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1. Introduction

In the papers [1-6,9,11,22,24,25,28,30,31] the authors investigated the equation
p
n

X
Xn:A+ q
n

£, n=01,..., (1.1)

where A, p, q € [0,00) and k, m € N, k # m. Moreover there exist many other papers related with Eq. (1.1) and on its extensions
(see [13,14,26,27,29,32-35]).
In addition in the papers [10,16,23] the authors studied the behavior of the positive solutions of the difference equation

Xn-1
Xnt1 =Py + X

n=0,1,..., (1.2)
n
where p, is a bounded positive sequence and the initial values x_1, X, are positive numbers. We note that the papers [18-20]
are devoted to Eq. (1.2) and on its some extensions.

Finally in [21] the authors investigated the behavior of the positive solutions of the difference equation

Xn—1 P
Xny1 = An + ( ) , n=0,1,...,
Xn
where A, is a bounded positive sequence, p € (0,1) U (1,00) and the initial values x_1, xo are positive numbers.
Motivated by the above papers we study the attractivity, the periodicity and the stability of the positive solutions of the
difference equation

xb
1 n=01,..., (1.3)
n

Xn1 =An +
n+ n X

where A, is bounded positive sequence, p, q are positive constants and x_1, X are positive numbers.
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We note that since difference equations have many applications in applied sciences there are a lot of papers concerning

difference equations and their applications (see for example [1-31]). Finally some recent applications of linear as well as
nonlinear difference equations are included in the papers [7,8].

2. Asymptotic behavior of the positive solutions

In this section we find conditions so that if X, is a fixed solution of (1.3) then x, attracts all solutions of (1.3). Let

yn:;ﬁ, n=-1,01,.... 2.1)
n
Then from (1.3) and (2.1) we take that y, satisfies the difference equation
P p
IR 23
yn+1 - P . ( : )
An + ;3‘

To prove the first result of this paper we need the following lemmas.

Lemma 2.1. Let y, be a particular positive solution of (2.2) . Suppose that there exists an m € {0, 1,. ..} such that

Yama 21, Yam< 1. (2.3)
Then

oo >1 yi<1, Yl >1 b <1, n=m+1m+2,.. .. (2.4)
In addition if

Yomo1 <1, Yo 2 1, (2.5)
then

Vo<1, ¥, >1, ¥ <1, ¥, >1, n=m+1m+2,.. (2.6)

The proof of Lemma 2.1 follows immediately from (2.2).

Lemma 2.2. Consider the function

F(x,y,z) = zzﬁf, x,y,2>0. (2.7)

Then the following statements are true:

(i) F is an increasing function in y for any x, z € (0,0c);
(ii) F is an increasing (resp. decreasing) function in x for any y € (1,00) (resp. y € (0,1)) and z € (0, 0);
(iii) F is an increasing (resp. decreasing) function in z for any y € (0,1) (resp. y € (1,00)) and x € (0, o0).

Proof. Statement (i) is obvious. Since
OF _z2y—1) OF _x(1-y)
X (x+2? 02 (x+2°

the proof of statements (ii) and (iii) follows immediately. O
Using the same argument to prove Proposition 2.1 of [21] and using Theorem 2.6.2 of [15] we take the following lemma.

Lemma 2.3. Suppose that A, is a bounded sequence such that

O<m= ligniann, M = limsupA, < oco. (2.8)

n—oo

Suppose also that
O<p<1 (2.9)
Then every positive solution of Eq. (1.3) is bounded and persists.
We state now our proposition.
Proposition 2.1. Consider Eq. (1.3) where A, is a bounded positive sequence such that (2.8) holds. Suppose also that
O<p+gq<1, qg>p. (2.10)
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Let X, be a fixed solution of (1.3) and x,, be an arbitrary solution of (1.3) . Then
limy, =1, (2.11)

n—oo

where y, is defined in (2.1).

Proof. Using Lemma 2.3 and relation (2.1) we have

0 <7 =Iliminfy,, 6=Ilimsupy, < o,
. o (2.12)
0<k = ligninfxn, k, =limsupx, < oo.
=0 n—oo
We suppose that there exists an m € {1,2,...} such that either (2.3) or (2.5) holds. Consider that (2.3) is satisfied. Using (2.2)
we obtain that for n > m

By PLY
AZn + f{‘; 1 2r‘|1 1 A2n+1 +X"2” q2n
= m Ym —— wnYma (2.13)
Yo = ' » Y2 = P . .
A2n + ;’571 A2n+1 +;(q2"
2n 2n+1

Then from Lemmas 2.1 and 2.2, and relations (2.8), (2.12) and (2.13) we have

and so

my0! 4 kP > moTyt ! 4 kPt (2.14)
Relations (2.10) and (2.14) imply that

mn® 0 (0 — 1) < k(OPT — Pty = k(o) TP (P9 — 0'P79) <0,

and so we have that 0 = y which implies that there exists lim,_, ..y, Using (2.4) we have that (2.11) is true. Similarly we can
prove that if (2.5) is satisfied then (2.11) holds. Suppose now that neither (2.3) nor (2.5) holds. Then from Lemma 2.1 we get

y.<1l, or y,>1, n>=-1 (2.15)
Without loss of generality we may suppose that

ya<1, nx=-1. (2.16)
We claim that

yii>yh on>=-1. (2.17)
Suppose on the contrary that there exists a > —1 such that

¥ <y (2.18)
Then from (2.2) and (2.18) we get

Api1 + —?’J’ %:'i

X y
v+l Yo+l
b = 1’
Av+l + "

31
Xt/\l

Yy =

which contradicts to (2.16). So (2.17) is true. Using relations (2.10), (2.16) and (2.17) we get
Y >Va>yi n=-1,
which implies that
Yos1 > Y, n = -1 (2.19)

Moreover from (2.2) we have forn > 0

RL yp yp
ey — 1] = — "4—1‘< "4—1‘A 2.20
|y +1 ‘ An _t,-x'pj* yg yg ( )

ql
Xn
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Using (2.16), (2.17) and (2.20) we get

p
-y <1-221 nso (2.21)
Yn
In addition from (2.16) and (2.19) we have that
limy,=4<1. (2.22)
n—oo

Hence relations (2.21) and (2.22) imply that

JPl > )

and so from (2.10) and (2.22) we have that 1 = 1. Similarly if the second relation of (2.15) is satisfied we can prove that 1= 1.
This completes the proof of the proposition. O

3. Periodicity and stability

In the next proposition we find sufficient conditions for the existence, the uniqueness of 2-periodic and 3-periodic solu-
tions for Eq. (1.3) and the convergence of the positive solutions of (1.3) to the periodic solutions.

Proposition 3.1. Consider Eq. (1.3) . Then the following statements are true:

(i) Suppose that A, is a positive two-periodic sequence such that

Awz =A,, n=01,.... (3.1)

Suppose also that (2.10) are satisfied. Then Eq. (1.3) has a unique two periodic solution and every positive solution of (1.3)
tends to the unique 2-periodic solution.

(ii) Suppose that A, is a positive periodic sequence of period three such that

Aps=A,, n=01,.... (3.2)
Suppose also that p, q satisfy (2.10) and there exists a positive number € and a 0 € (0,3) such that
(B+e€) pq | g€ p q’e

c? <6 C2(q+l—p) + C <0, Cq+1—p + Cq+2—p <0, (33)
where
B = max{Ao,A1,A2}, C=min{Ao,A1,A2}. (3.4)

Then Eq. (1.3) has a unique periodic solution of period three and every positive solution of (1.3) tends to the unique 3-peri-
odic solution.

Proof. (i) First we prove that (1.3) has a unique 2-periodic solution. Let x,, be a solution of (1.3). Using (3.1), x,, is periodic of
period two if and only if the initial values x_1, xo satisfy

xP xb
X_1=X1 :A0+;q1, Xo = Xy :A]+% (35)
Xo X3

We set x_; =X, Xo =y then from (3.5) we obtain the system of equations

xP yP
x:Ao+ﬁ, y:A1+x—q. (3.6)
We prove that (3.6) has a solution (x,¥), X > 0, ¥ > 0. From the first relation of (3.6) we get
P
Xa
y=——-s. (3.7
(x — Ao}’
From (3.7) and the second relation of (3.6) we have
— A -————=0. (3.8)
(x —Ap)t (x —Ao)T
We consider the function
X X
fX)=——=-Ar - (3.9)

(X — Ag)i (X — Ag)t
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From (3.9) we get

P
C— ,,< = lpxpzq‘ﬂ) ~ A (3.10)
(X—Ao)T \(x —Ag) T
From relations (2.10), (3.9) and (3.10) we obtain
lim f(x) =00, limf(x)=—-A;. (3.11)
x—Ag+ X—00

So Eq. (3.9) has a solution X > Aq. Then if

Xa

y=—"—"7
(x —Ap)®

)

we have that the solution x, of (1.3) with initial values x_; = X, Xo = y is a periodic solution of period two. Finally using Prop-
osition 2.1 it is obvious that x, is the unique periodic solution of period two and every positive solution of (1.3) tends to the
unique periodic solution of period two.
(ii) Using (3.2) x,, is a 3-periodic solution of (1.3) if the initial values x_;, X, satisfy
X xF
X2:X,]:A]+X—0 X3:X0:A2+X—1. (312)

q? q
1 -1

We set x_1 =X, Xo=Yy in (3.12) and we take the system of nonlinear equations

(h(;{ipy))"’ y—dyt BV a2 (3.13)

x=A+ o ¥a
We consider the function

H:[A1,A + €] x |[A2,A2 + €] — IR,

such that
_ _ ¥ 4 (hxy)P
Hxy) = (f(x,y).8x.y)), fx.y)=HA ) 8(x.y) = Ay +— (3.14)
First we prove that H is in [A1,A; + €] x [A2,A3 + €]. Obviously
A <f(x,y), Ar<g®xy), xY)€A,A+e€ x[AA + €. (3.15)

Moreover from (3.3), (3.4) and (3.13) we get for (x,y) € [A1,A1 + €] x [A3,Ay + €]

_ ¥ (A2 +€) (A2 +€) (B+¢f
fxy) = A +(h(x,y))q <A+ (Aﬁﬁ)q@] + A SA+—mg <Ai+e (3.16)
yq
hxyy _,  (B+7E) ey
8xy) =AM+ =< Ao+ & <At —mg—<M+te (3.17)

Therefore from (3.14)-(3.17) we have that H is in [A1,A; + €] x [A3,A; + €]. We prove that H is a contraction in [A1,A; + €] x
[A2,A; + €]. We prove that

of of og g

] <0 ’87 <6, | <0, ‘07 <. (3.18)
From (3.14) we get

of w0 _ __p . ¢¥

ox  yepxi-p(h(x,y))"" " 9y y'P(h(x,y))"  yartop(h(x,y) Tt (3.19)

g q(h(x,y))’ p? g pq ‘

X ey oy ey
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From (2.10), (3.3), (3.4), (3.13) and (3.19) we get for all (x,y) € [A1,A; + €] x [A3,Az + €]

of pq pq
| < —— < -
ox c? 2p+1Ag+1 CZ(q p+1)
off __p  ¢B+e" _ p €q’

ol < o +— < —= + — < 0,
(9}/ Cl pAg c? p+1Ag+1 c? p+1 Cq+2 p

<0,

(3.20)
A +—<’““)”> BreP)P

8g<q<° A) P <q(3+ CQ>+ P _qB+e” P . pg _,

o0xX Cq+1 C2q—p+1Aé—p Cqﬂ C2(q—p+1) Cq+l CZ(q—pH) C CZ(q—pH) ’

og Pq pq

| < < <0.

dy| ~ crapil A(l)fp cXa-p+l)

Therefore from (3.20) relations (3.18) are true. Moreover there exist ¢; € [A1,A; + €], 5; € [A2,A2 + €],1 =1, 2 such that for all x,
Xy € [A1,A] + 6] and Yi.Y2 € [Az,Az + 6]

)~y = LBy
F(x1,¥2) —f(x2,¥,) = W(Xl —X2),
o8 1m,) (3.21)
g(x1,¥1) — &(x1,¥,) :a—y(% —¥2),
g(X1,Y2) — 8(X2,¥,) = %(xl —X2).

Relations (3.18) and (3.21) imply that
f(x1,51) = f(x2,2)1 < (X1, ¥1) = f(x1,2) [ + [ (X1,¥2) = f(x2,¥,) < 20max {|x1 — X2, [y1 — ¥, [},

lg(x1,¥1) — (X2, ¥2)| < |g(X1, 1) — (X1, ¥2) + |8(X1,¥2) — 8(X2,¥,)| < 20max {|x1 — Xa|, [y1 — ¥al},
and so
max {|f (x1,y1) —f(X2,¥2)|, [8(x1,¥1) — (X2, ¥2)|} < 20max {|x; — X2, [y1 — ¥»}- (3.22)

So from (3.22) and since 6 € (0,1) the function H is a contraction in [A;,A; + €] x [A3,A; + €]. Hence by Theorem 1.7.1 (Banach
Contraction Principle) (see [15]) there exists a unique (X,¥) € [A1,A; + €] x [A2,A; + €] such that

x=fxy), y=28R&}Y).
Therefore the solution x,, with initial values x_; =X, xo =y is a periodic solution of period three. Using Proposition 2.1 it is
obvious that x, is the unique solution of period three and every positive solution of (1.3) tends to the unique 3-periodic solu-

tion of (1.3) as n — oc. This completes the proof of the proposition. O
In the last proposition we study the stability of the unique periodic solution of Eq. (1.3).

Proposition 3.2. Consider Eq. (1.3) . Then the following statements are true:

(i) Suppose that relations (2.10) and (3.1) are satisfied. Suppose also that

p p*+¢ p
AAT T (AA)TTP T ATAP

<1. (3.23)
Then the unique 2-periodic solution of (1.3) is globally asymptotically stable.
(ii) Suppose that (2.10), (3.2) and (3.3) hold. Suppose also that

3pq P+q¢
C2bra1) T BlraD)

<1 (3.24)

Then the unique 3-periodic solution of (1.3) is globally asymptotically stable.

Proof. (i) From Proposition 3.1 there exists a unique periodic solution x, of Eq. (1.3) of period two. Let
Xon1=X, Xpn=y, n=0,1,....
From (1.3) we get
X, xP

Xani1 = Ao + qul . Xa2 = Ay +Xqi' (3.25)
2n 2n+1
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If we set X1 = Z,,, Xan = W, in (3.25) we get

z wh
Z 1=Ao+—7 Wp = A1 + (326)
n+ Wg n+ Zz+]

Then (%,y) is the positive equilibrium of (3.26) and the linearized system of (3.26) about (X,y) is the system:

Uni1 = By,
where:
P —qx
x1-pya yatt Zn
B= ) , Upn= .
P _p 4 4 Wy
X4+2-pya-p  x4yl-p (;@,)q—lfp

The characteristic equation of B is the following

> [P P q P
G (xlpyq +;zqy1—p + (xy)q+1p> + (xy) TP 0. (3.27)

Since X, y satisfy (3.6) we have X > Ag, ¥ > A; and so relation (3.23) implies that

p_,_P p2+q2< p P’+q? Py
XUPyd D XIyUP xp) TP AIAY P (AAg)TTP T ARAY

So from Remark 1.3.1 of [15] all the roots of (3.27) are of modulus less than 1. Hence (X, ¥) is locally asymptotically stable.
Finally using Proposition 3.1 we have that the unique 2-periodic solution of (1.3) is globally asymptotically stable. This com-
pletes the proof of the statement (i).

(ii) From Proposition 2.1 there exists a unique 3-periodic solution x, of (1.3). Let

_ _ xP o _
X3p-1 =X, X3p =Y, X3n+1:AO+}—ﬁ:Z7 n=0,1,....
From (1.3) we get
p p p
x5 X X3ni1
X3ps1 = Ao + 321, X3ny2 = A1 + q3" , X =AM+, n=01,.... (3.28)
X3n X3n11 X3n42
If we set X3,_2 = Up, X3n_1 = Un, X35, = W, in (3.28) we get
p D p
Un Whn Uniq
Ui =Ao+—5, Una=Ai+—5—, Wpg =Ar+—7—, n=0,1,.... (3.29)
Whn n+1 ynH

Then (z,%,¥) is the positive equilibrium of (3.29) and the linearized system of (3.29) about the equilibrium (z,%,y) is the
following

0 r s Uy
Zny1 = Tzn, T= 0 r S|, Zn= Un
0 rs S3 Wy
where
p qxP pq
T1:_177_7 51:*_717 rzzfﬁ,
X qu ylH X qu Pzq+
25 2 2
b q-xP _ p pq
$2 = iz Tyaripgait 13 T xaiipyazi p | x2ra pya pzaii b
yl-rza 'y Z X Y4z X y4-PZ
3
_ pq pq q
S3 = —

Xa-pyatizi-p — xTrayl-pza—p xyz)T P
The characteristic equation of the matrix T is

2 ,(__pa pq pq ' P
g (A M (xqpyq+1z1p +)’<1fpyq—p2q+1 + xX1+ayl-pza-p + (xyz)“lp) B (Xyz)‘HlP) =0. (330)

Using (2.10) and (3.24) and Remark 1.3.1 of [15] all the roots of (3.30) are of modulus less than 1. Hence the unique 3-peri-
odic solution of (1.3) is locally asymptotically stable. Finally from Proposition 3.1 the unique 3-periodic solution is globally
asymptotically stable. This completes the proof of the proposition. O
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