Supplementary Information

Folding Simulations of a Nuclear Receptor Box-Containing Peptide Demonstrate the Structural Persistence of the LxxLL Motif Even in the Absence of Its Cognate Receptor

Triantafyllia Adamidou, Konstantina-Olympia Arvaniti and Nicholas M. Glykos*

Department of Molecular Biology and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece, Tel +30-25510-30620, Fax +30-25510-30620, <u>https://utopia.duth.gr/glykos/</u>, <u>glykos@mbg.duth.gr</u>

Figure S1

Figure S1 : Extent of sampling and statistical significance. Results from the application of Good-Turing statistics to estimate secondary structure uncertainties for the two trajectories (in water and TFE/water) and for all peptide residues (upper two curves) or for residues -2 to +7 (lower two curves). See section 2.4 for details.

Figure S2

Figure S2 : Superposition of peptide structures that are members of the same dPCA-derived cluster. Superposition of 500 structures (backbone atoms only) that belong to same cluster as obtained from dPCA analysis. This corresponds to the smallest (T3) cluster shown for TFE/water in Figure 4 of the main text.

Table S1

NOE number	Proton Pairs	Residues & NOE Upper Bounds		Simulation <r<sup>-6></r<sup>
1		-7V ↔ -6E	5.0	2.241
2	-	-6E ↔ -5E	3.3	2.256
3		$-5E \leftrightarrow -4R$	3.3	2.960
4		$-3P \leftrightarrow -2S$	3.3	2.300
5	dαN (i, i+1)	$-2S \leftrightarrow -1T$	2.7	3.378
6		$-1T \leftrightarrow +1L$	2.7	3.218
7		$+1L \leftrightarrow +2R$	5.0	3.169
8		$+2R \leftrightarrow +3A$	2.7	2.818
9		$+3A \leftrightarrow +4L$	3.3	2.859
10		$+4L \leftrightarrow +5L$	5.0	2.704
11		$+5L \leftrightarrow +6T$	5.0	2.463
12		$+6T \leftrightarrow +7N$	5.0	2.590
13		$+8P \leftrightarrow +9V$	2.7	2.689
14		$+9V \leftrightarrow +10K$	3.3	2.719
15		$+10K \leftrightarrow +11K$	2.7	2.387
16		$+11K \leftrightarrow +12L$	2.7	2.316
17	dNN(i, i+2)	$+9V \leftrightarrow +11K$	5.0	4.427
18		-5E ↔ -4R	5.0	2.072
19	dNN(i, i+1)	-2S ↔ -1T	5.0	2.909
20		$-1T \leftrightarrow +1L$	5.0	2.589
21		$+1L \leftrightarrow +2R$	5.0	2.245
22		$+2R \leftrightarrow +3A$	5.0	2.780
23	_	$+3A \leftrightarrow +4L$	5.0	2.476
24	_	$+4L \leftrightarrow +5L$	5.0	2.448
25		$+5L \leftrightarrow +6T$	3.3	2.796
26		$+6T \leftrightarrow +7N$	3.3	2.504
27		$+9V \leftrightarrow +10K$	5.0	2.298

NOE upper bound violations, Water simulation

Table S1 (continued)

NOE number	Proton Pairs	Residues & NOE Upper Bounds		Simulation <r<sup>-6></r<sup>
28		$+2R \leftrightarrow +4L$	3.3	4.054
29	dαN(i, i+2)	$+3A \leftrightarrow +5L$	3.3	4.339
30		$+7N \leftrightarrow +9V$	5.0	4.380
31	_	$+8P \leftrightarrow +10K$	5.0	4.389
32		$-1T \leftrightarrow +3A$	5.0	4.281
33	_	$+1L \leftrightarrow +4L$	5.0	3.602
34	dαN(i, i+3)	$+2R \leftrightarrow +5L$	5.0	4.923
35		$+4L \leftrightarrow +7N$	5.0	4.441
36		$+8P \leftrightarrow +11K$	5.0	5.292
37		-5E ↔ -4R	5.0	3.606
38	_	$-2S \leftrightarrow -1T$	5.0	3.448
39	dβN(i, i+1)	$+2R \leftrightarrow +3A$	5.0	3.136
40		$+3A \leftrightarrow +4L$	3.3	3.398
41		$+5L \leftrightarrow +6T$	5.0	3.249
42	-	$+6T \leftrightarrow +7N$	3.3	2.950
43	-	$+9V \leftrightarrow +10K$	5.0	3.122
46	-	$+11K \leftrightarrow +12L$	5.0	2.996

Table S1 : Experiment vs Simulation, NOE violations, Water simulation. Direct comparison between the observed NOE upper bounds and the simulation-derived $< r^{-6} >$ averages. The violations (5 in total) are marked with a bold typeface. The simulation averages were obtained for all peptide structures whose corresponding adaptive tempering temperature was less than 300K. The experimental upper bounds are as given by Yun *et al.*⁹ The average upper bound NOE violation is 0.050 Å [this calculation is using all recorded NOEs, even those for which no violation has been recorded (which enter the calculation with an assigned violation of zero⁵³)].

Table S2

NOE number	Proton Pairs	Residues & NOE Upper Bounds		Simulation <r<sup>-6></r<sup>
1		-6E ↔ -5E	5.0	2.411
2	-	$-5E \leftrightarrow -4R$	3.3	2.690
3		$-3P \leftrightarrow -2S$	3.3	2.415
4	-	-2S ↔ -1T	5.0	2.972
5	dαN(i,i+1)	$-1T \leftrightarrow +1L$	5.0	3.360
6		$+1L \leftrightarrow +2R$	3.3	3.172
7		$+2R \leftrightarrow +3A$	3.3	3.006
8		$+3A \leftrightarrow +4L$	3.3	2.960
9		$+4L \leftrightarrow +5L$	3.3	2.938
10		$+5L \leftrightarrow +6T$	5.0	2.837
11		$+6T \leftrightarrow +7N$	5.0	2.674
12		$+8P \leftrightarrow +9V$	2.7	2.779
13		$+9V \leftrightarrow +10K$	3.3	2.722
14		$+10K \leftrightarrow +11K$	2.7	2.385
15		$+11K \leftrightarrow +12L$	2.7	2.322
16		-5E ↔ -4R	5.0	2.285
17		$-1T \leftrightarrow +1L$	5.0	2.619
18		$+1L \leftrightarrow +2R$	3.3	2.488
19		$+2R \leftrightarrow +3A$	3.3	2.693
20	dNN(i,i+1)	$+3A \leftrightarrow +4L$	3.3	2.709
21		$+4L \leftrightarrow +5L$	3.3	2.584
22		$+5L \leftrightarrow +6T$	3.3	2.661
23		$+9V \leftrightarrow +10K$	3.3	2.284
24		$+10K \leftrightarrow +11K$	3.3	2.853
25	dαN(i,i+2)	$-2S \leftrightarrow +1L$	5.0	4.102
26		$+7N \leftrightarrow +9V$	3.3	4.241
27		$+8P \leftrightarrow +10K$	3.3	4.429
28		$+9V \leftrightarrow +11K$	3.3	4.752

NOE upper bound violations, TFE/Water simulation

Table S2 (continued)

NOE number	Proton Pairs	Residues & NOE Upper Bounds		Simulation <r<sup>-6></r<sup>
29	dαN(i,i+3)	$+2R \leftrightarrow +5L$	3.3	3.600
30		$+3A \leftrightarrow +6T$	3.3	3.784
31		$+4L \leftrightarrow +7N$	5.0	4.001
32		$+8P \leftrightarrow +11K$	5.0	5.338
33	dαN(i,i+4)	$-3P \leftrightarrow +2R$	3.3	4.670
34		$-2S \leftrightarrow +3A$	5.0	4.391
35		$+1L \leftrightarrow +5L$	5.0	4.280
36		$+2R \leftrightarrow +6T$	5.0	4.437
37	-	$+3A \leftrightarrow +7N$	5.0	4.291
38	dαβ(i,i+3)	$-3P \leftrightarrow +1L$	5.0	3.424
39		$-2S \leftrightarrow +2R$	3.3	2.947
40		$-1T \leftrightarrow +3A$	5.0	3.296
41		$+1L \leftrightarrow +4L$	5.0	3.060
42		$+2R \leftrightarrow +5L$	5.0	3.288
43		$+4L \leftrightarrow +7N$	5.0	3.585
44		-5E ↔ -4R	5.0	3.529
45	$d\beta N(i i+1)$	$-3P \leftrightarrow -2S$	5.0	3.244
46	up,1((1,1+1)	$-2S \leftrightarrow -1T$	5.0	3.377
47		$-1T \leftrightarrow +1L$	5.0	3.107
48		$+1L \leftrightarrow +2R$	5.0	3.123
49		$+2R \leftrightarrow +3A$	5.0	3.107
50		$+3A \leftrightarrow +4L$	5.0	3.172
51		$+4L \leftrightarrow +5L$	5.0	3.009
52		$+5L \leftrightarrow +6T$	5.0	3.292
53		$+6T \leftrightarrow +7N$	5.0	3.190
54		$+8P \leftrightarrow +9V$	3.3	3.555
55		$+9V \leftrightarrow +10K$	3.3	3.151
56		$+11K \leftrightarrow +12L$	5.0	2.954

Table S2 : Experiment vs Simulation, NOE violations, TFE/Water simulation. Direct comparison between the observed NOE upper bounds and the simulation-derived $< r^{-6} >$ averages. The violations (9 in total) are marked with a bold typeface. The simulation averages were obtained for all peptide structures whose corresponding adaptive tempering temperature was less than 300K.

Figure S3

Figure S3 : Comparison with circular dichroism data. The two solid curves depict the distribution of ellipticities at 222 nm calculated (using the DichroCalc server⁵⁵) from a total of approximately 12000 peptide structures recorded from the water (red curve) and the TFE/water (black curve) simulations. The black and red circles that are superimposed on these curves indicate the values of the experimentally obtained ellipticities at 222 nm.