjusted during the training process.

Incremental training updates the weights and biases after each data pattern is presented. In batch training,

the weights and biases are updated only after all the data sets are presented. A total error of the patterns is
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calculated by means of an error function operations and the weights are adjusted properly. Both approaches

are referred as backpropagation learning. While the first approach is expected to be faster, the latter seems

to achieve more precise results when the problem is more complex (Nissen, 2003). 

Advanced  batch  algorithms,  RPROP (resilient  backpropagation)  and  QUICKPROP,  have  been

developed in order to adjust weights faster and more efficiently. RPROP algorithm is a direct adaptive

method of faster backpropagation learning. The main difference between RPROP and QUICKPROP is that

the latter uses advanced parameters such as learning rate which cannot be manually adjusted in the adaptive

method of RPROP. Both algorithms are expected to achieve good results for a variety of problems. 

Both mentioned algorithms are based on a mathematical concept called the gradient, a general form

of the derivative when several variables are used. Gradient descent algorithms include some measure of

error the value of which will change as the value of one weight changes when other weights or biases’

values are not altered. A gradient is made up of several partial derivatives. The sign of a partial derivative

for a weight indicates how the weight should be altered. For instance, when the sign of the partial derivative

of a weight is positive the weight should go negative and vice versa. RPROP algorithm adjusts the weights

during training by means of only the sign of the gradient, meaning the partial derivative over all patterns. 

When the input values are presented, they are propagated forward through the network to compute

the output value. This output is produced based on the current network’s weights and is then compared with

the output values suggested by the training set. An error signal is estimated and is passing through the

network as a feedback so that the error signal alters the weights appropriately. The process propagates the

errors  back  one  layer  and  is  repeated  for  every  layer.  The  whole  procedure  constitutes  an  epoch.

Afterwards, the weights are adjusted is a direction that minimizes the error between the outputs of the

network and the desired values. Several epochs are needed in order to produce a minimum of the error. The

training process is finished when an acceptable error is produced. For this thesis’ experiments, a minimum

error at 0.001 is required while 1000 epochs are designed to occur unless otherwise mentioned. 

A main disadvantage of gradient descent algorithms is that the error often reached a local minimum

value rather than a global minimum on the error surface (Matheus & Hohensee, 1987). The error surface

has multiple local minimums and the gradient operations may pause in a local minimum value without ever

reaching a global minimum. Another issue could be when a flat error surface is presented, a great amount

of training epochs are required in order to achieve the desired minimum value. However, a local minimum

is acceptable as long as it has a satisfactory value. 

In order to solve this issue, the values of the weights may be adjusted before training using an

initialization algorithm. Initialization of the weights can promote the network to reach the desired error

faster and more precisely. A common random weight initialization is the Nguyen-Widrow’s initialization

algorithm. The initialization algorithm generates initial weights and bias values so that the active regions of

the  neurons  are  distributed  approximately  evenly  over  the  input  space.  In  order  for  the  algorithm to
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perform, it examines the range of the input data and therefore adjusts the weights of the neurons so that

each neuron will learn more readily. When initialization is attempted during this thesis’ experiments, it

occurs once before the training process. 

2.2.2 Function approximation

Neural  networks are  capable  of  function approximation meaning that  they learn a  function by

means of only the observed data. In order for the network to learn a problem, it must be defined as a

function with a set of input and output supported by examples of how this function should work. The input

and the output values consisting a data set represent the variables of the function is question. The network

learns the function that associates the input with the output values by slowly adjusting the weights of its

neurons in every layer to produce the same output as in the example data set.

A way to enhance network’s training speed and precision is to set the range of the input and the

output values  (Nissen, 2003). To this end, activation functions may be defined. Since the default values

used in neural networks are [0,1] and the desired output values are [-1,1], activation functions should be

used that set the range of the output value at [-1,1]. 

For that reason, symmetric functions were selected which have output that ranges from -1 to 1.

Four functions were used; sigmoid symmetric (Eq. 12), gaussian symmetric (Eq. 13), elliot symmetric (Eq.

14) and linear piece symmetric (Eq. 15) activation functions. 

f (x)=
2

1+e−2 sx
−1  

f (x)=e−(xs)2
−1

f (x)=
xs

1+|xs|

f (x)=xs

Equation 12

Equation 13

Equation 14

Equation 15

where  x is  the input  to the function,  f(x) is  the output  value and  s the steepness.  The steepness of an

activation functions characterizes how fast the function will go from the minimum to the maximum. While

the parameter has a range from 0 to 1, meaning the extreme values when 1 is the highest speed, the default

activation steepness is 0.5 and was not altered before the experiments. 
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Among all activation functions tested, only FANN Linear piece symmetric has a range including

the limits -1 and 1, when all others are ranged between (-1,1). All four functions were compared to the

default  activation function FANN Sigmoid stepwise having an output  range [0,1].  The functions  were

evaluated for their efficacy to help the network adapt to problem when used in hidden or/and output layer. 

2.2.3 Network’s size and connectivity

A very first step on designing the network is to define its size. Whereas the number of neurons in

the input and the output layer is determined by definition of the problem, the number of neurons in the

hidden layer as well the amount of the hidden layers used may vary. The procedure in order to decide about

those two key features is largely a matter of experience. With many problems, accuracy can be sufficiently

obtained with one or two hidden layers and a few hidden neurons in both layers. In case neurons are less

than the number compared to the complexity of the problem, the network will not be able to detect the

signals in the data set. The complexity of the problem relates to the number of the weights and biases. On

the other hand, if the network consists of too many hidden neurons or layers, it is likely to memorize the

data by resulting to over-fitting. 

The  number  of  the  hidden  neurons  required  cannot  be  evaluated  without  looking  through  the

complexity of the problem. To this end, a number of neural networks with different sizes were tested in

order to identify the approximate suitable number of the two characteristics. The number of neurons in the

hidden layers were ranging from a few neurons to some hundred neurons. One to seven hidden layers were

also tested with a small number of neurons in each layer. 

One way to lower the complexity of a network while sustaining its size is to adjust the parameter of

the connection rate (Nissen, 2003). The default value of the parameter is 1 representing a fully connected,

dense network.  When this parameter is  0.5 for example, the network will  contain the same amount of

neurons but only half as many connections. Networks with less connectivity than of a dense one are called

sparse  (Kowaliw et al., 2014). Trials were conducted with sparse networks compared to dense networks

when connection rate is 0.8, 0.5 and 0.25. 

2.3 Training the network

As mentioned before, designing a multilayer network has the ultimate aim to become familiar with

problems by assessing the functional  relationships  between the input  and the output  training data  and

therefore solve similar problems. This process is called generalization. In agreement with Ockham’s razor,
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the key strategy for obtaining good generalization is  to find the simplest  model  that  explains the data

(Zimmermann et al., 2002). 

There are many methods to sufficiently achieve the network’s training so that it provides plausible

answers; growing, pruning, global searches, regularization and early stopping. Growing methods start with

zero neurons and gradually add some in the network until it achieves an adequate performance. On the

contrary,  pruning  methods  start  with  a  great  number  of  neurons  in  the  network  and stepwise  remove

neurons or weights until the performance is significantly poor  (Islam & Murase, 2001). Global searches

assess all possible network architectures to determine the simplest model that explains the data. The rest of

the methods, regularization and early stopping, sustain the network small and simple by constraining the

magnitude of the weights but not the amount of them. 

In the first three approaches, growing, pruning, and global searches, over-fitting may occur for the

networks are larger. In order to avoid this, early stopping method was used. Early stopping is the simplest

method with an overall idea that as training progresses the network uses more and more of its weights, until

all  weights are fully used when training reaches a minimum of the error surface. If training process is

terminated earlier, fewer parameters would be used preventing over-fitting. 

In  order  to  determine  when  the  training  procedure  should  be  stopped,  a  method  called  cross

validation takes place. Cross validation uses 10% of the data set (cross validation set) in order to evaluate

the degradation of the error value. The training process should stop when the error value does not decrease.

In this case, the error value was calculated using the mean squared error function (MSE): 

Equation 16

where  ti is the value of the ith output of the neural network and  oi is the desired output. The number of

outputs is n. The same error function is used to evaluate the performance on the training data. 

Another measure of performance during training is the number of failed bits. The bit fail limit is a

parameter that represents the maximum allowed difference between the desired and the produced output

value during training and cross validation. Each output that diverges more than this limit is counted as an

error bit. In symmetric activation functions like the ones used in the experiments, the difference is divided

by two. The number of failed bits represent the inability of the network to predict the desired output values.

For that  reason,  it  will  be used for evaluation is  some cases but  not  many of them as there are more

preferable methods to do so. 

There are four (4) conditions for a training process to stop. Early stopping suggests the first one

when the error returned from the validation process do not decrease. Another condition is when the network

reaches a desirable performance. Training would also stop when the error value received on the training

data is really small (0.001 in this case). Lastly, the training process is set to take place for a maximum
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number of epochs which is reached when the other conditions are not satisfied. 

Upon  completion  of  the  training  procedure  the  network,  meaning  the  values  of  the  adjusted

weights, will be printed in a file in the current directory. 

2.4 Testing the network

In order to finally evaluate the performance of a trained network, the network is executed using a

test set. The test set represents 10% of the data set and the network runs forward using the input values of

the test set.  The network produces output values performing the functions learned during training. The

produced output values are then compared to the desired ones in order to assess its efficacy to correctly

predict them. The desired output values, therefore the correct phases of the structure factors that consist the

data sets, are 1 or -1. However, the network would considerably perform well when the signs of the phases

are correctly predicted. A network that produces output values equal or larger that 0 for positive phases and

values  smaller  than  0  for  negative  phases  is  considered  successful.  The  percentage  of  the  correctly

produced outputs indicates the correctly predicted phases and is consequently calculated and presented in

the results section. 
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C hapter  3

Results

The objective of the current research thesis was to build a neural network in C and train it to learn

the necessary algorithmic operations in order to estimate the crystallographic phase by means of only the

directly observed experimental  data.  For that  reason,  the data given as ‘input’  represent  each time the

reflections of a hypothetical 2-Dimensional structure in centrosymmetric p2 crystals. All data set contain

the E-values of the amplitudes of those reflections. The network receives the E-values and the respected

phase of a structural invariant reflection. After multiple training cycles often set 1000, each neural network

was assessed for its satisfactory outcome by its Mean Square Error (MSE) or further tested using 10% of

the presented data set of inputs. 

Experiments were conducted for structures of 2 and 4 atoms. Structures of one atom were not

suitable to be examined due to their little variety on structural reflections. 

3.1 Experiments with structure factors of 2 atoms as input data

Data  sets  represent  the  E-values  of  the  reflections  of  hypothetical  2-Dimensional  structure  in

centrosymmetric p2 crystals. Cell is 2.0x3.0 Å and a minimum fractional separation between the atoms is

set at 0.15. The maximum resolution is 1.0  Å.

Multiple training cycles were attempted in order to examine parameters such as the appropriate

training algorithm used from the network, the activation function, the number of hidden layers and neurons

that will be able to process the operations and the number of input data sets that will be enough in order that

the network associates the input with the respective output, but not too many to manage an over-fitting

network. 

The data sets contain 7 reflections as input and one output. The output is 1 or -1 representing a

positive or negative phase respectively for the reflection 02. The reflection under study was chosen as a

structure invariant detected for it is a large structure factor in multiple structures. 
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3.1.1 Activation function

70 data sets were fed into a neural network when the training algorithm is set as default (RPROP)

and using only one hidden layer with 7 neurons in it. Symmetric activation functions were chosen to be

tested for their span [-1,1], for the expected output is -1, 1. Training was attempted for different activation

functions in hidden or output layer. When one of each is changed, the other one remains default (FANN

Sigmoid stepwise). 

Experiments with different activation functions in hidden layer led to the conclusion that FANN

Elliot  symmetric  function  in  hidden  layer  gives  a  lower  Mean  Square  Error  (MSE)  than  Gaussian

symmetric, Linear piece symmetric and Sigmoid symmetric (Fig 10). The mentioned functions cannot be

determined for their  results  because of the activation function set  in output  layer.  For that  reason,  the

experiment was re-conducted for different activation function in output layer, while hidden layer remains

default (Sigmoid stepwise) or set as FANN Elliot symmetric. 

Different activation functions on output layer have multiple effects on the MSE of training and

cross validation. While MSE of training is low, MSE of cross validation is variable (Fig. 11). In order to

determine for the most suitable activation function, they were associated with FANN Elliot symmetric on

hidden layer. 
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Figure 10: FANN activation functions for hidden layer do not have a great affect on the outcome when
activation function for output layer is default. However, FANN Elliot symmetric give a lower MSE for the
training. Bar graphs represent the MSE.



When FANN Elliot symmetric is set as the activation function on hidden layer, the effectiveness of

the activation functions in question varies. While all of them have low MSE on training, the MSE on cross

validation is variable (Fig. 12). In order to determine about the most suitable activation function for output

layer the number of the fail bits was examined, indicating the number of output neurons which differ more

than the bit fail limit. 

Both FANN Linear piece and Sigmoid symmetric seem to have a low MSE after training and cross
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Figure 12: Different activation functions on output layer have different effect on MSE when associated
with FANN Elliot  symmetric in hidden layer.  While FANN Gaussian symmetric seem to be the least
suitable function, all other three have low MSE on training. Bar graphs represent the MSE.
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Figure 11: The effectiveness of activation functions is variable when hidden layer is default.  Different
functions on output layer will have multiple values of MSE for Cross Validation, while MSE for training is
low. Bar graphs represent the MSE.



validation, while the fail bit is low, meaning that the training was successful (Fig. 13). FANN Linear piece

symmetric  is  probably  more  suitable  as  an  activation  function  on  output  layer  when  FANN  Elliot

symmetric is on hidden layer.

3.1.2 Training Algorithm

In order to determine the most  suitable training algorithm for the neural  network,  the four (4)

algorithms used  in  FANN were  tested using  70 data  sets  for  training,  FANN Elliot  and Linear  piece

symmetric  activation functions  for  hidden and output  layer  respectively,  and one hidden layer  with  7

neurons. The algorithms tested were batch, incremental, QUICKPROP and the default RPROP. While MSE

of cross validation does not differ among each trial, the default training algorithm RPROP seem to be the

most suitable one where MSE of training is 0.001 and the prediction of correct signs is the highest among

the rest. FANN QUICKPROP has the lowest MSE on cross validation but lacks on prediction, while batch

algorithm has higher MSE on training and cross validation. Incremental is not a suitable training algorithm

due to its high MSE on training and its low prediction of correct signs (Fig. 14).
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3.1.3 Number of training sets

While the training algorithm is determined, the activation function is yet to be decided. In order to

examine the appropriate activation function of output layer, multiple numbers of training sets are tested to

also assess whether the size of the network can affect the training ability of the neural network. Having set

the activation function of the hidden layer FANN Elliot symmetric, one hidden layer of 7 neurons is used to

examine 10, 40, 70, 140, 200, 500, 700, 1000, 1400 and 70000 training sets. 

Firstly,  FANN Sigmoid symmetric  was assessed as  the  activation function of output  layer and

compared to FANN Linear piece symmetric. Both activation functions were examined for the ability of the

neural network to predict correct signs when tested. So far, FANN Linear piece symmetric seems to be a

most suitable activation function for output layer when FANN Elliot symmetric is set on hidden layer (Fig.

15). 
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Figure 14: Default training algorithm seems to be the most suitable among the rest. While MSE is low, it
manages to predict 85.71% correct signs. Bar graphs represent the value of MSE. Line represents the
percentage of correctly predicted phases.



The number of training sets seem to have an effect on the training of the network. Although a few

training sets can train a network to predict 100% correct signs, the small amount (10%) of the testing set on

cross validation should be taken into account. For instance, when a neural network is being trained over 10

training sets, the test is taken place on just 1 set, indicating that it could be a matter of chance. On the

contrary,  a  great  number  of  training  sets  may have  a  negative effect  by  over-fitting  the network;  the

network may have memorized the results rather than learn how to predict them.

The number of training sets may be of great importance to the training of the neural network but a

suitable number of sets cannot be determined. The graph representing the training and cross validation of

multiple neural networks using FANN Linear piece symmetric as the activation function of output layer do

not predict a pattern of association between the number of training sets and the successful training of the

neural network (Fig. 16).
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Figure 15: Activation function FANN Linear piece symmetric on output layer seem to be more efficient 
than FANN Sigmoid symmetric when Elliot symmetric is set for hidden layer. Lines represent the 
percentage of correctly predicted phases.
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Figure  16:  The  effectiveness  of  the number of  training sets  on the learning rate  of  the network is
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3.1.4 Number of neurons and hidden layers

Having established the parameters of training algorithm and the activation function of both hidden

and output layer, the size of the network is to be determined. Different conditions of one or two hidden

layers were examined, while altering the number of neurons on each layer. For that reason, training was

attempted on neural networks using 70 data sets for one or two hidden layers of 3, 7, 14, 50, 70 and 100

neurons each. 

As presented by the graph in figure 17, a few neurons or hidden layers do not seem to allow the

network process the appropriate operations. In order to determine about the size of the network, the trials

were re-conducted for several numbers of training sets using two (2) hidden layers with different number of

neurons in each of them. The numbers of sets tested were 200, 700 and 70000 for 3, 7, 14, 50, 70 and 100

neurons in both hidden layers. 

Results suggest that both the number of neurons in the hidden layer and the number of data sets

correlate with the network’s ability to learn how to predict the correct output. The more the number of sets

fed into the network, the more complex and numerous the neurons should be in order for the network to be

trained (Fig. 18). 
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3.2 Experiments with structure factors of 4 atoms as input data

Having  previously  established  parameters  such  as  the  Training  algorithm  and  the  Activation

function of the hidden and the output layer, a neural network will be trained upon data on bigger structures.

Thus, data sets were produced using structure factors of 4 atoms in a 7.0x12.0 Å unit cell. The main target

of the experiments was to establish the appropriate number of hidden layers, the neurons in each hidden

layer and the number of training sets in order that the network learns the necessary algorithmic operations

to predict the correct output, thus the correct phase. Alternative parameters were also examined; networks

were tested about their ability to learn while being sparse or dense, when the input data is shuffled during

training, when the weights of the input data are initialized using the Widrow and Nguyen’s algorithm  and

lastly it  was assessed whether the number of the cycles of the training procedure has an effect on the

outcome. 

Data  sets  represent  the  E-values  of  the  reflections  of  hypothetical  2-Dimensional  structure  in

centrosymmetric p2 crystals. A minimum fractional separation between the atoms is set at 0.15 while the

maximum resolution is 1.0 Å. The data sets contain 126 reflections as input and one output. The output is 1

or  -1  representing  a  positive  or  negative  phase  respectively  for  the  reflection  20.  As  in  previous

experiments, the reflection under study was chosen as a structure invariant detected for it is a large structure

factor in multiple structures. 

For better understanding the effect of the amount of hidden layers and the neurons in each layer,
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Figure 18: The number of training sets upon which the network is trained is related to the success of the
training. Lines represent the percentage of the correctly predicted phases.



experiments were conducted with multiple trials using input data of 80000 training sets. A simple network

was implemented with a default training algorithm and activation functions FANN Elliot symmetric on

hidden layer and FANN Linear piece symmetric on output layer. Ten (10) trials of training were conducted

on each condition. Results showed that one hidden layer does not allow the network to predict the correct

phases on the level that two or more hidden layers do. Moreover, the MSE on both training and cross

validation is higher, indicating that more than one hidden layers are expected to produce a neural network

much more capable of learning (Fig. 19). 

More experiments were conducted in order to compare the results of the network trained on 80000

training sets with a network trained on 20000 sets.  Both networks are able of learning and manage to

predict  74-81% and 71-74% correct  phases  respectively.  Less  MSE and better  prediction of  phases  is

observed when the network is trained with more training sets. However, the range of the percentage of

correct prediction is limited in both conditions, suggesting that when two hidden layers are constructed, the

number of neurons on each layer has not a great effect on the outcome (Fig. 20-21). 
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Figure  19: A more complex hidden layer is more capable of depicting the appropriate operations and
allow the network to learn. Two or more hidden layers consist a network that can more accurately predict
the correct output. Bar graphs represent the MSE. Line represents the percentage of correctly predicted
phases. Error bars represent the standard deviation. Number of replicates per condition=10.
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Figure  21: Simple train of neural network upon input data of 20000 training sets.  The percentage of
correct prediction of the phases varies on a limited range. Bar graphs represent the MSE. Line represents
the percentage of correctly predicted phases. 
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Figure  20: Simple train of neural network upon input data of 80000 training sets.  The percentage of
correct  prediction  of  the  phases  is  almost  steady.  Bar  graphs  represent  the  MSE.  Line  represents  the
percentage of correctly predicted phases. 



3.2.1 Alternative ways to read the training data 

Neural networks trained upon input data of 20000 training sets were examined about whether a

change on the input format has an effect on learning ability of the network. At first, the input data set was

presented  to  the  network  as  constructed  and  then  shuffled  on  every  cycle  of  the  training  procedure.

Therefore, the same input training data set was used from the network to be trained but in a different order.

Results were compared to the simple training. While the MSE on both training and cross validation does

not seem to differ from the simple training, the network’s ability to learn was precisely lower than which is

presented in figure 21, as shown by the percentage of the prediction of the correct phases after the training

(Fig. 22). For that reason, shuffled training sets are not suitable for the network in order that it learns to

predict the expected outcome. 

3.2.2 Alternative ways to adjust weights

Another process of reading the input data implicates the weights on the input neurons. The weights

represent  the  synapses  and are  altered  on  every  cycle  of  training  in  order  to  reflect  the  input-output

association. An initialization of those weights were attempted using the algorithm developed by Derrick

Nguyen and Bernard Widrow (1990). The algorithm was introduced as a tool that improves the learning
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Figure 22: Shuffled training sets do not boost the ability of the network to learn.  Bar graphs represent
the MSE. Line represents the percentage of correctly predicted phases.



speed. After several trials of training the network with initialized weights the MSE of both training and

cross validation is slightly less but the percentage of prediction of correct phases is almost the same as

when the network is trained without initialization of the weights.

Although not  many differences are observed upon initialization,  the network seems to perform

better than in the original conditions which are shown in figure 21 (Fig. 23). For that reason, the following

experiments will be conducted using initialized weights. 

3.2.3 Sparse networks

Sparse  networks  are  defined  as  less  linked  than  dense  or  full  high  connection  networks.  The

difference between the two is due to the connection rate, a factor among [0,1]. When the  factor is 0.5, only

half of the possible connections between neurons are taking place in the network, while the factor 1 is

equivalent to a simple dense network where all neurons are connected. The purpose of sparse networks is to

prevent over-fitting.

Three (3) conditions of sparse networks were examined; when the connection rate were 0.8, 0.5 and

0.25. All three networks were to be compared to the dense network in figures 24-26 using a training input

data set of 20000 sets of structure factors. 
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Figure 23: Neural networks seem to perform better in training when using initialized weights according
to Nguyen’s and Widrow’s algorithm. Bar graphs represent the MSE. Line represents the percentage of
correctly predicted phases.



Results  presented  below  suggest  that  although  the  connection  rate  may  have  a  variable

effectiveness on the MSE during training, it does not affect the outcome of the procedure and do not foster

the network to predict the phases more accurately. The prediction of the phases is roughly at the same level

on  every  condition  (Fig.  24-25-26).  Therefore,  sparse  networks  are  not  considered  of  benefit  to  their

learning ability.
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Figure 24: The connection rate has no great effect on cross validation. Bar graphs represent the MSE.
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Figure 25: The effectiveness of the connection rate is variable. Sparse networks with low connection rate
do not perform well during training, although sparse networks with 0.8 connection rate compete on the
performance of the dense network. Bar graphs represent the MSE.



3.2.4 Attempts on different numbers of neurons and hidden layers

So far,  neural networks are structured dense using the default  training algorithm, while FANN

Elliot symmetric and Linear piece symmetric are considered the appropriate activation functions on hidden

and output layer respectively. The network is trained using an input data set of 126 reflections and its

weights  were  initialized  using  the  Nguyen’s  and Widrow’s  algorithm.  Trials  on  different  numbers  of

training sets were performed altering every time the number of neurons in the hidden layer in order to

establish a relationship between them and the network’s learning ability. 

Training was attempted using 4000, 40000 and 80000 training sets. While the percentage of phases

predicted correctly varies among the conditions, it ranges about 3.2%. On a closer examination, when the

network is trained on 4000 training sets, it may predict 60.7-64.5% correct phases. On the other hand, when

the network is  trained on 80000 training sets,  it  is  able to predict  82-84% correct  phases.  The results

suggest  that  the number of the training sets fed into the network are of a greater  importance than the

number of the neurons, although the number of layers may also have a considerable consequence. 

In order to more thoroughly assess the influence of the hidden layers on the network’s learning

﴾48﴿

50
.5
0

60
.6
0

80
.8
0

12
6.
12
6

40
0.
40
0

60
.6
0.
60

0

20

40

60

80

100

Correct phases

Dense
Sparse 0.8
Sparse 0.5
Sparse 0.25

Number of hidden neurons/layers

%
 o

f 
te

st
in

g
 s

e
ts

 (
1

0
%

)

Figure 26: Connection rate has no great effect on the network's ability to predict the correct phase after
training. Bar graphs represent the percentage of correctly predicted phases.



ability, more trials were performed with complex hidden layers. Using an input data set of 80000 sets,

networks were structured carrying three (3) or four (4) hidden layers of different number of neurons in each

of them. The results are presented in the following figure. Both the MSE on training and cross validation

seem to not differ among the conditions. More importantly, the percentage of the correct phases predicted

do not also alter to a considerable extent. The values fluctuate between 78.9-82.2% suggesting that three or

four hidden layers do not have a great effect on network’s learning ability (Fig. 27). 
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Figure  27:  Different  numbers  of  neurons  in  two  (2)  or  three  (3)  hidden  layers  do  not  alter  the
performance of the network. Bar graphs represent the MSE. Line represents the percentage of correctly
predicted phases. Error bars represent the standard deviation. Number of replicates per condition=10.



Up until now there is not an established relationship between the number of hidden layers and the

learning ability of the network. To this effect, deeper networks were constructed with one (1) to six (6) and

seven (7)  hidden layers  in  order  to  conclude in  a  suitable  size  of  the  network.  A series  of  trials  was

performed when 120 neurons in total were divided into 1 to 7 hidden layers. Afterwards, another series of
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percentage  of  correctly  predicted  phases.  Error  bars  represent  the  standard  deviation.  Number  of
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trials attempted training with 1 to 6 hidden layers having 60 neurons in each layer. All kinds of networks

used 100000 training sets as input  data  set  and their  weights  were initialized using the Nguyen’s  and

Widrow’s algorithm. Results  confirmed that  a single  layer  does  not  promote learning.  Moreover,  both

figures suggest that a network with more than two (2) hidden layers gives feedback of a greater MSE on

both training and cross validation, while it predicts less correct phases (Fig. 28). 

As a conclusion, it is safe to assume that two layers are best for the network to learn the appropriate

relationship between the input data set and the output. While not many differences are observed among

different number of neurons in the hidden layers, the experiments would be resumed using two hidden

layers with 60 neurons in each layer. 

3.2.5 Attempts on different numbers of training sets

Already, a relationship between the number of the training sets in the input data and the ability of

the network  to  predict  the  correct  phases  after  training  is  suggested.  In  order  to  further  examine this

relationship, training trials were performed. This time the network was the same on all trials; the training

algorithm was the FANN library’s default RPROP, the activation functions for hidden and output layers

were FANN Elliot symmetric and Linear piece symmetric respectively. The dense network carried two

hidden  layers  with  60  neurons  in  each  layer.  The  weights  were  initialized  before  training  using  the

Nguyen’s  and Widrow’s algorithm.  Multiple  conditions  were attempted for  the  network to  be trained.

During each attempt, the input training data set was altered by its number of training sets. Each condition

was performed ten (10) times. 

Different numbers of training sets were fed into identical networks. Those numbers ranged between

4000 and 1500000. Results suggested a great impact on the network. Although the MSE of training is

slightly higher when the training sets are more, the MSE of cross validation is lower. Most especially, a

relationship between the number  of  training  sets  and  the  prediction of  correct  phases  after  training  is

proven; the more the training sets introduced to the network, the higher percentage of phases is accurately

predicted  upon  training.  However,  the  probability  of  bias  is  also  increased  for  most  of  the  possible

structures have already been introduced to the network during training process (Fig. 29). 
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On closer  inspection,  while  a  network  trained  on  4000 training  sets  may predict  62% phases

correctly, the percentage rises and finally reaches 86.33% when the network is trained on 1500000 training

sets. The cross validation process was monitored for this network and presented in figure 30. The graph

represents the percentage of correctly predicted phases during the training process. Data was selected every

epoch. The more the epochs of training, the more accurate the network is at predicting the phases (Fig. 30). 

Despite that the relationship between the training sets and the observed percentage is established,

an equation cannot be determined for the association to be expressed mathematically. Additional  trials

should be conducted in order to define this relationship.

﴾52﴿

40
00

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

90
00
0

10
00
00

11
00
00

12
00
00

20
00
00

40
00
00

10
00
00
0

15
00
00
0

0

0.03

0.05

0.08

0.1

0.13

0.15

0.18

0.2

0.23

0.25

0

10

20

30

40

50

60

70

80

90

100

Number of training sets

M
e

a
n

 S
q

u
a

re
 E

rr
o

r 
(M

S
E

)

%
 o

f 
te

st
in

g
 s

e
ts

minimum MSE 
(training)

minimum MSE 
(Cross Validation)

Correct signs

Figure  29: The number of training sets directly relates to the network's ability to predict the correct
phases upon training.  Bar graphs represent  the MSE. Line represent  the percentage of  the correctly
predicted signs. Error bars represent the standard deviation. Number of replicates per condition=10.



3.2.6 Finding the maximum number of epochs needed

While the suitable parameters have yet been established, another constant to be determined is the

maximum number of cycles set for the training. The cycles, also called epochs, are the number of times that

the network is being trained by reading the input data set and altering the neurons’ weights. Wrongfully, it

could be suggested that the more the cycles the better the results. However, this is not the truth. A great

number of training epochs could lead to over-fitting. For every epoch the network re-reads the training set,

the result could be an outcome of memorization rather than learning. 

A neural network was constructed with default training algorithm and activation functions FANN

Elliot symmetric and Linear piece symmetric for hidden and output layers respectively. The dense network

was carrying two hidden layers with 60 neurons in each layer. The input data set had 100000 training sets

and the weights were initialized using the Nguyen’s and Widrow’s algorithm. 
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Figure 30: The percentage of correctly predicted phases is constantly rising during training. 



The network was trained for 5000 epochs. Feedback was received every epoch about the percentage

of correct prediction of the phases and the MSE of the cross validation data. The observed success of the

network on learning and predicting the correct output is depicted by a positive trend line. The trend line is

constantly rising up until 4992 training epochs. The miminum MSE is reached at 4866 epochs, suggesting

that  over-fitting  has  not  occurred  until  then,  since  over-fitted  networks  are  characterized  by  a  non-

decreasing MSE. However, the alterations occurred on the MSE after the epoch numbered 3204 are limited

to the fourth decimal digit meaning no significant progress on the network’s learning process (Fig. 31). 

3.3 Testing the network on alternative structures

Network trained on structure factors of 4 atoms was evaluated on its efficacy to predict the correct

phase on newly introduced data. The trials had three aims: to assess the network’s ability to predict the

output on fresh data with structure factors of 4 atoms and alternatively its accuracy on more and less than 4

atoms. Input data sets were tested with structure factors of 3, 4 and 5 atoms all of which structures contain

the reflection 20 for which the network was trained. 
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Figure 31: After about 3200 epochs the training process reaches its minimum MSE on cross validation.
Meanwhile, the percentage of correctly predicted phases is constantly increasing, though it may occur as a
result of over-fitting.



All three data sets represent the E-values of the reflections of hypothetical 2-Dimensional structures

in centrosymmetric p2 crystals. Cell  was 7.0x12.0 Å and a minimum fractional separation between the

atoms is set at 0.15. The maximum resolution was 1.0 Å. The data sets contain 126 reflections as input and

one output. The output is 1 or -1 representing a positive or negative phase respectively for the reflection 20.

Changes occurred only on the number of the atoms which consist each structure. Data sets with structure

factors of 3, 4 and 5 atoms had 3000, 4000 and 5000 training patterns respectively. 

The network of interest was previously trained of 1500000 training sets of 126 reflections as input

and one output for the reflection 20. The network had two (2) hidden layers with 60 neurons in each layer.

The training algorithm was default  while the weights had been initialized using the Nguyen-Widrow’s

algorithm. The activation functions on hidden and output layer were FANN Elliot symmetric and Linear

piece symmetric respectively. The network was trained for 1000 epochs using the 90% of the data set and

has been evaluated on the 10% of the same set. The trained network correctly predicted  86.33% of the

phases on the test set (10% of the data set). 

The network was tested about its accuracy to predict the correct phases on newly presented data

sets. After two trials of test, it successfully predicted up to 86.5% correct phases of structure factors of 4
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atoms. However, the network was not able to predict the output of training sets with structure factors of 3 or

5 atoms. The results were almost 50% correct prediction (53.03% for structure factors of 3 atoms and

50.73% for structure factors of 5 atoms), indicating that the network was not able to correctly predict the

output of the test (Fig. 32). 
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C hapter  4

Discussion

The current  thesis  dealt  with  a  fundamental  obstacle  in  crystallographic  techniques,  the  phase

problem, and assesses the ways in which an artificial neural network (ANN) may be trained in order to

solve this. The objective of the research presented in this thesis was to examine whether an ANN can be

sufficiently trained to achieve this goal, and if so, to investigate the appropriate implementations of it. The

idea is that artificial neural networks, as biological ones do, are capable of training by means of observed,

experimental data, a property similar to what it is suggested by direct methods. Direct methods have been

developed in order to establish an association between the amplitudes and the phases of the structure factors

of a defined crystal. This relationship refers to an algorithmic equation that leads to the correct phases when

only the amplitudes are known. For that reason, an artificial neural network may adopt the ways of the

direct methods and therefore answer a fundamental question: which are the phases of the structure factors

of which only the amplitudes are observed?

To  further  investigate  this  suggestion,  simple  hypothetical  2-dimensional,  centrosymmetric

structures were employed for the networks to be trained. Structure factors of each crystal were transformed

into E-values which, together with the phase of a structure invariant, constituted a training set. The phase

was 1 (0 rad) or -1 (π rad) due to the crystal’s symmetry. Multiple training patterns formed the training

data.  ANNs of FANN library implemented in several  ways were trained by the method of supervised

learning when introduced to the training data for multiple epochs. Every epoch a feedback was received

regarding the error value, indicating the difference between the desired and the produced output value. The

error value forced the weights of the network to alter by means of minimizing the error.  The training

procedure needed about a couple of minutes or days to be completed, depending on the size of the network

or  the  information  used.  Upon  completion  of  the  training  process,  the  network  was  evaluated  for  its

performance. A successful network could predict the signs of the output values corresponding to similar

structure factors. 

Experiments began with simple multi-layered networks. Structure factors of crystals of 2 atoms

were employed and only 7 reflection, meaning only 7 input values, were produced. Despite the difficulties

for identifying the suitable size of the network and the training data, the activation function on both hidden
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and output layer, and the training algorithm used were defined. These two parameters were decided and not

altered throughout the following experiments. 

Since structures of 2 atoms are too small, the structure factors produced by pepinsky’s machine

having the defined properties are limited in number. Training data of too many training sets may contain

replicates of the same structure factors. Memorization could easily occur if all possible training sets are

introduced into the network during training. Thus, the networks would lack the ability of generalization. In

order to avoid that but also retain the problem simplified, structures of 3 atoms were skipped and therefore

structures of 4 atoms were used for training the networks. 

An attempt to define the appropriate size of the network resulted in the suggestion that networks

with two hidden layers were more capable of coping with the complexity of the problem and therefore

perform  better.  However,  a  comparison  between  four-layered  networks  trained  on  20000  and  80000

training sets showed that differences on the number of the neurons are not as important as the number of the

hidden layers which is more likely to have an impact on the training efficacy. Yet, it is noteworthy that the

number of the training sets in the training data relates to the network’s performance. For the relation to be

determined, the number of training sets required for sufficient training was examined. Results indicate that

the  number  of  the  training  sets  was  directly  related  to  the  performance  of  the  network.  The  best

performance noticed was from the network trained with the most training sets,  while its generalization

ability was retained. This could be easily examined by assessing the slope of the error value during cross

validation. Results indicated that no network in this study suffered from over-fitting. 

Alternative  implementations  to  enhance  training  were  performed.  Most  of  them  showed  no

significant improvement, such as shuffling the sets which consist the training data every epoch or adjusting

the connectivity of the network in different rates. Success was provided from a network when the algorithm

suggested  by  Derrick  Nguyen and  Bernard  Widrow was  used.  As  explained  before,  this  initialization

method is  proved to  promote  the  error  of  the  training minimize faster  (Nguyen & Widrow,  1990).  In

agreement  with that  belief,  evaluation of  the  trained networks resulted in  better  performance.  For  that

reason, this initialization method was used for the experiments. 

Overall, the experiments of this thesis had two aims; firstly, to determine whether a neural network

could be trained sufficiently by means of observed intensities and therefore predict correct phases of non-

previously introduced structure factors. If the case is such, the network inspired by direct methods could

solve the crystallographic phase problem and greatly enhance the crystallographer’s work. A second aim

was to decide about the desired implementations that promote a network’s learning in order that it achieves

the defined goal. While the latter aim was examined during all experiments, the first one was accomplished

at last when the evaluation of the network occurred. The network that performed best of all was the one

trained on 1500000 training sets.  This  network was tested for its  performance and it  produced 86.3%

correct outputs for new structure factors. This percentage,  though it  is not perfectly reaching 100%, is

desired. Sayre himself introduced his methods by stating that the technique would give larger number of
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correct phases than any other technique, but still not all of them (Sayre, 1952). For that reason, the network

is considered successful since it can produce the desired values in a great extent. 

However, when a great number of sets are introduced to the network, the probability of bias is also

increased since all possible structure factors have probably been used. In order to confirm the success of the

network, the training sets should be examined in order to avoid repeatability of structures .  An additional

disadvantage is  that  it  cannot  predict the phases of structures of other numbers of atoms. Experiments

showed that when the network,  which is  trained on structure factors of 4 atoms, is tested on structure

factors of crystals of less or more than 4 atoms, the correctly predicted phases are only the half, meaning it

is mostly a matter of chance rather than relationships are learned. This fact means that if neural networks

are to be used as a tool for crystallographers, they should be firstly trained on structures of all the possible

numbers of atoms and then the networks would be combined. 

Another thing that may be considered an impediment is the fact that only one phase of a structure

invariant was employed. This could be solved thanks to the ability of the networks to be combined, as

mentioned before. This means that multiple networks could be trained on the same reflections of the same

structure  factors  as  input  values  but  different  phase  as  the  output  value.  In  the  last  experiments  that

employed structures of 4 atoms, only the phase of the reflection 20 of the crystal was used as an output.

Similarly, the phase of the reflection 20 could also be assessed and also other reflections. In this case, 126

networks should be combined, since there are 126 reflections. Though the training of such an amount of

networks  seems  to  be  an  enduring  procedure,  this  simplified  problem  could  set  up  the  fundamental

implementations of the network in order that it achieves the specific goal and, as a consequence, it could be

easier to train one network using training data with a number of training sets and all their corresponding

phases. 

In summary, the networks seem to be able to learn the relationships between the normalized values

of the amplitudes and the phases of structure factors. Although this is the case, several trials should be

conducted to determine additional parameters such as the learning rate that could be adjusted when using

the QUICKPROP training algorithm and whether the normalized values representing the amplitudes of the

structure factors in the training data should be unitary or in any other form. Also, a relationship between the

number of the training sets and the performance of the network could be determined. Other suggestions of

further research on the matter is the use of different types of learning, such as unsupervised training, and

the use of other activation functions while setting the output values at a different range. 

Conclusively,  the  phase  problem still  remains  a  challenge  for  researchers.  Although the  great

advances  in  this  field,  existing  techniques  have  limitations  that  severely  imped  the  work  of

crystallographers and thus the development in biology, a field that the knowledge structures of proteins,

DNA and RNA molecules are of great importance. Therefore, an efficient phase determination technique

would enhance the progress not only on the field of crystallography, but also on other sciences such as

molecular biology.
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Appendix I

Example of training data file for structure factors of 2 atoms as mentioned on 2.1. The first line cites the

number of the training patterns (10), the number of reflections as input (7) and the number of the phases as

output (1). 

1 0  7  1
+ 1 . 8 7 6 0 8 + 2 . 9 7 6 7 2 + 0 . 0 2 3 2 4 + 1 . 6 4 4 4 9 + 0 . 1 2 5 6 9 + 1 . 8 7 6 0 8 + 0 . 7 7 8 2 1
+ 1
+ 0 . 8 3 2 9 2 + 1 . 0 9 4 2 5 + 1 . 0 9 7 6 5 + 1 . 7 6 1 8 3 + 0 . 3 4 1 0 5 + 0 . 8 3 2 9 2 + 1 . 5 4 7 8 3
- 1
+ 2 . 2 2 9 5 2  + 0 . 0 7 1 2 5  + 1 . 0 2 2 0 7  + 0 . 4 9 4 3 0  + 1 . 3 2 8 9 2  + 2 . 2 2 9 5 2  + 2 . 1 0 5 5 5
+ 1
+ 1 . 2 9 4 4 4  + 3 . 4 2 1 4 7  + 1 . 9 6 3 1 6  + 2 . 1 6 8 3 7  + 0 . 3 8 2 7 8  + 1 . 2 9 4 4 4  + 1 . 6 7 5 1 1
- 1
+ 2 . 1 5 1 5 3  + 1 . 3 4 9 8 7  + 0 . 2 0 7 3 2  + 3 . 4 1 0 3 3  + 1 . 8 6 0 4 9  + 2 . 1 5 1 5 3  + 2 . 0 6 8 8 2
+ 1
+ 0 . 5 1 3 9 4  + 3 . 5 1 6 8 6  + 2 . 1 2 2 1 5  + 0 . 9 7 2 4 1  + 0 . 4 1 2 6 4  + 0 . 5 1 3 9 4  + 0 . 6 8 2 1 7
- 1
+ 0 . 9 0 8 1 4  + 3 . 5 8 6 4 3  + 1 . 0 2 1 2 8  + 0 . 2 1 2 6 8  + 0 . 6 8 2 4 7  + 0 . 9 0 8 1 4  + 1 . 2 2 9 5 9
+ 1
+ 1 . 3 1 5 6 2  + 2 . 8 3 8 9 7  + 2 . 6 5 7 7 8  + 1 . 3 3 4 8 8  + 1 . 2 5 5 8 3  + 1 . 3 1 5 6 2  + 2 . 5 1 2 7 6
- 1
+ 0 . 0 3 7 4 9  + 0 . 3 5 7 4 3  + 1 . 9 5 5 0 7  + 0 . 4 8 6 7 9  + 3 . 2 2 8 3 1  + 0 . 0 3 7 4 9  + 0 . 0 8 4 6 6
- 1
+ 2 . 0 6 4 8 0  + 1 . 9 4 2 0 1  + 0 . 2 2 6 9 3  + 0 . 6 1 4 0 4  + 1 . 7 2 3 4 6  + 2 . 0 6 4 8 0  + 0 . 0 6 1 2 6
+ 1
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Appendix II

Final program in C for creating, training and testing an ANN using the FANN library, the implications of

which are analyzed on 2.2-2.3 paragraphs. It is consisted of 126 input neurons, 2 hidden layers of 60 hidden

neurons in each layer, and 1 output neuron. The desired MSE is 0.001 and the maximum number of epochs

for training is 1000. The limit of the failed bits is set 0.5. The activation function on hidden layer is FANN

Elliot symmetric, while on output layer is FANN Linear piece symmetric. RPROP training algorithm is

default. The network reads a “training.dat” training data file and uses 90% of the patterns for training and

10% for evaluation on cross validation. Weights are initialized using the Nguyen and Widrow’s algorithm

before the training process.  Every epoch of training,  the network gives feedback on the MSE and the

number of the failed bits on training and cross validation. An additional line forces the data patterns to

shuffle: 

fann_shuffle_train_data( train );

Whether the MSE reaches the limit (0.001), the training process stops. Upon completion of the training, the

network is saved on the current directory and a final test is taken place for the network to be evaluated. The

results of the testing process are also saved on the current directory. 

 1 #include <unistd.h>
 2 #include "floatfann.h"
 3
 4
 5 int main()
 6 {
 7 struct fann_train_data *all;
 8 struct fann_train_data *train;
 9 struct fann_train_data *test;
 10 fann_type *out;
 11
 12 char filename[200];
 13 FILE *fileout;
 14
 15 int i;
 16 float error;
 17 unsigned int bitfail_train, bitfail_test;
 18
 19 const unsigned int num_input  = 126;
 20 const unsigned int num_output = 1;
 21 const unsigned int num_layers = 4;
 22 const unsigned int num_neurons_hidden = 60;
 23 const float desired_error = (const float) 0.001;
 24 const unsigned int max_epochs = 1000;
 25
 26
 27 setlinebuf( stdout );
 28
 29 struct fann  *ann  =  fann_create_standard(num_layers,  num_input,
num_neurons_hidden, num_neurons_hidden, num_output);
 30
 31 fann_set_activation_function_hidden(ann, FANN_ELLIOT_SYMMETRIC);
 32 fann_set_activation_function_output(ann, FANN_LINEAR_PIECE_SYMMETRIC);
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 33
 34 fann_set_bit_fail_limit( ann, 0.50 );
 35 /*
 36 fann_set_training_algorithm( ann, FANN_TRAIN_RPROP ); 
 37 */
 38 all = fann_read_train_from_file("training.dat");
 39 train =  fann_subset_train_data(  all, 0,  (int)
(0.90*fann_length_train_data(all)) );
 40 test =  fann_subset_train_data(  all,  (int)
(0.90*fann_length_train_data(all)),  (fann_length_train_data(all)-(int)
(0.90*fann_length_train_data(all))) );
 41
 42
 43 fann_init_weights( ann, train );
 44
 45 printf("\nTraining  :  %d sets,   cross-validation  : %d\n",  (int)
(0.90*fann_length_train_data(all)),  (fann_length_train_data(all)-(int)
(0.90*fann_length_train_data(all))) );
 46
 47 printf("\nCycle MSE(training) MSE(test)     Bitfail(train/test)\n");
 48 printf("----- ------------- ---------     -------------------\n");
 49 for(i = 1 ; i <= max_epochs ; i++) 
 50 {
 51 error = fann_train_epoch(ann, train);
 52 bitfail_train = fann_get_bit_fail( ann );
 53 fann_reset_MSE(ann);
 54 fann_test_data(ann, test);
 55 bitfail_test = fann_get_bit_fail( ann );
 56 printf("%5d     %6.4f     %6.4f          %5d /%5d\n", i, error,
fann_get_MSE(ann), bitfail_train, bitfail_test );
 57 /*
 58 fann_shuffle_train_data( train );
 59 */
 60 if ( error < desired_error ) 
 61 {
 62 break;
 63 }
 64 }
 65
 66 sprintf( filename, "%d.net", getpid() );
 67 fann_save(ann, filename );
 68
 69 sprintf( filename, "%d.output", getpid() );
 70 fileout = fopen( filename, "w" );
 71
 72 fprintf(fileout, "Statistics (MSEs) for this run : %6.4f %6.4f\n", error,
fann_get_MSE(ann) );
 73
 74 for ( i=0 ; i < fann_length_train_data(test) ; i++ )
 75 {
 76 out = fann_run( ann, test->input[i] );
 77 fprintf(fileout,  "%+4.2f  %+4.2f\n",  i,  test->output[i][0],
out[0] );
 78 }
 79
 80 fclose( fileout );
 81
 82         fann_destroy_train(train);
 83
 84 fann_destroy(ann);
 85
 86 return 0;
 87 }
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Appendix III

Program in C for testing a trained ANN as mentioned on 2.4 upon newly introduced data “training.dat”. A

network  is  being  created  from the  saved  information  about  weights  from file  “out.net”.  The  network

produces outputs for the input values of the training patterns and then it is evaluated by comparing the

produced outputs with the correct, desired ones. 

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include <stdlib.h>
 4 #include <ctype.h>
 5 #include "fann.h"
 6
 7 int main()
 8 {
 9
 10 fann_type *out;
 11 unsigned int i;
 12
 13 struct fann *ann;
 14 struct fann_train_data *test;
 15 char filename[200];
 16 FILE *fileout;
 17
 18 printf("Creating network.\n");
 19
 20 ann = fann_create_from_file("out.net");
 21
 22 if(!ann)
 23 {
 24 printf("Error creating ann --- ABORTING.\n");
 25 return -1;
 26 }
 27
 28 fann_print_connections(ann);
 29 fann_print_parameters(ann);
 30
 31 printf("Testing network.\n");
 32
 33 test = fann_read_train_from_file("training.dat");
 34
 35 sprintf( filename, "%d.output", getpid() );
 36 fileout = fopen( filename, "w" );
 37
 38 fprintf(fileout, "Test:");
 39
 40 for ( i=0 ; i < fann_length_train_data(test); i++ )
 41 {
 42 out = fann_run( ann, test->input[i] );
 43 fprintf(fileout,  "%+4.2f  %+4.2f\n",  i,  test->output[i][0],
out[0] );
 44 }
 45
 46 fclose( fileout );
 47 printf("Cleaning up.\n");
 48 fann_destroy_train(test);
 49 fann_destroy(ann);
 50
 51 return 0;
 52 }
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Appendix IV

The output of the testing process mentioned on 2.4 of an ANN after completion of training. On the first line

the MSE for the training and the cross validation are presented in sequence. Next lines refer to the desired,

correct output of the test file (1st column) and the output produced by the trained network (2nd column). 

S t a t i s t i c s  ( M S E s )  f o r  t h i s  r u n  :  0 . 0 6 4 4  0 . 2 5 1 6
- 1 . 0 0 - 1 . 0 0
+ 1 . 0 0 - 0 . 0 5
- 1 . 0 0  - 1 . 0 0
+ 1 . 0 0  + 0 . 0 3
- 1 . 0 0  + 0 . 3 2
+ 1 . 0 0  + 0 . 6 2
+ 1 . 0 0  + 1 . 0 0
- 1 . 0 0  - 1 . 0 0
+ 1 . 0 0  + 0 . 9 8
+ 1 . 0 0  - 1 . 0 0
+ 1 . 0 0  + 0 . 7 6
- 1 . 0 0  + 0 . 4 5
+ 1 . 0 0  + 1 . 0 0
+ 1 . 0 0  - 1 . 0 0
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Appendix V

Example of a saved network upon completion of the training procedure, as mentioned on the end of  2.3.

The network is consisted of 7 input neurons, 7 hidden neurons in 1 hidden layer and 1 output neuron. It is

trained upon 140 training patterns of structure factors of 2 atoms. 

F A N N _ F L O _ 2 . 1
n u m _ l a y e r s = 3
l e a r n i n g _ r a t e = 0 . 7 0 0 0 0 0
c o n n e c t i o n _ r a t e = 1 . 0 0 0 0 0 0
n e t w o r k _ t y p e = 0
l e a r n i n g _ m o m e n t u m = 0 . 0 0 0 0 0 0
t r a i n i n g _ a l g o r i t h m = 2
t r a i n _ e r r o r _ f u n c t i o n = 1
t r a i n _ s t o p _ f u n c t i o n = 0
c a s c a d e _ o u t p u t _ c h a n g e _ f r a c t i o n = 0 . 0 1 0 0 0 0
q u i c k p r o p _ d e c a y = - 0 . 0 0 0 1 0 0
q u i c k p r o p _ m u = 1 . 7 5 0 0 0 0
r p r o p _ i n c r e a s e _ f a c t o r = 1 . 2 0 0 0 0 0
r p r o p _ d e c r e a s e _ f a c t o r = 0 . 5 0 0 0 0 0
r p r o p _ d e l t a _ m i n = 0 . 0 0 0 0 0 0
r p r o p _ d e l t a _ m a x = 5 0 . 0 0 0 0 0 0
r p r o p _ d e l t a _ z e r o = 0 . 1 0 0 0 0 0
c a s c a d e _ o u t p u t _ s t a g n a t i o n _ e p o c h s = 1 2
c a s c a d e _ c a n d i d a t e _ c h a n g e _ f r a c t i o n = 0 . 0 1 0 0 0 0
c a s c a d e _ c a n d i d a t e _ s t a g n a t i o n _ e p o c h s = 1 2
c a s c a d e _ m a x _ o u t _ e p o c h s = 1 5 0
c a s c a d e _ m i n _ o u t _ e p o c h s = 5 0
c a s c a d e _ m a x _ c a n d _ e p o c h s = 1 5 0
c a s c a d e _ m i n _ c a n d _ e p o c h s = 5 0
c a s c a d e _ n u m _ c a n d i d a t e _ g r o u p s = 2
b i t _ f a i l _ l i m i t = 5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1
c a s c a d e _ c a n d i d a t e _ l i m i t = 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 3
c a s c a d e _ w e i g h t _ m u l t i p l i e r = 4 . 0 0 0 0 0 0 0 5 9 6 0 4 6 4 4 7 7 5 3 9 e - 0 1
c a s c a d e _ a c t i v a t i o n _ f u n c t i o n s _ c o u n t = 1 0
c a s c a d e _ a c t i v a t i o n _ f u n c t i o n s = 3  5  7  8  1 0  1 1  1 4  1 5  1 6  1 7  
c a s c a d e _ a c t i v a t i o n _ s t e e p n e s s e s _ c o u n t = 4
c a s c a d e _ a c t i v a t i o n _ s t e e p n e s s e s =
2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1

7 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0  
l a y e r _ s i z e s = 8  8  2  
s c a l e _ i n c l u d e d = 0

n e u r o n s  
( n u m _ i n p u t s , a c t i v a t i o n _ f u n c t i o n , a c t i v a t i o n _ s t e e p n e s s ) =
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )  
( 0 ,  0 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 8 ,  1 1 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 0 ,  1 1 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )  
( 8 ,  1 3 ,  5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e - 0 1 )  
( 0 ,  1 3 ,  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 0 0 )  
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c o n n e c t i o n s  
( c o n n e c t e d _ t o _ n e u r o n , w e i g h t ) =
( 0 ,  - 4 . 3 4 6 8 1 2 3 6 7 4 3 9 2 7 0 0 1 9 5 3 e - 0 1 )  
( 1 ,  - 7 . 5 8 7 9 3 2 9 4 4 2 9 7 7 9 0 5 2 7 3 4 e - 0 1 )  
( 2 ,  - 3 . 5 2 4 1 6 8 7 2 9 7 8 2 1 0 4 4 9 2 1 9 e + 0 0 )  
( 3 ,   7 . 8 2 1 1 5 5 0 7 1 2 5 8 5 4 4 9 2 1 8 8 e + 0 0 )  
( 4 ,   7 . 4 4 6 6 9 4 9 7 0 1 3 0 9 2 0 4 1 0 1 6 e - 0 1 )  
( 5 ,  - 3 . 3 9 5 2 6 5 9 3 6 8 5 1 5 0 1 4 6 4 8 4 e - 0 1 )  
( 6 ,   5 . 3 8 3 4 2 3 3 2 8 3 9 9 6 5 8 2 0 3 1 2 e + 0 0 )  
( 7 ,   1 . 8 8 5 1 8 9 6 5 2 4 4 2 9 3 2 1 2 8 9 1 e + 0 0 )  
( 0 ,   7 . 4 8 1 8 6 5 2 8 6 8 2 7 0 8 7 4 0 2 3 4 e - 0 1 )  
( 1 ,   3 . 6 7 5 5 7 0 2 4 9 5 5 7 4 9 5 1 1 7 1 9 e + 0 0 )  
( 2 ,  - 1 . 1 6 7 1 7 7 9 1 5 5 7 3 1 2 0 1 1 7 1 9 e + 0 0 )  
( 3 ,  - 1 . 4 0 3 9 1 7 3 1 2 6 2 2 0 7 0 3 1 2 5 0 e + 0 1 )  
( 4 ,   9 . 0 8 5 4 3 0 5 0 2 8 9 1 5 4 0 5 2 7 3 4 e - 0 1 )  
( 5 ,   7 . 9 1 1 3 2 6 8 8 5 2 2 3 3 8 8 6 7 1 8 8 e - 0 1 )  
( 6 ,  - 6 . 2 9 4 7 7 9 3 0 0 6 8 9 6 9 7 2 6 5 6 2 e + 0 0 )  
( 7 ,   2 . 9 7 5 5 0 9 6 4 3 5 5 4 6 8 7 5 0 0 0 0 e + 0 0 )  
( 0 ,   7 . 7 0 0 0 6 7 7 5 8 5 6 0 1 8 0 6 6 4 0 6 e - 0 1 )  
( 1 ,   4 . 9 3 1 4 1 5 0 8 1 0 2 4 1 6 9 9 2 1 8 8 e + 0 0 )  
( 2 ,   2 . 2 2 0 4 1 6 3 6 7 0 5 3 9 8 5 5 9 5 7 0 e - 0 1 )  
( 3 ,   1 . 4 9 6 3 6 4 3 5 5 0 8 7 2 8 0 2 7 3 4 4 e + 0 0 )  
( 4 ,   2 . 1 1 3 4 2 1 6 7 8 5 4 3 0 9 0 8 2 0 3 1 e + 0 0 )  
( 5 ,   6 . 8 6 5 7 7 2 0 0 8 8 9 5 8 7 4 0 2 3 4 4 e - 0 1 )  
( 6 ,   3 . 3 9 0 5 3 8 9 3 0 8 9 2 9 4 4 3 3 5 9 4 e + 0 0 )  
( 7 ,  - 1 . 4 6 9 7 1 2 9 2 4 9 5 7 2 7 5 3 9 0 6 2 e + 0 1 )  
( 0 ,  - 7 . 3 7 4 4 1 4 8 0 1 5 9 7 5 9 5 2 1 4 8 4 e - 0 1 )  
( 1 ,  - 2 . 5 5 1 2 4 3 7 8 2 0 4 3 4 5 7 0 3 1 2 5 e + 0 0 )  
( 2 ,  - 7 . 1 5 3 5 1 6 2 9 2 5 7 2 0 2 1 4 8 4 3 8 e + 0 0 )  
( 3 ,   2 . 1 4 2 7 1 3 7 8 5 1 7 1 5 0 8 7 8 9 0 6 e + 0 0 )  
( 4 ,  - 5 . 6 3 8 7 1 4 3 1 3 5 0 7 0 8 0 0 7 8 1 2 e + 0 0 )  
( 5 ,  - 6 . 4 5 8 8 6 7 1 9 2 2 6 8 3 7 1 5 8 2 0 3 e - 0 1 )  
( 6 ,   1 . 2 4 1 4 0 1 5 7 6 9 9 5 8 4 9 6 0 9 3 8 e + 0 1 )  
( 7 ,   7 . 8 5 0 3 4 7 9 9 5 7 5 8 0 5 6 6 4 0 6 2 e + 0 0 )  
( 0 ,  - 4 . 3 8 5 4 4 7 5 0 2 1 3 6 2 3 0 4 6 8 7 5 e - 0 1 )  
( 1 ,  - 3 . 3 6 5 2 5 4 9 9 8 2 0 7 0 9 2 2 8 5 1 6 e - 0 1 )  
( 2 ,   7 . 8 3 5 7 6 9 0 5 7 2 7 3 8 6 4 7 4 6 0 9 e - 0 1 )  
( 3 ,   7 . 2 7 1 8 2 9 2 4 7 4 7 4 6 7 0 4 1 0 1 6 e - 0 1 )  
( 4 ,  - 2 . 2 2 1 5 1 9 0 5 2 9 8 2 3 3 0 3 2 2 2 7 e - 0 1 )  
( 5 ,  - 2 . 7 8 7 0 9 0 5 3 9 9 3 2 2 5 0 9 7 6 5 6 e - 0 1 )  
( 6 ,  - 6 . 5 6 1 6 9 8 3 1 7 5 2 7 7 7 0 9 9 6 0 9 e - 0 1 )  
( 7 ,   2 . 2 8 4 0 9 0 7 5 7 3 6 9 9 9 5 1 1 7 1 9 e + 0 0 )  
( 0 ,   3 . 0 9 0 9 3 8 3 2 9 6 9 6 6 5 5 2 7 3 4 4 e + 0 0 )  
( 1 ,  - 2 . 0 4 2 9 6 3 2 6 6 3 7 2 6 8 0 6 6 4 0 6 e + 0 0 )  
( 2 ,   9 . 3 3 0 0 2 4 1 2 3 1 9 1 8 3 3 4 9 6 0 9 e - 0 1 )  
( 3 ,  - 1 . 6 1 4 2 5 3 4 2 5 5 9 8 1 4 4 5 3 1 2 5 e + 0 1 )  
( 4 ,   1 . 0 5 5 8 1 0 5 7 0 7 1 6 8 5 7 9 1 0 1 6 e + 0 0 )  
( 5 ,   2 . 9 6 4 3 3 1 1 5 0 0 5 4 9 3 1 6 4 0 6 2 e + 0 0 )  
( 6 ,  - 2 . 8 6 3 4 7 8 8 9 9 0 0 2 0 7 5 1 9 5 3 1 e + 0 0 )  
( 7 ,   2 . 9 6 3 7 2 7 9 5 1 0 4 9 8 0 4 6 8 7 5 0 e + 0 0 )  
( 0 ,  - 2 . 8 9 0 4 0 4 2 2 4 3 9 5 7 5 1 9 5 3 1 2 e + 0 0 )  
( 1 ,   8 . 4 9 0 8 3 0 0 6 3 8 1 9 8 8 5 2 5 3 9 1 e - 0 1 )  
( 2 ,  - 2 . 0 0 6 2 2 3 0 5 2 7 4 0 0 9 7 0 4 5 9 0 e - 0 1 )  
( 3 ,   1 . 8 9 3 4 7 2 2 9 0 0 3 9 0 6 2 5 0 0 0 0 e + 0 1 )  
( 4 ,  - 2 . 9 4 7 0 6 2 2 5 3 9 5 2 0 2 6 3 6 7 1 9 e + 0 0 )  
( 5 ,  - 3 . 0 6 5 1 2 9 0 4 1 6 7 1 7 5 2 9 2 9 6 9 e + 0 0 )  
( 6 ,   3 . 8 2 6 1 4 8 5 0 9 9 7 9 2 4 8 0 4 6 8 8 e + 0 0 )  
( 7 ,   1 . 0 5 4 2 4 8 7 3 5 3 0 8 6 4 7 1 5 5 7 6 e - 0 1 )  
( 8 ,   3 . 6 4 6 2 1 0 4 3 2 0 5 2 6 1 2 3 0 4 6 9 e + 0 0 )  
( 9 ,   5 . 8 7 0 1 2 1 9 5 5 8 7 1 5 8 2 0 3 1 2 5 e + 0 0 )  
( 1 0 ,   2 . 9 3 3 9 3 3 0 1 9 6 3 8 0 6 1 5 2 3 4 4 e + 0 0 )  
( 1 1 ,   1 . 9 6 6 6 4 2 6 1 8 1 7 9 3 2 1 2 8 9 0 6 e + 0 0 )  
( 1 2 ,   1 . 0 8 1 8 2 4 1 1 1 9 3 8 4 7 6 5 6 2 5 0 e + 0 1 )  
( 1 3 ,   8 . 2 2 0 9 8 0 6 4 4 2 2 6 0 7 4 2 1 8 7 5 e + 0 0 )  
( 1 4 ,   4 . 8 2 9 2 9 9 4 4 9 9 2 0 6 5 4 2 9 6 8 8 e + 0 0 )  
( 1 5 ,  - 2 . 9 4 1 4 9 9 7 1 0 0 8 3 0 0 7 8 1 2 5 0 e + 0 0 )  
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Appendix VI

Some additional attempts of further research as suggested in the Discussion chapter, on multiple numbers

of training sets were conducted on neural networks with activation function on output layer being FANN

Sigmoid symmetric and FANN Elliot symmetric, compared to the attempts previously presented on 3.2.5

with FANN Linear piece symmetric. Networks had 126 input neurons, 2 hidden layers with 60 neurons in

each one and 1 neuron in the output layer. The training algorithm was default and the activation function on

the hidden layer  was FANN Elliot  symmetric.  10% of  the  training sets  were used for  evaluation.  No

differences were noticed on the performance of the trained network, although the network with the FANN

Linear piece symmetric activation function on the output layer produced slightly more correct outputs in

total. 
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