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Abstract—Remote Sensing systems enhance the spatial quality
of low-resolution Multi-Spectral (MS) images using information
from Pan-chromatic (PAN) images under the pansharpening
framework. Most decimated multi-resolution pansharpening ap-
proaches upsample the low-resolution MS image to match the
resolution of the PAN image. Consequently, a multi-level wavelet
decomposition is performed, where the edge information from the
PAN image is injected in the MS image. In this paper, the authors
propose a pansharpening framework that eliminates the need
of upsampling of the MS image, using a B-Spline biorthogonal
wavelet decomposition scheme. The proposed method features
similar performance to the state-of-the-art pansharpening meth-
ods without the extra computational cost induced by upsampling.

I. INTRODUCTION

Image Fusion is the process of combining visual informa-
tion, obtained from various image modalities, into a single
image representation, in order to facilitate information infer-
ence by human operators or computer vision systems [1].
The launch of several satellites, that provide various types
of spectral and spatial information about our planet, have
encouraged the development of remote sensing systems. The
IKONOS satellite, launched in 2000, offers Multi-Spectral
(MS) imagery at 4m and Panchromatic (PAN) imagery at
1m resolution [2]. The QuickBird satellite, launched in 2001,
collects Panchromatic imagery at 60-70 cm resolution and
Multi-Spectral imagery at 2.4 and 2.8m resolutions [3]. Cur-
rent state-of-the-art image processing and fusion methods have
facilitated the efficient processing and enhancement of the
available satellite image data.

Pansharpening is the procedure of combining the high
spectral information available in Multi-Spectral (MS) images
with the high spatial information of the Panchromatic (PAN)
image. Although the spatial resolution of MS images in
modern satellites has significantly increased, PAN imagery still
has finer spatial resolution than MS imagery [4]. In contrast,
MS imagery provides better spectral resolution compared to
PAN imagery (RGB and Night Infra Red (NIR) channel). Both
these features are essential for performing image classification
tasks in remote sensing applications. High spectral resolution
facilitates the discrimination of land cover types, whereas high
spatial resolution facilitates the identification of textures and
the accurate extraction of shape and boundaries of the different

objects present in the image [4]. Assume an MS image xMS

of size M1×N1× 3 (the NIR channel will not be considered
in our study) and a PAN image xPAN of size M2 × N2

(M2/M1 = N2/N1 = 4). The problem of Pansharpening can
thus be described as the problem of transferring the spatial
resolution of the PAN image and the spectral resolution of the
MS image to a composite pansharpened image xPS of size
M2 ×N2 × 3.

The literature in Pansharpening methods is vast, cover-
ing a wide variety of methods [4]–[11]. The Gram-Schmidt
(GS) Pansharpening methods [9], [10] combine the PAN and
MS images using the GS transformation. Principal Compo-
nent Analysis (PCA)-based pansharpening approaches perform
PCA to select a principal image representation between the
PAN and the MS images [11]. Wavelet-based Pansharpen-
ing is a multi-resolution method featuring enhanced perfor-
mance [4]–[8]. Undecimated wavelet-based approaches using
the à-trous algorithm seem to perform better than decimated
approaches [8]. Most decimated pansharpening approaches
employ an upsampling preprocessing step in order to tackle
the problem of spatial resolution difference between the PAN
and MS images. In this paper, the authors revise current deci-
mated wavelet-based pansharpening approaches, by proposing
a methodology to solve the spatial resolution problem inside
the wavelet multi-resolution analysis. The computational cost
of a wavelet-based pansharpening approach is thus reduced,
while retaining similar image quality.

II. WAVELET-BASED PANSHARPENING

Most pansharpening approaches tackle the difference in
spatial resolution between the PAN and the MS image by
upsampling the three channels (RGB) of the MS image by
a factor of 4 in order to match the resolution of the PAN
image [4]–[8]. Thus, the first step in most pansharpening
systems is upsampling, which is usually performed by Bicubic
or B-spline interpolation.

Most fusion approaches create a single channel output
from multiple modality inputs, whereas in pansharpening a
multichannel fused output is required. A first strategy is to
fuse each RGB channel independently with the PAN image to
create a RGB Pansharpened image [5]. Another widely used
approach is to transfer the RGB MS image to a representation
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Fig. 1. A common wavelet-based Pansharpening architecture using upsampling to match the different resolution inputs.

of Intensity, Hue and Saturation (IHS) [5]. The intensity image
in the IHS representation is very similar to a panchromatic
image, thus many approaches fuse the I channel of the MS
image with the PAN image and then transform the modified
I channel jointly with the original H, S channels back to the
RGB domain to create the Pansharpened image. There are
various implementations of the forward and inverse transfor-
mation between the RGB and the IHS colour systems [1], [5].
In this work, we followed the implementation in [12].

The Wavelet Transformation (WT) is a multi-resolution
decomposition, where the original image is initially sub-
stituted by a structure of approximation images LLj and
three detail images HLj , LHj , HHj of lower resolution
(usually downsampled by 2) at various decomposition levels j.
The detail images HL, LH, HH capture the image’s salient
features, whereas the approximation images LL capture the
low frequency information, mainly intensity information.

Based on the previous observation, most wavelet-based
pansharpening approaches [4]–[8] perform a j-level wavelet
decomposition to both the PAN and MS image. Some ap-
proaches decompose the channels RGB independently and
perform channel pansharpening with the PAN image. Sev-
eral other approaches transform the MS image to the IHS
space and perform wavelet decomposition on the I chan-
nel alone. Once the wavelet decompositions are calculated,
the wavelet decomposition of the pansharpened image is
formed from the calculated decompositions. The detail images
HLi, LHi,HHi,∀i ∈ [1, j] of the pansharpened image’s
decomposition are acquired from the PAN image’s decom-
position. The LL image is acquired from the last LL1 of
MS image’s decomposition. The intensity range of the PAN
image is matched to the intensity range of the I channel of the
MS image prior to the wavelet decomposition. The intensity
matching can be either a simple linear transformation or a
nonlinear exact histogram matching, as described in [13]. The
pansharpened decomposition is finally recomposed, producing
the final pansharpened image (see Fig. 1). In practice, the
choice of wavelet family does not seem to affect significantly
the performance of pansharpening, although the choice of an
undecimated wavelet decomposition (the à-trous algorithm)

seems to produce superior results compared to the decimated
case [8].

III. DECIMATED WAVELET-BASED PANSHARPENING
WITHOUT UPSAMPLING

The current wavelet-based schemes feature the following
conceptual redundancy. The algorithm is required to process
two input images at different resolutions. The authors believe
that the upsampling of the MS image can be avoided, since
the whole procedure actually implies moving up and down
the MS image’s scale of decomposition. Instead, one can only
move downwards the wavelet decomposition in order to match
the resolution of the PAN image and perform pansharpening.

To avoid the upsampling stage of the MS image, the differ-
ent resolutions are matched inside the wavelet decomposition.
Initially, we move the MS image to the IHS space and store
the H,S components. Then, wavelet decomposition of j − 2
levels of the I image is performed. Wavelet decomposition
of j levels is performed to the PAN image and the same
pansharpening procedure can now be applied in a similar
manner to the previous wavelet-based approaches. The LL1

is acquired from the decomposition of the I image, whereas
the HLi, LHi,HHi, ∀i ∈ [1, j] images are acquired from
the decomposition of the PAN image. Hence, a coefficient
substitution method is followed rather than coefficient fusion
to increase computational complexity. Once the PS image is
formed in the wavelet domain, wavelet recomposition is used
to reconstruct the I image to the resolution of the PAN image
(up j levels). The H and S channels can be upsampled using
a two-level wavelet recomposition, by placing them as the
LL sub-image and filling the HL, LH, HH sub-images with
zeros, or using bicubic interpolation. Finally, the pansharpened
image xPS is acquired by returning the estimated IHS repre-
sentation to the RGB space. The whole procedure is outlined
in Figure 2.

In order to combine the I channel of the MS image with the
PAN image in the wavelet decomposition, one has to match
the value range of the PAN image to the value range of the I
channel, regardless of the difference in resolution. Many ap-
proaches employ an exact histogram specification approach, as
proposed by Coltuc et al [13]. This approach often introduced
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Fig. 2. The proposed wavelet-based Pansharpening architecture that involves no upsampling of the multispectral input. The number in brackets denotes the
level of wavelet decomposition/recomposition.

artifacts in our pansharpening examples, thus, we employed a
linear mapping in the form of x̃PAN = axPAN + b, where
a, b are estimated to impose the mean and variance of the
I channel of the MS image on x̃PAN . This process yields
a smoother histogram matching procedure with less artifacts
than the nonlinear specification approach in [13].

One can argue that the proposed approach will suffer from
edge localisation problems. These problems will occur due to
the difference in the number of wavelet decomposition levels
that are performed on the two images. The wavelet decom-
position may introduce some shifting in the actual position
of the edges as it moves to the coarsest decomposition level.
Thus, using a (j − 2)-level decomposition for the MS image
and a j-level decomposition for the PAN image may result
in a slight drift between the edges in the two representations
and thus double edges will appear in the pansharpened image
after reconstruction. This problem does not appear in the orig-
inal wavelet-based methods, since the same level of wavelet
decomposition is applied on both input images and possible
correction to edge localisation is performed via registration
after upsampling. In the proposed scheme this problem can
be alleviated by using a wavelet family with strong edge
localisation properties, so that that the wavelet decomposition
introduces minimal shift to the original position of the edges.
The Biorthogonal Spline Wavelets are shown to provide ac-
curate edge localisation along the wavelet decomposition, as
they provide optimal spatial-frequency localisation [14]. In this
analysis, the Toolbox Wavelets’ implementation of Biorthogo-
nal Spline Wavelets (Cohen-Daubechies-Feauveau CDF) (3,9)
is employed to perform the wavelet decomposition [15]. Using
the aforementioned wavelet family, one can encounter minimal
edge localisation problems in the pansharpened image, without
the extra registration and upsampling stages.

In this paper, we examine the case that the input images
are registered or have minimal registration offset. In the
case of strong misregistration between the MS and the PAN
images, one can register the MS channels with the LL sub-
image of the two-level decimated decomposition of the PAN

image. Upsampling an image does not necessarily improve the
localisation of edges in the MS channels and thus performing
registration at a level with increased uncertainty in the edge
position does not necessarily improve the registration and
pansharpening performance.

IV. COMPUTATIONAL COST COMPARISON

In order to compare the computational cost of the two
wavelet-based methods, we will assume that the upsampling
of the H,S channel in the proposed method is performed by
bicubic interpolation. Thus, the difference in the computational
cost between the two methods is entailed in the following
steps. In the original wavelet-based framework, a single chan-
nel bicubic upsampling by a factor of 4 is performed, an
RGB to IHS transformation at resolution M2 × N2 and a
wavelet decomposition of j levels. In the proposed framework,
these steps are replaced by an RGB to IHS transformation at
resolution M1 × N1(M1 < M2, N1 < N2) and a wavelet
decomposition of j − 2 levels. Hence, the computational cost
is reduced in the proposed framework.

V. EXPERIMENTS

In this section, the performance and the computation time
of three wavelet-based pansharpening schemes along with a
PCA-based method are evaluated. The “Toolbox Wavelet”
implementation of Biorthogonal Spline Wavelets (Cohen-
Daubechies-Feauveau CDF) (3,9) and the ’‘a-trous transfor-
mation was employed [15]. Four levels of wavelet decompo-
sition (j = 4) were performed. A recent study has shown
that this is the optimal level of wavelet decomposition for
pansharpening [16]. Pansharpening performance was evaluated
in terms of Relative Shift, Deviation Index, Spectral Angle,
Correlation Index, ERGAS and Q4, as commonly employed by
the Pansharpening community [1], [5], [7]. The computation
time was evaluated using MATLAB’s “tic”-“toc” commands
on a Core2 3GHz PC with 4 GB RAM.

Experiments employed three QuickBird image pairs of
different terrain types, available online from the University
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Fig. 3. Comparison of four Pansharpening schemes using a sample from the QuickBird database.
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Fig. 4. Comparison of four Pansharpening schemes using a sample from the QuickBird database.



of Maryland1, that were used to construct 256, 60 and 120
1024 × 1024 PAN and 256 × 256 MS images respectively
from the three image pairs. The images were already ortho-
rectified. We applied the three wavelet-based approaches and a
PCA-based approach that employs upsampling. We performed
numerical evaluation of the achieved pansharpening with ref-
erence to the original MS image for those metrics that measure
spectral deviation and with original PAN image for those
metrics that measure spatial deviation. Average results for each
performance index are summarised in Table I. It should be
noted that wavelet-based methods are superior to PCA-based
methods. It is clear that the undecimated à-trous wavelet-
based pansharpening excels in all metrics, as it was expected.
However, the wavelet-based approach without upsampling
seems to be similar in performance to the original approach,
which implies that there was no reduction in performance
removing the upsampling stage. In Fig.3, 4, 5 we can perform
a visual evaluation of the aforementioned approaches.

One important difference is the computation time between
the wavelet-based approaches, which is also depicted in Ta-
ble I. The decimated approach without upsampling required
4.28 sec/image on average to perform pansharpening on the
aforementioned machine, whereas the approach with upsam-
pling required 6.09 sec/image to perform the same task with
almost similar quality. The à-trous wavelet approach required
9.85 sec/image. This implies that the proposed scheme has
reduced the processing time by ∼ 30% compared to the
decimated wavelet transform, which is quite significant for
real-time applications. The PCA method was obviously the
fastest method (0.96 sec/image) in all experiments as fusion
in essentially performed in the spatial domain without any
multiscale decomposition. However, the PCA method featured
the worst pansharpening performance. Finally, there was no
visible registration error in any of the images for the wavelet-
based approach without upsampling. This was achieved by
using Biorthogonal B-spline wavelets with accurate edge lo-
calisation properties.

VI. CONCLUSIONS

In this paper, the authors reviewed the current state-of-
the-art wavelet-based methods and identified the redundant
step of upsampling the multispectral image to the resolution
of the panchromatic image in order to perform a wavelet
decomposition for image fusion. Instead, we proposed to re-
move the upsampling stage and perform different-level wavelet
decompositions in order to match the resolution of the two
images and perform fusion of the spectral and spatial infor-
mation. Experimental results on different terrain types show
similar performance to decimated wavelet-based methods with
upsampling, but with decreased computational complexity.
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