AN  IMPLICIT BIDIAGONAL  SCHEME FOR DEPTH-AVERAGED FREE-SURFACE FLOW EQUATIONS

By Alexander  G. Panagiotopoulos1 and Johannes V. Soulis2
ABSTRACT:
A general fast implicit bidiagonal numerical scheme, based on the MacCormack’s predictor - corrector technique requiring the inversion of only block bidiagonal matrices, has been developed and subsequently applied for subcritical and supercritrical free-surface flow calculations. The model has been applied to depth-averaged  steady flows. There are two main advantages of the proposed method: the technique is fast in achieving convergence and the scheme utilizes a body fitted non - orthogonal local coordinate system to simulate irregular geometry flows. The model is used to analyze a wide variety of hydraulic engineering problems including flows in a converging - diverging subcritical flume, supercritical expansions at various Froude numbers and supercritical converging chutes. For each of these test cases, the calculated results are compared with experimental data. The comparisons with  measurements as well as with other numerical solution results show that the proposed method is comparatively accurate, fast and reliable technique.
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INTRODUCTION


Much progress has been made in the  recent years in developing computationally efficient methods for solving the equations of depth - averaged free - surface flows. Finite - difference, finite - element and finite - volume numerical techniques are now available for two - dimensional, steady, viscous, free - surface flow calculations. However, most of these techniques are slow in their convergence, particularly for subcritical  type  of  flows. The  implicit time - dependent  techniques, which are not subject to the conventional stability condition of explicit methods, are the most computationally efficient. MacCormack (1982) presented  an implicit analog of his earlier widely used explicit  method. The basic feature of  the implicit formation is that it involves the inversion of only upper or lower block bidiagonal matrices, as opposed to the more costly inversion of block tridiagonal matrices. For 2D, free surface flows in complex geometry (bridge piers, converging - diverging chutes, bends) it is convenient to make predictions using a non - orthogonal boundary fitted computational mesh, Soulis (1991). A transformation is introduced through which quadrilaterals in the physical domain (global) are mapped into squares in the computational domain (local system). The governing flow equations are transformed into the local coordinate system. The greatest advantage of the above transformation is the accuracy and ease of application of the various types of boundary conditions which are required to be satisfied. 

Soulis (1991) developed an explicit finite - volume technique for either subcritical or supercritical flows. Predictions agreed well with measurements and/or other numerical method results. However, the convergence, particularly for subcritical flows, was relatively slow due to inherent CFL (Courant – Frieddrichs – Levy) time step restriction. Earlier on, Soulis and Bellos (1989) presented two explicit numerical methods. The first method was obtained by using the well known explicit numerical scheme of MacCormack, while the second one was obtained by solving the flow equations in integral form to a series of finite - volumes with adjacent volumes sharing a common face. Both techniques gave good results but the convergence was relatively slow (supercritical test cases). Berger and Stockstill (1995) developed a finite - element model based on the Petrov - Galerkin method and the use of a shock - detection mechanism. The method resulted into a robust system to model  high - velocity channels. Depth - averaged models have also been developed by Chapman and Kuo (1985), Fennema and Chaudhry (1990) (unsteady flows), Elliot and Chaudhry (1992) (dam - break problems), Molls and Chandhry (1995) (using ADI Beam and Warming scheme), Molls et al (1995) (using ADI Beam and Warming as well as MacCormack’s explicit scheme), Rahman and Chaudhry (1995) (hydraulic jump with grid adaptation).

The goal of the current work is to develop a fast numerical method to solve the flow equations in generalized coordinates describing the depth - averaged, steady, subcritical and supercritical free  - surface flows with the presence of hydraulic jumps. In the present analysis, MacCormack’s implicit analog has been extended to integrate the flow equations. The predicted results were compared with other numerical solutions as well as with available measurements. Applications refer to subcritical and supercritical flows in: 

a) converging - diverging flume (subcritical flow) after Soulis (1997), 

b) channel expansion at Fr = 2.0 after Rouse et al (1951), and

c)   Convex chutes in converging supercritical flow after Neilson (1976). 

GOVERNING FLOW EQUATIONS


The governing flow equations for the physical domain, assuming that the flow is homogeneous, incompressible, two - dimensional, viscous with hydrostatic pressure distribution and absence of Coriolis and wind forces, are
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where the variables E,  F, G, and Q are defined in matrix forms as follows,
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The first line refers to the continuity equations while the second and third lines refer to the x-momentum and y-momentum equations, respectively. Here h  represents the water depth, u,v are the averaged, across the depth, velocity components in the longitudinal x and transverse y channel directions, t is the time, g is the gravity acceleration. The bottom slopes 
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  where z represents the bottom elevation. Flow friction slopes 
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where n is the Manning’s flow friction coefficient. Another option calculates the friction slopes using Chezy’s flow friction coefficient C,
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By writing the equation for frictional resistance in this way, it was assumed that all of the resistance is due to bottom friction, thus neglecting the boundary layers on the side walls. The time derivative terms in the flow equations are simply a convenient way to iterate to a steady - state solution. The problem is closed with appropriate boundary conditions. Subcritical and supercritical flows are considered. For subcritical flow entrance, at the upstream end, two flow conditions are needed while at the downstream end one flow condition must be specified. For supercritical flow entrance all three flow conditions must be specified at the upstream end.

TRANSFORMATION OF FLOW EQUATIONS


In the present numerical scheme quadrilaterals in the physical (global) domain will be separately mapped into squares in the computational (local) domain by independent transformations from Cartesian x,y to local ξ,η coordinates, see Fig.1. The quadrilaterals are packed around the boundaries of the hydraulic structure and cover the whole flowfield. The computational mesh, thus formed is comprised of equidistantly located computational nodes. An advantage of the applied transformation is the accuracy and the ease of application of the various types of boundary conditions. Variable density computational grids can also be applied  in order to properly model the flowfield.
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The following relations hold,
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Under the aforementioned transformation of Eqs (1) into the local coordinate system ξ,η they assume the form,  
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where
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The velocity components u, v in the physical domain are related to the U, V velocity components in the computational domain with the following equations,
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NUMERICAL SCHEME 


The method of numerical integration of Eqs. (6) has been adopted from MacCormack (1982). The scheme is an implicit finite - volume method for time - integrating of the Navier - Stokes equations. It is second order accurate in space and time, unconditionally stable and very efficient in that no block or scalar tridiagonal inversions are required to be calculated. Equation (6) are integrated by the following implicit predictor - corrector set of finite difference equations,

predictor          
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step  1
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step  2                                                           (8)   
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step  3

corrector
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step  1
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step  2                                                           (9)
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where 
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 are matrices with positive eigenvalues, related to the Jacobians, 
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while 
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thus
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Here c2 = gh. The integration scheme of Eqs. (8) – (9) can be much simplified by diagonalizing 
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where ΛA  and ΛΒ are diagonal matrices consisting of the eigenvalues of 
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The matrices 
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For each, the right matrix represents a transformation from consrevative to nonconservative form variables and the left matrix transforms from nonconservative to characteristic form, Hoffmann and Chang (1993). The M matrix is calculated,
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 where 
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The Lξ  matrix with unknown values (x1 , x2 , x3)  can be  found by solving the systems,
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where λi (i=1,3) are the eigenvalues of  ΛΑ ,

λ1 = U

λ2  = 
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The Lη  matrix with unknown values (y1 , y2 , y3)  can be  found by solving the systems
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where λj (j=1,3) are the eigenvalues of  ΛB ,

λ1 =V
λ2  = 
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After some algebra,
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where a1 , a2 , a3 and b1 , b2 , b3 are arbitrary constants and 
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Now the intergration scheme of Eqs. 8  (predictor) can be carried out in the following steps,

1) Let
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at every point inside the calculation domain.

2) Solve,
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 resulting in two vector equations,
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A closer look at step a) reveals that it is an upper bidianagonal equation that can be solved by sweeping in ξ direction, for a constant n. After simple manipulation leads to,
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Denoting  w = 
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Equation (26 ) can be very easily solved since 
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 are known, Eq. (22) and the inversion of the diagonal matrix 
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The corrector step, Eq (9), is analogous to the predictor step. The equation can be solved by sweeping in n direction, for a constant ξ. The major problem in the scheme described above is  finding the proper boundary values of the expression 
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 for i = IM (outlet), i = 1 (inlet) and j = JM (upper wall) and j = 1 (lower wall) because these are not know at the time when the sweep starts. 

To better understand the method, the procedure for solving the block bidiagonal equation for the ξ – coordinate direction is examined. It begins with the vectors 
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 is quessed at IM. Starting from the outlet, the calculation steps are
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The matrix of inversion of step 4 is trivial because the matrix is diagonal, the solution at grid point i,j is obtained at step 5 and the flux to be used in the calculation at grid point i-1 , j is obtained at step 7.

Boundary conditions


All the elements 
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. For  supercritical case, at the inlet, the u velocity, the water depth h and the v  velocity are all set at the reguired values, while at the outlet, all variables are extrapolated from the interior points. For subcritical case at the outlet, the water depth h is fixed and  all inlet variables h, u, v are extrapolated from the interior points. To close the  problem the conditions of no mass flow perpendicular to a solid wall is applied. This is achieved by requiring the V velocity components along the walls  to be zero. 
Courant-Friedrichs-Levy Condition

The above discribed numerical scheme is a time- marching method in which Δt must be satisfied for a solution to be achieved. For every point i,j of the computational domain the Δt time step is calculated,
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and 
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 is the celerity. For typical supercritical appications, Rouse et al (1951) channel expansions at Fr = 2.0 and 4.0 as well as Neilson’s (1976) converging flow, the FT coefficient takes values between 1.0 and 1.5 while for subcritical flow test cases, Soulis (1997), its value was found to be small 0.08.

COMPUTATIONAL RESULTS AND DISCUSSION


The validity of the proposed computational technique was tested for steady subcritical and  supercritical flow test cases. It may be mentioned that for all test problems there are experimental data available for comparison. Also, the computed results were compared with the predictions of a finite - volume  numerical  technique, Soulis (1991).
Converging - Diverging Subcritical Flow after Soulis (1997)


To investigate the prediction performance of the proposed numerical scheme it was decided to test it in a linearly converging - diverging laboratory flume. The applied flow conditions were to produce subcritical flows throughout the flume. Figure 2 shows the schematic plan view and geometry of the tested flume. At the inlet flow region the  width b is equal to 0.25 m. At axial distance of  0.5 m  the flume geometry starts converging and at the axial distance of  1.15 m the width takes half the value at entrance  i.e.  0.125 m. The contraction angle is 10.88o giving rise to a relatively high  value for 
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. The throat area extends to a distance of 0.30 m  and the width keeps a constant value of 0.125 m. At the axial distance of 0.95 m away from the point of initial convergence the flume side wall diverges so as the 
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 ratio is equal to 0.384. The expansion angle is equal to 21.037o. Also, 1.275 m  away from the point of initial convergence  the width takes again the value 0.25 m. A value for the Chezy flow friction coefficient C was estimated to be 120.0 which agrees with published values for glass sided - iron bed flume. The geometry satisfies the  need for the  predictions to agree well with the measured flow data, for the converging part of the flume where the flow is accelerating and, also the need to estimate the distortion of the predictions for the high viscous and predominantly 3D flow region  (with possible flow reversals) as the one appearing  in the diverging portion of the flume. 


Two convergence criteria are used. The first one is based on the maximum error in axial velocity calculation throughout the flowfield between two successive iterations while the second one is based on the average error in axial velocity calculation throughout the flowfield. Iterations are stopped whenever the average error drops below 1.0x10-7. The optimum value of FT coefficient was 0.08.  For subcritical flow, as this test case is, it was found necessary to smooth the physical quantities. The smoothing operates as follows
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where E is each of the h, hu, hv values while 
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 are the axial and tangential smoothing coefficients, respectively with typical values of 0.03. 

Measurements were performed at: a) discharges Q = 26.06 lit/s, b) bed slopes 
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 = 20.0 o/oo c) upstream water depths 
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h

= 0.306, 0.286. 0.276 and 0.256 m. Velocities and water depths were  measured at various positions throughout the flowfield, Soulis (1997). There were 6 (six) hypothetical  “streamlines”, see Fig. 2. Figures 3,4 show the comparison along the flume “streamline” 2 and 5 between computed and measured flow velocities at Q=20.06 lit/sec, h1=0.306 m and Sox = 20.0 0/00, Soy = 0.0 0/00. The comparison is satisfactory, particularly in the converging part of the flume. The diverging part of the flume is a high viscous flow regions and since flow revesal was recorded it was not possible to measure velocities. Maximum axial velocity predicted values are in the 0.66 m/sec region, compare with measured values of 0.64 m/sec, and appear at an axial distance of 1.4 to 1.5 m Figure 5 shows the water depth comparison between computed and measured values along the flume “streamlines” 3 and 5 using Q = 20.06 lit/s, h1=0.306 m and Sox =20.0 0/00, Soy = 0.0 0/00. Again, the comparison is satisfactory. Equally satisfactory computational results have been derived for all other flow test cases (not shown).  

Channel Expansion at Fr = 2.0 after Rouse et al (1951)


The channel expansion shown in Fig. 6a was used to test the accuracy of the implicit method by comparing it with the results of an explicit numerical technique developed earlier on by Soulis (1991), as well as with measurements after Rouse et al. The grid point density was kept high enough so as the flow quantities to be properly resolved. A 60x21 (axial x tangential) mesh size has been used in the present computations. The mesh points along the body were evenly spaced. A value of FT equal to 1.5 was chosen to obtain fast convergence. Figure 17 shows the convergence history for the under consideration test problem. Calculations were stopped after 185 iterations, when the average error in the axial velocity change was dropped below 1.0x10-7. The explicit numerical method, Soulis(1991), converges after 364 iterations, thus the proposed technique is nearly 50 % faster in terms of  needed iterations for convergence.   The following Table 1 shows the actual CPU time needed for  the supercritical test cases computations. Again, the comparison is made a against the explicit scheme developed by Soulis (1991).


The expansion shown in Fig. 6b was designed for an entrance number of 2.0. The channel geometry is given by the formula
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 where b1 (= 10.0 m) is the channel width at entrance. Of course the channel is symmetrical about the center line so only the upper half portion was modeled. A value of  n = 0.012 was used for the Manning’s flow friction coefficient. The inlet water h1 depth is 1.0 m, the transverse velocity component is 0.0 m/s  while the bottom slopes are Sox = 0.0 0/00, Soy = 0.0 0/00.

CPU time

(Pentium 233 MMX)
 Current method
   Explicit method

Neilson channel (h1= 0.0521 m)
6.32 sec
8.25 sec

Neilson channel (h1=0.0369 m)
5.09 sec
7.98 sec

Rouse e.al. channel (Fr =2.0)
2.1 sec
2.96 sec

Rouse e.al. channel (Fr = 4.0)
2.04 sec
2.97 sec

                                            Table 1. CPU time comparisons 

Comparisons between predictions and measurements are shown in Fig. 6b for the centerline, mid - stream line  (equally distanced between curved line and center line) and curved line, respectively. The comparisons are considered to be satisfactory. The Froude number is supercritical throughout the flow field. The flow is accelerating and the comparison with measurements is favorable. For the curved line and in the 10.0 m axial distance flow region, the predicted results of h/h1 underestimate the actual  (measured) values. This is probably due to boundary layer development in the inlet flow region. Thereafter, due to flow acceleration the comparison is more favorable. However, for the centerline, and for the same flow region (10.0 m axial distance), the predicted results of h/h1 overestimate the actual values. The predicted results of the two methods are closer to each other than with experimental data in most of the flow regions.  

Converging Supercritical Flow after Neilson (1976)


Steep chutes are commonly used in hydraulic structures as conveyances for supercritical flows between spillway crest and an energy dissipater. Whenever the crest length is greater than the width of the energy dissipator, the chute must converge in the downstream direction. Neilson (1976) studied the shape in plan of the chute side walls. His object was to study the relationships commonly used to design an acceptable rate of curvature of the side walls. Figure 8a shows the profile of the spillway as well as a typical flow profile. The slope Sox  is equal to 0.1799:1 (equaling 10.2 deg.) while the transverse slope Soy is 0.0 0/00. The total length of the crest was 0.762 m. A plan view for the convergence geometry is shown in Fig. 8b. The side wall chute is inclined 5:1. The total length of the chute was 2.469 m. This length is measured along the axial distance.

Three test runs were reported by Nielson in order to determine the water surface cross - section profiles along the chute axis. Two of these tests were modeled with the proposed method. The test run used Q = 0.0167 m3/s h1=0.0369m (crest value) and the current numerical scheme solution converged after 157 iterations (average error< 1.0 x10-8 ), see Fig. 9, and is considerably faster than the explicit method. However, the CPU time required for convergence is 5.09 seconds using a Pentium MMX 244 MHz machine compared with 7.98 seconds required by the explicit Soulis (1991) method, see Table 1. A value for the Manning flow friction coefficient n was equal to 0.012 which agrees with published values for planed wood surface. The critical depth for the lower discharge is 0.0369 m. Figures 10a - 10f show the water surface cross - section profile comparison obtained between current method predictions and measurements for stations (S): 0.0 m, 0.10058 m, 0.21468m, 0.31699m,  0.46939 m, 0.62179 m, respectively. Station positioning S is measured from the spillway crest along the chute. In the same figures the results of the explicit numerical method developed by Soulis (1991) are also shown. The comparison is considered to be satisfactory. However, at stations 0.46939 m and 0.62179 m the computed results over predict the water depth h particularly in the near to the solid wall flow region. Non - uniform water depth distribution along the spillway crest may cause these effects, see Fig. 10a. Predictions utilize uniform flow depth across the crest. Another reason for these differences between measured and computed data may be attributed to the side wall boundary layer growth combined with 3D flow results (corner flows). The numerical results have been derived using an inviscid flow model assumption and regions close to side walls viscous flow behaves differently. Predicted results agree better to each other than with measurements.  

CONCLUSIONS


A fast implicit numerical scheme, based on the MacCormack’s two step (predictor - corrector) technique requiring the inversion of only block bidiagonal matrices has been developed and subsequently applied for two dimensional, steady, free - surface flow problems. The performed test cases concern subcritical flows in a converging - diverging flume and supercritical flows in channel expansions and converging  chutes. The method is fast in achieving convergence and utilizes a body fitted non - orthogonal local coordinate system to simulate irregular geometry problems. Water surface depths and velocity comparisons with measurements and/or other numerical solutions show that the proposed method is comparatively accurate, fast and reliable. It can be extended to calculate unsteady, viscous and three - dimensional  free - surface flows. 
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APPENDIX II. NOTATION


The following symbols are used in this paper:

      b

channel width

      C

Chezy flow friction coefficient


g

gravity acceleration

      h

water depth

      J

Jacobian of  transformation

      n

Manning flow friction coefficient

      S

station positioning

      Sfx , Sfy   friction slope in x and y - directions
      Sox , Soy  bottom slope in x and y - directions
      t

time 

      U, V      local (computational) velocity components in ξ, η directions

       u, v       depth - averaged velocity components in axial (x) and tangential (y) directions

       x, y       Cartesian coordinates

       z            bottom elevation

Greek symbols

      δ

difference
      Δt

time step      

     Δξ, Δη
spatial steps in local system

     ΛA 

eigenvalue matrix for A 

     ΛB 

eigenvalue matrix for B

     ξ, η

local coordinates

 symbols
      ^ 

transformed physical quantities        

FIGURE CAPTURING

FIG. 1.  Distorted squares mapped into squares

FIG. 2.  Converging - diverging  flume geometry with ‘‘streamlines’’

FIG. 3. Axial flow velocities comparison between predictions and measurements for the converging - diverging flume along ‘‘streamline 2’’ at Q = 26.06 lit/s, h1 = 0.306 m  and Sox = 20.0 0/00, Soy = 0.0 0/00.
FIG. 4. Axial flow velocities comparison between predictions and measurements for the converging - diverging flume along ‘‘streamline 5’’ at Q = 26.06 lit/s, h1 = 0.306 m  and Sox = 20.0 0/00, Soy = 0.0 0/00.
FIG. 5. Water depth comparison between predictions and measurements for the converging - diverging flume along ‘‘streamline 3 and 5’’ at Q = 26.06 lit/s, h1 = 0.306 m  and Sox = 20.0 0/00, Soy = 0.0 0/00.
FIG. 6.    a) Channel geometry for Fr1 = 2.0 after  Rouse et al. (1951)

b) Comparison between current method predictions, Soulis predictions (1991) and measurements for the Rouse et al. channel (1951) at Fr1 = 2.0, Sox = 0.0 0/00, Soy = 0.0 0/00.
FIG. 7.  Convergence history comparisons between current method predictions and Soulis (1991) method predictions for the Rouse, Bhoota and Hsu expansion channel at Fr1 = 2.0

FIG. 8.    a) General chute and flow profile



   b) Definition sketch for the convergence geometry of Neilson’s (1976) convex chute  

FIG. 9.  Convergence history comparisons between current method predictions and Soulis (1991) method predictions for the Neilson channel at h1 = 0.0369 m

FIG. 10.  Water  surface  cross -section  profiles  for the Neilson (1976) convex chute for Q = 0.0167 m3 /s and h1 = 0.0369 m, stations : a) 0.0 m, b) 0.10058 m, c) 0.21648 m, d) 0.31699 m, e) 0.46939 m and f) 0.62179 m. 
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