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Abstract—Image Fusion is the procedure of combining useful
features from multiple sensor image inputs to form a sin-
gle composite image. In this work, the authors extend the
previously proposed Image Fusion framework, based on self-
trained Independent Component Analysis (ICA) bases, to a
more sophisticated region-based Image Fusion system. The input
images are segmented into three areas of different activity : edges,
texture and constant background. A hierarchical set of fusion
rules employing textural information from the spatial-domain
in the form of local variance, entropy and fourier energy is
introduced. The proposed system improves the performance of
our previous system.

Index Terms—Image Fusion; Independent Component Analy-
sis; Texture Information

I. INTRODUCTION

Modern technology has enabled the development of low-
cost, wireless sensors of various modalities that can be de-
ployed to monitor a scene. In this paper, the case of multi-
modal imaging sensors of known position, that are employed
to monitor a scene, will be investigated. The information pro-
vided by multimodal sensors can be quite diverse. Each image
has been obtained using different instruments or acquisition
techniques, allowing each image to have different characteris-
tics, such as degradation, thermal and visual characteristics.

Let x1(i, j), . . . , xT (i, j) represent T images of size M1 ×
M2 capturing the same scene, where i, j refer to the pixel
coordinates in the image. The input images are assumed to
have negligible registration problems. The process of combin-
ing the important features from the original T images to form
a single enhanced image f(i, j) is referred to as Image Fusion.
Fusion techniques can be divided into spatial domain and
transform domain techniques [1], depending on the processing
domain. Various transformations were proposed for image
fusion, including the Dual-Tree Wavelet Transform [1], Pyra-
mid Decomposition and self-trained Independent Component
Analysis bases [2], [3]. All these transformations project the
input images onto spatially localized bases, modeling sharp
and abrupt transitions (edges) and therefore, transform the
image into a more meaningful representation that can be
used to detect and emphasize salient features, important for
performing the task of image fusion.

The authors proposed a self-trained Image Fusion frame-
work based on Independent Component Analysis, where the

analysis transformation is estimated from a selection of images
of similar content [2]. Several fusion rules were proposed
in conjunction with this framework in [2]. The analysis
framework is projecting the images into localized patches of
relatively small size. The local mean value of the patches is
subtracted and stored in order to reconstruct the local means
of the fused image. In [2], an average of the stored means
was used to reconstruct the fused image. In the case of multi-
modal inputs a gradient algorithm that optimises the Piella and
Heijmans Fusion Quality index [4] was derived in [3] to infer
an optimal means choice for the fused image. In this paper, the
authors revisit the region-based rule that was proposed in [2].
The image was heuristically segmented into “active” and “non-
active” regions, which were fused with the “max-abs” and the
“mean” rule respectively. The proposed approach segments the
image into three regions: “edges”, “texture” and “background”.
A new set of fusion rules using the local standard deviation,
entropy or fourier energy in the spatial domain were devised to
fuse the class of “texture” regions. A hierchical application of
fusion rules is used to construct the image in the ICA domain.
The proposed system offers improved performance compared
to our previous system in the case of “out-of-focus” examples.

II. INTRODUCTION TO IMAGE FUSION USING ICA BASES

Assume an image x(i, j) of size M1 × M2. An “image
patch” xw is defined as an N × N neighborhood centered
around the pixel (i0, j0). Assume that there exists a population
of patches xw, acquired randomly from the image x(i, j).
Each image patch xw(k, l) is arranged into a vector xw(t) =
vec(xw(k, l)), using lexicographic ordering. The vectors xw(t)
are normalized to zero mean, producing unbiased vectors.
These vectors can be expressed as linear combinations of the
bases vectors bj with weights ui(t), i = 1, . . . ,K:

xw(t) =
K∑

k=1

uk(t)bk = [b1 b2 . . .bK ]


u1(t)
u2(t)
. . .

uK(t)

 (1)

where t represents the t-th image patch selected from the
original image. Equation (1) can be expressed, as follows:

xw(t) = Bu(t) (2)



u(t) = B−1xw(t) = Axw(t) (3)

where B = [b1 b2 . . .bK ] and u(t) =
[u1(t) u2(t) . . . uK(t)]T . In this case, A = B−1 =
[a1 a2 . . . aK ]T represents the analysis kernel and B
the synthesis kernel. The estimation of these basis vectors is
performed using a population of training image patches xw(t)
and a criterion (cost function) that selects the basis vectors.
Analysis/synthesis bases can be trained using Independent
Component Analysis (ICA) and Topographic ICA, as
explained in more detail in [2]. The training procedure needs
to be performed only once, as the estimated transform can
be used for fusing images with similar content to the training
images.

A number of N×N patches (in the order of 10000 [5]) are
randomly selected from similar-content training images. We
perform Principal Component Analysis (PCA) on the selected
patches in order to select the K < N2 most important bases.
Then, the ICA update rule or the topographical ICA rule in [2]
for a chosen L×L neighborhood is iterated until convergence.
In each iteration, the bases are orthogonalised using a sym-
metric decorrelation scheme. In the case of multimodal inputs,
sample patches from all inputs are selected to train the ICA
bases.

A. Fusion in the ICA domain

After estimating an ICA transform, Image fusion using ICA
bases is performed following the approach depicted in the
generic diagram of Figure 1. Every possible N × N patch
is isolated from each image xk(i, j) and is consequently re-
arranged to form a vector xk(t). These vectors xk(t) are nor-
malized to zero mean and the subtracted local mean MNk(t) is
stored for the reconstruction process. Each of the input vectors
xk(t) is transformed to the ICA or Topographic ICA domain
representation uk(t), using equation (3). Optional denoising
in the ICA representation is also possible, by applying sparse
code shrinkage on the coefficients in the ICA domain [5],
assuming Laplacian (generally sparse) priors for the ICA
representation. The corresponding coefficients uk(t) from each
image are then combined to construct a composite image
representation uf (t) in the ICA domain. The next step is to
move back to the spatial domain, using the synthesis kernel B.
The optimal means MNf (t) are estimated using the gradient
rule in [3]. In the case of images of similar contrast, one can
use the average means as an optimal choice, as this is usually
the answer of the gradient rule in [3]. The optimal means
are then added to the corresponding image patch. The image
f(i, j) is synthesised by spatially averaging the image patches
uf (t) in the same order they were selected during the analysis
step.

B. Various fusion rules using ICA bases

Some basic rules that can be used for image fusion are
described in this section. Fusion by the absolute maximum
rule simply selects the greatest in absolute value of the
corresponding coefficients in each image (“max-abs” rule).
This process seems to convey all the information about the
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Fig. 1. The proposed fusion system using ICA / Topographical ICA bases.

edges to the fused image, however, the intensity information
in constant background areas seems to be distorted. In con-
trast, fusion by the averaging rule averages the corresponding
coefficients (“mean” rule). This process seems to preserve the
correct contrast information, however, the edge details seem to
get oversmoothed, since averaging is generally a “low-pass”
filtering process.

A Weighted Combination (WC) pixel-based rule can be
established using the ICA framework [2]. The fused image
coefficients are constructed using a “weighted combination”
of the input transform coefficients, i.e.

uf (t) =
T∑

k=1

wk(t)uk(t) (4)

To estimate the contributions wk(t) of each image to the
“fused” image, the mean absolute value (L1-norm) of each
patch (arranged in a vector) in the transform domain can be
employed as an activity indicator, because it fits a more general
sparse profile of the ICA coefficients, denoted by a Laplacian
distribution.

Ek(t) = ||uk(t)||1 k = 1, . . . , T (5)

The weights wk(t) should emphasize sources with more
intense activity, as represented by Ek(t). Consequently, the
weights wk(t) for each patch t can be estimated by the
contribution of the k-th source image uk(t) over the total
contribution of all the T source images at patch t, in terms of
activity.

wk(t) = Ek(t)/
T∑

k=1

Ek(t) (6)

A regional approach can also be established, by dividing the
observed area into areas of “low” and “high” activity, using
the L1-norm based Ek(t) measurement. The areas containing
salient information can be heuristically labeled as “high”
activity areas, if Ek(t) > 2meant{Ek(t)} and can be fused
using a “max-abs” or a “weighted-combination” fusion rule.
The remaining areas of “low-activity” contain background
information and can be fused using the “mean” rule. Another
regional approach can be to use alternative segmentations of
the observed scene, based on the input sensor images and
consequently fuse the different regions independently [6].



III. AN IMPROVED REGIONAL FUSION RULE USING
TEXTURAL INFORMATION

In this section, we will describe a novel and improved
regional fusion rule under the framework of ICA bases. The
main aim was first to automate the procedure of selecting
active and non-active regions. The second and novel aim was
to attempt to identify areas of medium edge activity that can be
considered to be textural information. Texture has so far been
used to evaluate image fusion methods [7]. As there is no
reported method to fuse textural areas in the literature (to the
best of our knowledge), we will propose a relevant to method
to stress the dominant textural areas in the fused image.

The first step will be to segment the input images in the ICA
domain uk(t) into three distinct regions: “edges”, “texture”
and “background”. To achieve this, we will use the following
activity detector Lk(t), which is based the L1-norm based
Ek(t) measurement of (5).

Lk(t) = |Ek(t)|p ∀ k = 1, . . . , T (7)

where the power p ∈ [0.3, 0.5] is used to extend the value
range of Ek(t). The next step is to identify three distinct
clusters in the values of Lk(t). The cluster with larger values
will correspond to “edges”, the cluster with medium values to
“texture” and the smaller values to “background”. Clustering
is performed using a typical K-Means algorithm on the values
of Lk(t) of each image. The segmentation result will be a map
Sk(t) for each input image, that will take the following form:

Sk(t) =

 3, Edge
2, Texture
1, Background

(8)

In order to define a single map for all input images, we
combine the previous maps using a hierarchical approach. The
main concept is that if one patch is considered to be an “edge”
patch in one of the input images, then the corresponding
patches should be fused using a fusion rule suitable for edges,
regardless of their content. In a similar manner, a set of
corresponding patches will be fused using a textural fusion
rule, if at least one is tagged as “texture” and the rest are
either tagged as “texture” or “background”. Finally, if all
corresponding patches are tagged as “background”, then these
patches will be fused using a rule suitable for low activity
patches. This hierarchical approach will create the single map
S(t) simply by S(t) = maxk Sk(t). An example of the
segmentation map that can be extracted using the described
procedure is shown in Fig. 2. The out-of-focus fusion dataset
“Bottles” is depicted in Fig. 2 (a), (b). The estimated map S(t)
is shown in Fig. 2(c) using white for “edge” areas, gray for
“texture” areas and finally black for “background” areas.

Once the single map has been created, we can fuse these
regions, using a suitable fusion rule, as follows:

if S(t) =

 3, “max-abs” rule
2, “Textural” rule
1, “Mean” rule

(9)

(a) Input Image 1 (b) Input Image 2

(c) Segmentation Map (d) Regional Fusion (entropy)

(e) Regional Fusion (std) (f) Regional Fusion (FFT)

Fig. 2. The “Bottles” fusion example: (a)-(b) Input Images, (c) Estimated
three-cluster segmentation map, Regional Fusion rule using entropy (d),
standard deviation (e) and FFT (f) for the “texture” areas.

The “max-abs” is suitable for fusing areas with strong edges.
In contrast, the “Mean” rule is suitable for fusing areas with
constant background. A novel fusion rule should be proposed
for areas of medium edge activity, that can be well described
as texture.

A. Textural fusion rule

To fuse patches that contain mostly texture, we need a
mechanism or features that can identify and stress the exis-
tence of texture, so that they can be highlighted in the fused
image. Searching the vast literature of texture features [8],
[9], we can see that texture can be identified by estimating
various statistical and probabilistic measurements in the spatial
domain, such as the standard deviation (std), entropy or
Fourier energy (FFT). These measurements will be employed
to calculate the weight factors rk(t) for the fusion rule.

The fused texture patch uf (t) will be created using the
following formula:

uf (t) =
T∑

k=1

rk(t)uk(t) (10)

where rk(t) are weights that emphasize the most dominant
texture patch. To perform this, we measure either the stan-
dard deviation or the entropy or the Fourier energy of the



corresponding input patches xk(t) in the spatial domain, as
follows:

rk(t) =
std{xk(t)}∑T
k=1 std{xk(t)}

(11)

rk(t) =
entropy{xk(t)}∑T
k=1 entropy{xk(t)}

(12)

Finally,

rk(t) =
fft energ{xk(t)}∑T
k=1 fft energ{xk(t)}

(13)

where fft energ{xk(t)} is a function that estimates the 1D-
FFT of vector xk(t), removes the DC component and the upper
symmetrical half of the FFT and finally calculates the sum
of the absolute value of the remaining coefficients. In other
words, it is a measurement of periodicity using the Fourier
transform. The above formulas normalise the weights to unit
summation (

∑T
k=1 rk(t)) to avoid inappropriate scaling of the

patches. An example of using the three textural fusion rules
in the aforementioned regional fusion scheme is depicted in
Fig. 2 (d), (e) and (f) (entropy, standard deviation and Fourier
energy respectively).

IV. EXPERIMENTS

In this section, the performance of the proposed region-
based ICA scheme is evaluated using a variety of datasets
that were employed by the Image Fusion community. We used
the typical training procedure for the ICA framework, training
60 8 × 8 ICA bases from random natural images. This is
performed offline only once and the bases are used for the rest
of the experiments. We used the optimal contrast correction
for the multimodal examples, as described in [3]. Optimal
contrast correction was used for the “out-of-focus” examples,
but the algorithm attributed almost equal weights to all input
images as expected, since all input images feature similar
exposure and contrast. The processing of color images for the
multi-modal examples is performed in a similar manner to
the method described in detail in [10]. For the “out-of-focus”
examples, we fused each color channel (R-G-B) independently.
We performed fusion under the ICA framework, using the
“max-abs”, “weighted combination” and “regional” rules, as
described earlier. For the novel region-based schemes, we used
the activity detector in (7) with a value of p = 0.4 and imple-
mented the three fusion rules based on “entropy”, “standard
deviation” and “Fourier Coefficients”. For performance com-
parison, the Dual-Tree Wavelet Transform (DT-WT) method
using the “max-abs” rule will also be employed1. The Piella
Index that is calculated in this section will constantly represent
the second version of the Piella Index [4].

The first task was to demonstrate the novel framework’s per-
formance on examples of “out-of-focus” fusion. We employed
the commonly used datasets “Disks”, “Clocks”, “Books”
and “Pepsi”, as they were available by the ImageFusion
Server [11], and two sets (“Bottles” and “Berlin”) created by

1Code for the Dual-Tree Wavelet Transform available online by the Poly-
technic University of Brooklyn, NY at http://taco.poly.edu/WaveletSoftware/

the authors. We applied the ICA-based fusion framework fol-
lowing previously proposed fusion rules and the novel texture-
based fusion rules based on “entropy”, “standard deviation”
and “fourier energy”. Fusion performance was measured in
terms of the Piella index and is outlined in Table I. In Fig. 3,
some fusion results are depicted using the “Books” dataset and
in Fig. 4, some fusion results using the “Disks” dataset. The
first observation is that the activity detector proposed in (7), the
k-means clustering approach and hierarchical characterisation
is successful at segmenting the observed scene into areas of
edges, texture and constant background. The segmentation
maps that are shown in 2(c), 3(c) and 4(c) and demonstrate
an accurate segmentation of the observed scenes. We observed
that the scheme is more efficient for higher resolution images.
In comparison to the regional scheme proposed in [2], where
there was a simple threshold to discriminate between active
and non-active regions, we have significant improvement as
now the procedure is fully automated and a more refined
segmentation into three clusters is achieved. The fusion rules
that are proposed to fuse the “textural” regions seem to
improve the performance of the ICA fusion framework. As
previously reported, the ICA-based fusion methods outperform
fusion methods based on the Dual-Tree Wavelet transform
(DT-WT). The novel region-based methods outperform sig-
nificantly the previous regional method. In addition, the novel
region-based methods based on the “standard deviation” (std)
and “fourier energy” (fft) seem to outperform the method
based on “entropy”. From a point of view, measuring the
standard deviation, i.e. the energy of a patch is equivalent to
measure the energy of the Fourier coefficients due to Parseval’s
theorem (without the DC component which is also subtracted
in the form of local mean in the calculation of standard
deviation). The two methods feature similar performance, as
observed in Table I. The subtle differences may be caused due
to round-off errors by MATLAB. Finally, the new proposed
methods seem to outperform the “max-abs” rule which is
usually the best choice for “out-of-focus” fusion examples.

The second task was to explore the novel framework’s
performance on “multimodal” fusion examples. The two Octet
image sets were employed, as they were available by the
ImageFusion Server [11]. These images, captured by Octec
Ltd., show men and buildings with and without a smoke
screen. They were captured with a Sony Camcorder and
a LWIR sensor. We also used the “Dune” and “UNcamp”
datasets of surveillance images from TNO Human Factors,
provided by L. Toet in the Image Fusion Server [11]. The
datasets consist of two series of visual and infrared frames
capturing a human subject walking through various areas.
The ICA fusion system still outperforms the image fusion
using DT-WT. The novel regional schemes still outperform
the previous regional and the weighted combination schemes.
However, the “max-abs” ICA fusion outperforms the novel
regional ICA fusion schemes. This implies that texture-based
rules may not be very suitable for multi-modal fusion. The
different texture that exists in the input images, due to the
different capture modalities may be misleading the fusion



TABLE I
AVERAGE FUSION PERFORMANCE MEASUREMENTS USING PIELLA’S INDEX FOR OF THIS EXPERIMENTAL SECTION. THE PROPOSED ICA-BASED

SCHEMES WITH THE THREE TEXTURAL FUSION RULES ARE COMPARED WITH THE PREVIOUS ICA-BASED FRAMEWORK AND THE DUAL-TREE WAVELET
FRAMEWORK.

Method ICA ICA ICA ICA ICA ICA DT-WT
Maxabs Weight Region Textr-Entr Textr-std Textr-fft maxabs

Out-of-focus fusion
Disks 0.9189 0.9110 0.9059 0.9184 0.9191 0.9192 0.9095
Clocks 0.9170 0.9096 0.9041 0.9169 0.9188 0.9186 0.9105
Books 0.9162 0.9164 0.9148 0.9174 0.9175 0.9175 0.9091
Berlin 0.9665 0.9731 0.9692 0.9691 0.9693 0.9693 0.9650
Bottles 0.9594 0.9659 0.9643 0.9620 0.9614 0.9614 0.9546
Pepsi 0.9437 0.9344 0.9310 0.9447 0.9448 0.9448 0.9400

Average 0.9369 0.9351 0.9315 0.9381 0.9385 0.9385 0.9315
Multi-modal fusion

Octet1 0.8661 0.8483 0.8343 0.8485 0.8523 0.8542 0.8232
Octet2 0.8442 0.8296 0.8186 0.8210 0.8251 0.8249 0.8749
Dune 0.7414 0.7009 0.6825 0.7149 0.7210 0.7251 0.7118

UN camp 0.7500 0.7005 0.6868 0.7294 0.7303 0.7296 0.7159
Average 0.8004 0.7698 0.7556 0.7785 0.7822 0.7834 0.7815

(a) Input Image 1 (b) Input Image 2 (c) Segmentation Map (d) ICA-maxabs

(e) DTWT-maxabs (f) ICA-Texture-entropy (g) ICA-Texture-std (h) ICA-Texture-fft

Fig. 3. The “Books” fusion example: (a)-(b) Input Images, (c) Estimated three-cluster segmentation map, Regional Fusion rule using entropy (d), standard
deviation (e) an for the “texture” areas.

process, and thus the simple “edge injection” may be better in
terms of image fusion performance. An example of multimodal
fusion from the “Dune” sequence is shown in Fig. 5. Although
the segmentation map seems to detect the correct areas of
strong edges, texture and background, the Piella Index seems
to favor the simple edge-injection “max-abs” rule.

V. CONCLUSION

In this paper, the authors extend their previous image fusion
framework based on Independent Component Analysis with a
novel regional fusion rule. Initially, the input images are trans-
formed to the ICA-domain representation, where the activity
of each image patch is measured. Using k-means clustering
and a hierarchical grouping concept, the image patches are
divided into three groups: a) high activity patches (edges), b)
medium activity patches (texture) and c) low activity patches

(background). A different fusion rule is used for each different
group. The max-abs rule is used for edges and the mean rule
is used for background. A novel fusion rule measuring several
texture properties in the spatial domain is used in the texture
patches. The proposed scheme provided meaningful scene
segmentation into these three areas. The proposed scheme
offered improved performance compared to the “max-abs”
fusion rule for “out-of-focus” fusion examples. In contrast,
it was not so successful in the case of multimodal examples,
maybe due to the different texture properties of the various
modality input images.
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