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Abstract – This paper presents a novel method for fusing
images in a domain concerning multiple sensors and modal-
ities. Using Chebyshev polynomials as basis functions, the
image is decomposed to perform fusion at feature level. Re-
sults show favourable performance compared to previous ef-
forts on image fusion using ICA. The work presented here
aims at providing a novel framework for future studies in
image analysis and may introduce innovations in the fields
of surveillance, medical imaging and remote sensing.

Keywords: Image and data fusion, Chebyshev polynomi-
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1 Introduction
Images may be acquired from various types of sources.
These may consist of different sensor modalities or just par-
ticular aspects of the image scene. Several real-time com-
puter vision tasks, such as person tracking and weapon de-
tection, can not rely on single-modality sensors in order to
extract the required information within a scene[1]. There-
fore, we have witnessed the emergence of multimodal image
acquisition platforms to be used in computer vision tasks.
Image data from two or more sources can be mathemati-
cally merged to generate a superior composite output, so as
to reduce errors and improve the accuracy and performance
of these systems. Image Fusion is a general framework that
is employed to perform the above task.

Fusion is usually performed at feature level in a trans-
form domain. Popular transformations for image fusion are
the Wavelet transform and the Laplacian pyramid decom-
position [1]. Independent Component Analysis (ICA) [2]
trains gabor-likely statistically independent basis vectors,
offering custom transformations for different image groups
that can improve fusion performance compared to wavelet
approaches [3]. In real-life surveillance conditions, the ac-
quired images are often contaminated by noise or other dis-
turbances. Wavelet-based or ICA-based sparse code shrink-
age has been efficiently used to tackle the denoising prob-
lem [2, 1]. However, the level (variance) of noise needs to
be evaluated before performing denoising using sparse code

shrinkage. This gives rise to a novel approach of using two-
dimensional Chebyshev polynomials for image fusion with
inherent noise reduction features[4], due to their smooth fea-
ture extraction property. Due to the fast convergence of
Chebyshev series, the method is expected to achieve faster
performance compared to ICA-based methods.

The first section introduces the application and rationale
of Image Fusion and the motivation behind using Chebyshev
polynomials for fusion. Section 2 elaborates the state of the
art regarding image and data fusion technology. The third
section revises the basics of Chebyshev polynomial theory
and its use in signal approximation. Section 4 describes the
fusion method and rules that will be applied and section 5
evaluates the performance against incumbent methods in im-
age fusion.

2 Theory of data fusion
There is currently a wide range of techniques for captur-
ing image and scenery,including infra-red, laser and camera,
ladar, magnetic resonance (MRI), optical and particle image
velocimetry (PIV) [11]. The technologies differ in terms of
instrument modalities, acquisition techniques, information
characteristics (thermal, visual) and errors (imprecision, am-
biguity, incompleteness); therefore the extracted informa-
tion is often different and complementary in nature. The
images may also differ in terms of object focus, colour, tex-
ture and spectral representation. The fusion process aims to
combine the best aspects of each modality in order to either
produce a better looking image for subjective validation and
further computer analysis or make decisions based on the
fused dataset.

In critical tracking applications, decisions pertaining the
system conditions are very rarely made upon the measure-
ments of a single parameter. Often these decisions are based
on the inputs of multiple parameters from different sen-
sors, so as to reduce the risk of error. The advantages of
multiple-sensor over single-sensor systems are numerous,
such as higher SNR, increased robustness and reliability, im-
proved resolution and reduction in measurement time and
costs [11].



In this paper, we will be following the Waterfall model
[11]. The system operates on three different levels of ab-
straction - raw data, features and decision making. As it
can be seen from Figure 1, a continuous feedback loop ex-
ists from the decision output to the sensors that enables re-
configuration and re-alignment of the data acquisition pro-
cess.

Figure 1: Waterfall model [11]

The low level representation stage consists of a sensor
system that is gathering and pre-processing real-world data.
Data is further analysed (transformation, feature extraction)
in order to enhance the information content and omit redun-
dancies. Data are fused in the middle level. The fused output
is then forwarded to the decision making stage, where pos-
sible action routes are considered according to the available
data, e.g. system information and user interactions.

Diligent efforts have been made by the data fusion com-
munity to address the confusion regarding terminologies in
the area of fusion. In [15], data fusion is generally cate-
gorised into low- (LLF), intermediate- (ILF) and high-level
fusion (HLF). LLF fuses raw data directly from sources,
while ILF combines in a sophisticated manner features that
have been extracted from data. ILF is also known as features
fusion. HLF tackles fusion in the decision making level,
where various confidence measures are taken into account
in making one penultimate decision.

3 Chebyshev polynomials
3.1 One-dimensional Chebyshev polynomials
Tchebichef or Chebyshev polynomials (CP) of the first kind,
are defined as the mathematical solution to the Chebyshev
differential equation

(1− x2)y
′′ − xy

′
+ n2y = 0, (1)

where n is a non-negative integer. The polynomials can be
recursively generated i.e.

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).
(2)

The first ten CP’s are given below,

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x
T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1
T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

Chebyshev polynomials are orthogonal with respect to
the weight function W (x) = 1√

1−x2 and valid over the
interval [-1, 1]. Because CP is orthogonal, the solution
of a mathematical equation can be reduced to a simple
inner product, as explained in [14]. In all instances, the
local extrema of CP tends to be either 1 or -1, such as in
Figure 2. The stable values as compared to other orthogonal
functions are a mitigating factor of its application in signal
approximations. Trigonometric identity functions may also
be used to define CP [5].

Figure 2: Chebyshev polynomials, up to N = 5 degrees
(image taken from www.wikipedia.org)



3.2 Chebyshev polynomials for signal ap-
proximation

Approximating a function is theoretically done with another
function that utilises the arithmetic operation of basis com-
ponents, in our case comprising of mathematical polynomi-
als. Approximation aims to recreate an estimate that is as
close as possible to its original, which means finding the
minimal mean square error (MSE) of the estimate. A small
loss of data and the perceived quality of the result implies a
good estimation.

Noise, whether Gaussian or speckled, are often viewed
as abrupt and random interferences in a signal. Chebyshev
Polynomial (CP) approximation is able to overcome this.
The expansion of Chebyshev approximation f̃(x) is consid-
ered important, as errors are spread smoothly across the in-
terval −1 ≤ x ≤ 1. Due to this property, the approximation
of Chebyshev polynomials will result in a smoother func-
tion that purges any abrupt abnormalities in the signal, thus
effectively reducing noise.

CPs are generally compact and a small degree n is often
required to approximate a signal sufficiently. Furthermore,
CPs are known a priori and can be applied regardless of the
signal type. In contrast, ICA bases perform better with the
specific type of images, they were trained for. Thus, for a
specific type of image, one has to train a set of ICA bases
in advance, so as to benefit from their performance. Com-
pared to other orthogonal polynomials (Zernike, Legendre),
Chebyshev converge faster and require no discrete transfor-
mation. Hence, they are not prone to the continuous-discrete
error, compared to other polynomials series [10].

The expansion of the Chebyshev series [6] form a com-
plete basis set in a Sobolev space and is used to model al-
most any function through the formula

f̃(x) =
N∑

n=0

anTn(x) (3)

where an is a coefficient of n and defined by

an =
2
π

1∑
x=−1

(1− x)−
1
2 f(x)Tn(x) (4)

while f(x) is a general function and f̃(x) is the approxi-
mated function. A calculation of the MSE defines the CP
approximation quality.

The approximation by Chebyshev polynomials is con-
trolled primarily by two parameters - data dimension L
(length of data to be approximated) and also the limit of
polynomial degree n. An optimal estimation requires a bal-
anced choice for both variables. In general, the more CPs the
better their approximation, but this would also increase the
processing time. Very large-order CPs, for example above
100, may cause instability and error and would then require
an orthonormal version of CPs [12], increasing the com-
plexity. Equally important is the choice of data size L. A
small data size L may not summarise the overall function

(a) L=12 (b) L=35 (c) L=100

Figure 3: Chebyshev polynomial approximation in one vari-
able (f(x) in blue, f̃(x) in green)

correctly, whilst a large L may result into a non-stationary
signal that is too complex to model.

Figure 3 demonstrates the Chebyshev polynomial approx-
imation for a single variable, using a 10-th order CP (n =
10). As it can be seen in Figure 3(c), the small number n
of CPs compared to the large data size L results in a rather
primitive approximation of the signal. In Figure 3(a), a bet-
ter signal approximation is obtained when the n

L ratio is high
and thus the signal is more accurately reconstructed.

3.3 Chebyshev polynomial approximation
with two variables

Chebyshev polynomials can be extended to more than one
variables [7]. This paper is concerned with the study of CPs
for images, analysis and approximation, i.e. 2D functions.

3.3.1 Two-dimensional Chebyshev polynomials as basis
functions

In 1974, a two-dimensional description of the classical
Chebyshev polynomial of the second kind Pk,l was first in-
troduced by Koornwinder [8] and its properties were elab-
orated in [7]. This concept was pursued in [9], where the
definitions of the 2D CP were introduced.

P−1,l(z, z) = 0, Pk,−1(z, z) = 0,
P0,0(z, z) = 1,

P1,0(z, z) = z, P0,1(z, z) = z

A more general form is the following:

zPk,l(z, z) = Pk+1,l(z, z) + Pk−1,l+1(z, z) + Pk,l−1(z, z)
(5)

zPk,l(z, z) = Pk,l+1(z, z) + Pk+1,l−1(z, z) + Pk−1,l(z, z)
(6)

where z = x + jy and z = x − jy are complex corre-
spondents of x and y. The following definition establishes
two-variable Chebyshev polynomials as basis functions for
2D signal approximation

f̃(z, z) =
K∑

k=0

L∑

l=0

ak,lPk,l(z, z). (7)



The 2D signal f̃(z, z) is a linear combination of 2D
Chebyshev Polynomials. The problem is to calculate the
coefficients ak,l, which are given by

ak,l =
1∑

z=−1

1∑

z=−1

µ(z, z)f(z, z)Pk,l(z, z). (8)

The approximation forms an orthonormal system subject
to the weight function:

µ(z, z) =
1

2π2

√
−z2z2 + 4z3 + 4z3 − 18zz + 27. (9)

However, this entails that a system must reside over the
region S inside Steiner’s hypocycloid, ∂S.

∂S(θ) = 2ejθ + e−2jθ, 0 ≤ θ ≤ 2π. (10)

To solve this, we will have to integrate the system over
0 ≤ θ ≤ 2π in the region above. However, orthogonal
polynomials do not correspond to the discrete image coor-
dinate space. Thus, we will require a transformation [10] of
the Cartesian coordinate i.e. from (x, y) to (θ, r) all within
the boundaries of a hypocycloid shape. The complexity in
solving this problem has led us to contemplate alternative
definitions for two-dimensional Chebyshev polynomials.

3.3.2 Separable Chebyshev polynomials as basis func-
tions

Over the years, research has been focused on the implemen-
tation of orthogonal moments (including Chebyshev poly-
nomials) in image analysis [10]. These studies offer a dif-
ferent, but nonetheless valid form of the 2D CP, as it shall
be proven.

Approximation of two-dimensional signals is achieved
with two separable 1D Chebyshev polynomials T (x) and
T (y) that are discrete and orthogonal, similar to the Discrete
Cosine Transform (DCT) and Haar transform. This mas-
sively reduces the complexity, as the same principles from
one-dimensional CP can now be applied, i.e. intervals of x
and y are still between [−1, 1]. We employ the same ap-
proximation algorithm and weight factor as those described
in Section 3.2. Thus, the following 2D CP approximation of
a signal is introduced:

f̃(x, y) =
M∑

m=0

N∑
n=0

am,nTm(x)Tn(y), (11)

We are concerned with finding am,n. So if the left hand
side is multiplied as below, using the orthogonality relation,

A =
1∑

x=−1

µ(x)f(x, y)Tk(x) =

1∑
x=−1

µ(x)
M∑

m=0

N∑
n=0

am,nTm(x)Tn(y)Tk(x) =

M∑
m=0

N∑
n=0

am,nTn(y)
1∑

x=−1

µ(x)Tm(x)Tk(x) (12)

We know that

1∑
x=−1

µ(x)Tm(x)Tk(x) =
π

2
δ(m− k) (13)

Given that δ(m − k) = 0 if m 6= k and δ(m − k) = 1 if
m = k, we now have

A =
π

2

N∑
n=0

ak,nTn(y) (14)

We now apply the transformation along y, i.e.

1∑
y=−1

µ(y)
1∑

x=−1

µ(x)f(x, y)Tk(x)Tl(y) =

π

2

N∑
n=0

ak,n

1∑
y=−1

µ(y)Tn(y)Tl(y) =
π2

4
ak,l (15)

so finally we have

am,n =
4
π2

1∑
x=−1

1∑
y=−1

µ(x)µ(y)f(x, y)Tm(x)Tn(y). (16)

Chebyshev approximation (sometimes referred to as
Chebyshev moments) have employed for image analysis in
the past, mainly for pattern recognition and image segmen-
tation [13], image reconstruction and rendering [10]. This
paper aims to apply the use Chebyshev polynomial approx-
imation on image fusion.

4 Image fusion with Chebyshev poly-
nomials

CP analysis is a form of transformation, where the neces-
sary features are extracted to preserve the second-order im-
age statistics. A finite CP expansion, (finite order n), ensures
that only the prominent information are retained, while any
redundant statistics are discarded [13]. Conversely, a higher
order approximation is more precise, though several studies
have noted that very high orders of CPs tend to cause nu-
merical instabilities, which result in severe approximation
errors. To overcome this, orthonormal Chebyshev moments
have been proposed [12].

An example of image fusion using Chebyshev polyno-
mials is described below. In this case, fusion is performed
by comparing the coefficients of the two or more input im-
ages. As CPs are derived from a formula, they can be pre-
computed and stored in order to reduce processing complex-
ity.

Let there be two image approximations,

f1(x, y) =
M∑

m=0

N∑
n=0

αm,nTm(x)Tn(y) (17)



f2(x, y) =
M∑

m=0

N∑
n=0

βm,nTm(x)Tn(y) (18)

ffused(x, y) =
M∑

m=0

N∑
n=0

max{|αm,n|, |βm,n|}Tm(x)Tn(y)

(19)
The fused image approximation ffused(x, y) is formed

by fusing the two coefficients, via the max-abs fusion rule,
i.e. choose the coefficient with the higher absolute value. As
each coefficient corresponds to the global image and infor-
mation strength, performing max-abs over the two images
will retain and enhance the strong pixels while suppressing
the weak ones. This is essentially image fusion, resulting to
an improved quality image. Several other fusion rules can
also be considered, but for simplicity we will be using max-
abs.

5 Performance Evaluation
Image fusion performance using Chebyshev polynomials is
evaluated using a number of grayscale image inputs. For
benchmarking purposes, the ICA-based fusion method us-
ing the “max-abs” rule [3] is also used. The methods are
tested under several conditions, including images contami-
nated with noise and multi-modal examples. A 3× 3 frame
was used for the ICA bases, whilst m = 11 and n = 11
were used for the Chebyshev polynomials and the input im-
age was divided into 3 × 3 overlapping patches (so as to
minimise complexity). Larger data patches usually carry too
much detail and will thus require a high degree of CP for
more accurate approximation, which may lead to unstable
results. The window size we used for both ICA and CP are
deemed optimal for this experiment. There is also no need
for image registration in these examples.

Figure 4 illustrates our results. Four different experiments
in total were conducted. The resulting Figure 4(d) for CP
compares favourably with 4(c) for ICA. Subsequently, one
of the inputs is corrupted by Gaussian noise with mean = 0
and variance = 0.001, and the result appears significantly
better for CP 4(h) than ICA 4(g). As stated previously, CP’s
smooth approximation is able to filter the disturbance caused
by noise.

In the next example, multimodal images are tested. The
CP result for the UN camp image in Figure 4(l) is slightly
clearer than ICA in 4(k). Similarly, for medical images in
4(p), CP tends to have much stronger features than ICA in
4(o).

The results are also put under objective evaluation using
the Petrovic and Piella fusion metrics respectively[1]. Ta-
ble 1 validates our subjective assessment. CP-based fusion
exhibits a slightly lower score (−7% decrease in Petrovic,
−4% in Piella) for multifocus images in Figure 4(a) and
4(b), but performs much better against ICA in the test in-
volving corrupted signals (+21% Petrovic, +28% Piella)
in Figure 4(e). This is due to the automated denoising
performed by CP approximation. Instead, ICA could per-
form denoising using sparse code shrinkage, but the vari-

(a) Input 1 - back-
ground focused

(b) Input 2 - fore-
ground focused

(c) ICA (d) CP

(e) Input 1 - noise
corrupted

(f) Input 2 (g) ICA (h) CP

(i) Input 1 - visual
camera

(j) Input 2 - in-
frared camera

(k) ICA (l) CP

(m) Input 1 - MRI(n) Input 2 - CT
scan

(o) ICA (p) CP

Figure 4: Fusion results - ICA versus CP

ance of noise needs to be defined before denoising can be
performed. In the multimodal UN camp images, in Fig-
ures 4(i) and 4(j) images, CP scores lower (−6% Petrovic,
−15% Piella), though conversely in medical images in Fig-
ures 4(m) and 4(n) its score is significantly better (+13%
Petrovic, +12% Piella). Overall, for the categories in which
ICA outperforms CP, the results as can be seen are close.
However, those in which CP is better, the difference in
scores is quite clear.

Input Method Petrovic Piella

Multifocus clock ICA 0.6450 0.9194
CP 0.5980 0.8826

Noise corrupted clock ICA 0.3717 0.5821
CP 0.4691 0.8052

Multimodal UN camp ICA 0.4652 0.6742
CP 0.4349 0.5714

Multimodal medical image ICA 0.4680 0.6698
CP 0.5371 0.7581

Table 1: Fusion metric evaluation - ICA versus CP



We also compared the processing speed between the two
algorithms. ICA requires pre-processing and training of ba-
sis components which take up time, and was slower com-
pared to CP-based fusion. CP-based fusion also takes some
time to process the 3×3 patches individually, but has shown
to be faster than ICA-based fusion in our experiments.

6 Conclusion
In this paper, a novel method for image fusion using Cheby-
shev polynomials as the basis components was introduced.
The theory of data fusion, algorithms and motivation of us-
ing CP over other methods was discussed. Performance tests
reveal that while processing at a faster rate, CP-based fusion
also displays encouraging results in noise corrupted signals
and multi-modal images, due to its inherent smoothing prop-
erty. The use of 2D Chebyshev polynomials for data fusion
may also influence other image processing applications.
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