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ABSTRACT

In this work, the 3D flow estimation problem is formulated

in the 4D spatiotemporal frequency domain, and it is shown

that 3D motion manifests itself as energy concentration along

hyper-planes in that domain. Based on this, the construction

and use of appropriate directional multidimensional “steer-

able” filters, which can extract directional energy in space-

time, is proposed. Steerable filters have been constructed for

up to 3 dimensions. We extend the relevant mathematical

definitions to multiple dimensions and formulate filter-based

algorithms for 3D flow estimation. Experimental results on

simulated and real data verify the efficiency of the algorithms.

Index Terms— 3D flow estimation, frequency domain,

steerable filters

1. INTRODUCTION

Estimating the 3D flow from sequences of 3D data is an im-

portant task for 3D scene analysis and understanding, in many

computer vision applications [1]. Although the problem of

2D flow estimation has been extensively studied [2, 3, 4, 5],

only few works have dealt with 3D motion estimation di-

rectly from 4D data (3D+Time). These few approaches [6,

7, 8] are based simply on extending standard well-known dif-

ferential 2D approaches, such as the Horn-Schunck [2] and

Lucas-Kanade methods [3] or block-based matching, while

they have been appliedmainly for medical data analysis [7, 8].

Similarly, “range flow” estimation [9] extends standard 2D

differential methods for computing flow from depth (partial

3D) data. On the other hand, most of the existing approaches

estimate 3D flow from its 2D flow projections [1, 10], which

provide a relatively fast but approximate solution. Some vari-

ational, more accurate but slower methods, that work directly

in 3D (using the 2D video projections) include [11, 12].

In this paper, we address 3D flow estimation directly in

3D by formulating the problem in the 4D spatiotemporal fre-
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quency domain and constructing 4D directional steerable fil-

ters, which can be used for obtaining an efficient solution.

Considering a local 4D neighborhood (3D space+time), we

show that 3D motion manifests itself as energy concentration

along hyper-planes in the 4D spatiotemporal frequency do-

main. Based on this, it is then shown that the use of appropri-

ate 4D filters, which can extract directional energy in four di-

mensions, constitutes a potential solution. Our proposed solu-

tion is based on multidimensional directional “steerable” fil-

ters. Steerable and/or directional filters have been constructed

for up to 3 dimensions, e.g. [13, 14, 5]. In this work, relevant

mathematical definitions are extended to N dimensions.

A motivation for studying the problem in the frequency

domain is that according to early studies, human motion per-

ception mechanisms can be modeled based on frequency do-

main considerations [15]. The motivation behind construct-

ing and using steerable filters is that, apart from their effec-

tiveness, their use can provide time-efficient solutions, due to

their interpolation (“steerability”) property [5]. Moreover, the

proposed steerable filter-based algorithms can be parallelized,

so that to exploit the parallel computing capabilities of GPUs.

2. THEORETICAL DEVELOPMENTS

Consider a small neighborhood of a volumetric function, de-

noted as f0(xs), where xs = [x, y, z]T is the spatial coor-

dinates vector. Let also its evolution in time be denoted as

f(xs; t), such that f(xs; 0) = f0(xs). In the simplest 3D

flow model, the flow in a small spatio-temporal neighborhood

is approximated by a single velocity vector v = [vx, vy, vz]
T,

namely f(xs; t) = f0(xs − vt).

2.1. 3D Flow in the frequency domain

Taking the 4D spatiotemporal FT of f(xs; t) and using the FT
shift property, it is straightforward to show that:

|F (ωs;ωt)| = |f̃0(ωs)|δ(ωt + ωT
s · v), (1)

where ωs, ωt stand for the spatial and temporal frequency,

respectively and δ denotes the Dirac delta function.

Conclusion #1 - Motion Planes: The energy in the 4D (spa-

tiotemporal) frequency domain F (ωs;ωt) is concentrated



along a hyper-plane: ωt + ωT
s · v = 0. The hyper-plane’s

orientation gives the unknown velocity vector. Therefore,

the estimation of the unknown velocity v can be cast as an

orientation estimation problem in the 4D frequency space.

Considering the motion hyperplane ωt + ωT
s · v = 0 and

making use of hyper-spherical coordinates [16], after a set of

simple manipulations, one can conclude to:

Conclusion #2 - Motion signatures: The energy in the 4D

spatiotemporal frequency domain is concentrated along the

“signature”:

M(φ;v) := Ax(φ)vx +Ay(φ)vy +Az(φ)vz +D(φ) = 0, (2)

where φ = [φ1, φ2, φ3]
T with φ1 ranging in [0, 2π), φ2 and

φ3 ranging in [0, π) and

D(φ) = cosφ3, Ax(φ) = sinφ3 sinφ2 sinφ1

Ay(φ) = sinφ3 sinφ2 cosφ1, Az(φ) = sinφ3 cosφ2. (3)

2.2. Construction of N-D directional steerable filters

Denote as ω = [ω1, ω2, . . . , ωN ]T a N -D frequency vector

and as ω̂ = ω/||ω|| the corresponding unit-normalized vec-
tor. A N -D directional filter of order L, oriented along the
unit vector d = [d1, d2, . . . , dN ]T in the N -D frequency do-

main, is defined as

BL
d (ω) := (ω̂T · d)L = ||ω||−L

(

N
∑

n=1

ωndn

)L

. (4)

For simplicity, from now we drop the filter’s order L from

notation, wherever it is implied.

According to the multinomial expansion theorem [17], (4)

can be expanded as follows:

Bd(ω) = ||ω||−L
∑

[C(p1, p2, . . . , pN ;L)

N∏

n=1

d
pn
n

N∏

n=1

ω
pn
n ],

(5)

where the summation runs for all combination of integers

p1, p2 . . . , pN ≥ 0 that sum up to L, i.e.
∑N

n=1 pn = L.
The expansion coefficients are given by:

C(p1, p2, . . . , pN ;L) :=
L!

p1!p2! . . . pN !
, (6)

while the number of monomial terms (number of expansion

coefficients) are equal to I0(N ;L) :=
(

L+N − 1

N − 1

)

.

We now define the vector c(ω) of length I0(N ;L):

c(ω) := ||ω||−L [ C(p1, .., pN ;L)
p1, .., pN ≥ 0

p1 + .. + pN = L

N∏

n=1

ω
pn
n ]T, (7)

as well as the vector: k(d) := [
p1, .., pN ≥ 0

p1 + .. + pN = L

N
∏

n=1
dpn
n ]T. Then,

using vector notation, (5) is written asBd(ω) = k(d)T ·c(ω).

Basis filters: Consider I ≥ I0(N ;L) basis filters Bdi
(ω), at

the basic orientations di, i = 1, 2, . . . , I . Denote as B(ω) =

Table 1. Common parameters in all experiments
PARAMETER VALUE

Num of consecutive input volume-frames 7
Directional filters’ order L 2
Num of basis filters I (eq. distrib. on hypersphere) 16
Num of voxels for directional power calculation 3× 3× 3
4D Gaussian window - relative σ (voxels3 frames) (1,1,1,1)
Size of local neighborhood (voxels) 3× 3× 3
3D Gaussian window - relative σ (voxels3) (

√
2,
√
2,
√
2)

Grid of φ1 (start:step:end) 90 : 15 : 270
sph. angles φ2 45 : 15 : 135
(degrees) φ3 45 : 15 : 135

Table 2. Different parameters in experiments
VALUE

PARAMETER EXP. #1 EXP. #2 EXP. #3

Size of voxels (mm3) 153 153 403

Num of voxels/frame 67 × 67 × 67 75×71×33 35×48×41

[Bd1
(ω), ..., BdI

(ω)]T the basis filters’ vector. Let also K =
[k(d1), . . . ,k(dI)]

T be a matrix of size I×I0(N ;L). The set
of basis filters is by definition given from: B(ω) = K · c(ω).
Solving for c(ω), we get: c(ω) = K−1 ·B(ω), where K−1 is

the (pseudo-) inverse of K.

Interpolation formula: Using the above definitions, one

gets the interpolation formula:

Bd(ω) = k(d)T ·K−1 ·B(ω) = t(d) ·B(ω) =

I∑

i=1

ti(d)Bdi
(ω),

(8)

where t(d) := k(d)T · K−1 is the interpolation vector.

Conclusion #3 - Filter’s steerability: AN -D directional fil-

ter of order L, oriented at an arbitrary orientation d, defined

as (4), can be interpolated (“steered”) from I ≥ I0(N ;L) ba-
sic directional filters Bdi

(ω), using the interpolation formula
(8). Due to the linearity of FT (or convolution in the space-

time domain), the interpolation scheme of (8) holds also for

the filter responses.

3. PROPOSEDMETHODS

Motion signatures as motion constraints: Conclusion #2

could be reformulated as follows: Given a specific direction

φm(x) =
[

φm
1 (x), φ

m
2 (x), φm

3 (x)
]T

in the hyper-spherical

frequency domain, where a large portion of energy is known

to be concentrated, the unknown velocity v = [vx, vy, vz]
T

should satisfy the 3D motion constraint (linear) equation:

M(φm;v) = 0. This single 3D motion constraint equation

cannot be used alone to obtain the full 3D velocity compo-

nent. The problem is ill-posed. Only the normal velocity

component can be estimated (subsection 3.2). In order to

estimate the full 3D velocity, multiple constraints have to be

combined (subsection 3.3).

A sequence of volumetric data, i.e a 4D scalar function

f(x) constitutes the input of the proposed algorithms, where
x = [xs; t] = [x, y, z, t]T is the 4D space-time vector.
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Fig. 1. Experiment #1 - Simulated “Moving spheres”. The

estimated 3D motion field using the proposed algorithm.

3.1. Algorithm #1: Directional spatiotemporal power

The following algorithm is used for the calculation of the “di-

rectional spatiotemporal power” (see step 6 for the definition),

by efficiently exploiting the filters’ “steerability” property.

1. Construct a 4D steerable filter basis in the frequency do-

main: Bdi
(ω), at the basic orientations di, i = 1, 2, . . . I .

2. Take the 4D spatiotamporal FT of the input f(x), to obtain

F (ω), i.e. the input in the frequency domain.

3. Multiply F (ω) with each basic filter Bdi
(ω) , to obtain the

basic responses Fi(ω) = Bdi
(ω)F (ω), i = 1, 2, . . . , I .

4. Apply 4D IFT to each Fi(ω) get the basic responses

fi(x) = bdi
(x) ∗ f(x) in the original space-time domain.

5. Consider a dense grid of directions φ = [φ1, φ2, φ3]
T. Cal-

culate the response fφ(x) for each φ in the grid, as a linear

combination of the basis responses.

6. Calculate the directional spatiotemporal power R(φ)(x) =
|fφ(x)|2. Actually, to deal with noise, a more robust func-

tional is used, which integrates locally the power:

R(φ)(x) =
∑

xn∈N (x)

g1(x− xn)|fφ(xn)|2, (9)

where g1(x) is a narrow 4D separable Gaussian function

with σ = [σx, σy , σz, σt]
T. For the experimental value of

σ and the size of neighborhoodN (x), see Table 1.

3.2. Algorithm #2: Estimation of 3D normals and normal

velocity component

The 3D normals map ns(x) at each spatiotemporal location x

and the speeds S(x) along the normals can be calculated by

the following algorithm:

1. Using Algorithm #1, the directional power R(φ)(x) is ex-

tracted and the dominant 4D orientation is found: φm(x) =
[

φm
1 (x), φ

m
2 (x), φm

3 (x)
]T

= argmaxφ{R(φ)(x)}.
2. Using hyper-spherical to Cartesian transformation, the unit

4D direction vectorn(x) =
[

nx(x), ny(x), nz(x), nt(x)
]T

is estimated from φm(x).
3. The spatial normal (plane normal) ns(x) and the nor-

mal velocity component S(x) are then given from (we

drop x for simplicity): ns =
[nx,ny,nz]

T√
n2
x+n2

y+n2
z

and diagonal

S = −nt√
n2
x+n2

y+n2
z

. Actually, there are two valid solutions,

with the second one given by n
′

s = −ns and S
′

= −S.

3.3. Algorithm #3: Estimation of full 3D velocity

We search for the velocity v(x) that minimizes the objective

function:

E
{

v(x)
}

=
∑

xn∈N (x)

W (x− xn)

J(xn)∑

j=1

wj(xn)||M(φj ;v)(xn)||22

(10)

where N (x) is a neighborhood around x (of size 3x3x3 in

all our experiments), W (x) is the square of a Gaussian func-

tion (with σ = [1, 1, 1]T voxels3 in all experiments), wj(xn)
is a weight reflecting a kind of confidence about the motion

constraint M(φj ;v)(xn) = 0 and J(xn) is a number of ap-

propriate triplets φ
j = [φj

1, φ
j
2, φ

j
3]
T, for which R(φj)(x)

takes a large value. A simple method for the last one, that

was used in our experiments and imposes a constant num-

ber J of motion constraints for all x, is to consider all 2D

slices φ1 = const of R(φ1, φ2, φ3) in the search grid and find

the positions of the corresponding maxima. Finally, as for the

weights wj(xn), the values of the directional power itself was

used, i.e. wj(xn) = R(φj)(xn).
The algorithm for the extraction of the full 3D velocity

vector can be summarized as follows:

1. The directional power R(φ)(x) is extracted, using Algo-

rithm #1. Then, for each voxel x, find the triplets φj(x),
for which R(φj)(x) takes a large value.

2. For each voxel x, minimize the energy functional of equa-

tion (10). To do so, one has to construct the system of N ·J
linear equations:

W (x− xn) · wj(x
n) ·M(φn

j ;v)(xn) = 0,

for j = 1, 2, . . . , J and x
n ∈ N (x), i.e. all N neighbors

around x. Solving the linear system, in the least-square

sense, gives the unknown velocity v.

4. EXPERIMENTAL RESULTS

Evaluation metric: If the ground-truth (GT) flow field is

known, the algorithm’s performance evaluation is based on

the (Mean) Angular Error (M)AE [4], extended however for

the 3D flow case. An estimated 3D motion vector v is ex-

pressed in homogenous coordinates as v = (vT,1)T

||(vT,1)|| , namely

as a unit direction vector in 4D. The AE is then calculated

from AE = cos−1(v · vGT).
Experimental setup: The experiments with real-world data

were realized considering sequences of 3D point clouds, re-

constructed using a set of calibrated Kinect sensors [18, 19].

To use point clouds in our underlying framework however, a

sequence of volumetric functions has to be constructed from

the input point sets. For the experiments in this paper, we

use the the simplest possible approach to realize that. The



Fig. 2. Experiment #2 - Input point clouds (left), output of Algorithm #2 (middle) and Algorithm #3 (right).

3D bounding box for all input point clouds is uniformly dis-

cretized into Nx × Ny × Nz cubic voxels. A binary (0/1)

volumetric function is reconstructed by indicating a voxel as

“occupied” (set to 1) if it contains at least one point. Finally,

the reported execution times refer to a desktop PC, with an i7-

2700K CPU, at 3.50GHz, 8GB RAM, as well as a GeForce

GTX 560 GPU.

Parallel implementation: Since the proposed algorithms

involve mainly voxel-wise operations, an advantage is that

they can be parallelized to exploit the computing capabilities

of GPUs. In this work, algorithm #1 was parallelized using

CUDA [20]. All reported times refer to this implementation.

4.1. Experiments and results

In all provided results, the 3D motion vectors are plotted in

the 3D space, using the Matlab function quiver3. In order

to assist reader, each motion vector is plotted with a color,

which depends on motion vectors direction in the 3D space. A

HSV colormap of 16×16 distinct colors (directions) is used.

Experiment #1 - “Moving Spheres” with known GT:

In this experiment, we use a simulated sequence with two

moving spheres of radius 50mm and 80mm, respectively.

The small sphere is moving towards right with velocity

v1 = [20, 0, 0]T mm/frame. The large one is moving to-

wards left-up with velocity v2 = [−20, 10, 0]T . We applied

Algorithm #3 for the estimation of full 3D velocities. The

estimated 3D motion field is given in Fig. 1. The MAEmetric

is 11.39o, which is a sensible value for dense flow estimation

[4]. The execution time, given the algorithm’s parameters

in Tables 1 and 2, are presented in Table 3. As can be ver-

ified, despite the large amount of data in the 4D space, the

execution time is quite low.

Experiment #2 “Dimitris” captured by one Kinect: A

moving human (“Dimitris”), captured by one Kinect, is used

in this experiment. The reconstructed point clouds for the 1st

and last (7th) frame are given in Fig. 2(left). One can see that

the human rotates around his vertical body axis, clockwise.

Since the GT is not available, only qualitative evaluation of

the proposed methodology results is possible. The output of

Algorithm #2 is also given in Fig. 2(middle), i.e. the normal

map (by taking the mean of normals along Z) and the esti-

mated speeds map, which are combined into a vector field.

Qualitatively, the results are sensible. Finally, the output of

algorithm #3, for the estimation of full 3D velocities is given

in Fig. 2(right). The execution time is reported in Table 3.
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Fig. 3. Experiment #3 - “Dimitris” skiing sequence. Super-

imposed point clouds for the first and last frame (left) and

estimated motion field (right).

Table 3. Processing time (msec) for all steerable filters-

related operations
ALGORITHMIC STEP EXP.#1 EXP.#2 EXP.#3

Calculation of responses (FT domain) 178 110 42

Inverse FT of the responses 1776 836 405

Interpolation of responses at all

candidate 4D directions - 1349 1251 509

Calculation of directional power

TOTAL 3303 2197 956

Experiment #3 Full 3D “Dimitris” skiing sequence: Fi-

nally, we present experimental results on a sequence of full

3D data, reconstructed using multiple Kinect sensors [18, 21].

The data were downloaded from http://vcl.iti.gr/reconstruction/

and contain a human performing skiing, as shown in Fig.

3. The output of algorithm #3 for frames 249-255 are given

in Fig. 3. Studying the results in the Figure, the estimated

3D motion field seems qualitatively correct. The human

moves forward-left and the left/right shoulders move up-

wards/downwards, respectively. This is in accordance with

the estimated field. More results on this sequence can be

found at http://utopia.duth.gr/%7Enmitiano/SkiingResults.pdf.

5. CONCLUSIONS

In this paper, the 3D flow estimation problem in the 4D spa-

tiotemporal frequency domain, has been formulated. Addi-

tionally, towards providing an efficient solution, the construc-

tion of multi-dimensional steerable filters has been presented

for the first time, along with algorithms for their application

in 3D flow estimation. Preliminary results on simulated and

real data verified the efficiency of the proposed algorithms.
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