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a b s t r a c t

It is the goal of this paper to study the boundedness, the persistence and the asymptotic
behavior of the positive solutions of the system of two difference equations of exponential
form

xn+1 = a + bxn−1e−yn , yn+1 = c + dyn−1e−xn ,

where a, b, c, d are positive constants, and the initial values x−1, x0, y−1, y0 are positive
real values.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], the authors studied the boundedness, the asymptotic behavior, the periodic character of the solutions and the
stability character of the positive equilibrium of the difference equation

xn+1 = a + bxn−1e−xn ,

where a, b are positive constants and the initial values x−1, x0 are positive numbers. Furthermore, in [1] the authors used a
as the immigration rate and b as the growth rate in the population model. In fact, this was a model suggested by the people
from the Harvard School of Public Health; studying the population dynamics of one species xn.

Motivated by the above paper we will extend the above difference equation to a system of difference equations; our goal
will be to investigate the boundedness, the persistence and the asymptotic behavior of the positive solutions of the system
of two difference equations of exponential form

xn+1 = a + bxn−1e−yn ,

yn+1 = c + dyn−1e−xn
(1.1)

where a, b, c, d are positive constants and the initial values x−1, x0, y−1, y0 are positive real values; also, b will be growth
rate of species xn and d will be the growth rate of species yn; in addition, a will be the immigration rate into species xn and
c will be the immigration rate into species yn. Furthermore, system (1.1) can be applied as a two directional interactive and
invasive species model where species xn and yn affect each other’s population in both directions. Observe that it is very
crucial for every positive solution of system (1.1) to be bounded as the population of species xn and yn cannot grow infinitely
large due to the limited resources. Moreover, the equilibrium point (x̄, ȳ) of system (1.1) is considered to be the natural ideal
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population; that is, if the population is left alone then it remains there. Therefore, convergence to the equilibriumpoint (x̄, ȳ)
will apply that the population of both species tends to the natural ideal population.

Difference equations and systems of difference equations of exponential form can be found in the following papers:
[2,1,3–8]. Moreover, as difference equations have many applications in applied sciences, there are many papers and books
that can be found concerning the theory and applications of difference equations; (for partial review of the theory of
difference equations, systems of difference equations and their applications see [9–27,2,28,1,29,4,30–35,7,36,8,37–39] and
the references cited therein).

2. Asymptotic behavior of the solutions of system (1.1)

First it is very crucial to establish the boundedness and persistence of solutions; in the first proposition we will study
the boundedness and persistence of the positive solutions of system (1.1) by comparing them with solutions of a solvable
system of difference equations. Our method is a modification of the method in Theorem 2 in [40]. For related and similar
results see, [9,15,16,24,25,2,30–35,7,36].

Proposition 2.1. Consider system (1.1) such that:

be−c < 1, de−a < 1. (2.1)

Then every positive solution of (1.1) is bounded and persists.

Proof. Let (xn, yn) be an arbitrary solution of (1.1). Thus from (1.1) we see that

xn ≥ a, yn ≥ c, n = 1, 2, . . . . (2.2)

In addition, it follows from (1.1) and (2.2) that

xn+1 ≤ a + bxn−1e−c, yn+1 ≤ c + dyn−1e−a, n = 0, 1, . . . . (2.3)

We will now consider the non-homogeneous difference equations

zn+1 = a + bzn−1e−c, vn+1 = c + dvn−1e−a, n = 0, 1, . . . . (2.4)

Therefore, from (2.4) an arbitrary solution (zn, vn) of (2.4) is given by

zn = r1(be−c)n/2 + r2(−1)n(be−c)n/2 +
a

1 − be−c
, n = 1, 2, . . .

vn = s1(de−a)n/2 + s2(−1)n(de−c)n/2 +
c

1 − de−a
, n = 1, 2, . . .

(2.5)

where r1, r2, s1, s2 depend on the initial values z−1, z0, v−1, v0. Thus we see that relations (2.1) and (2.5) imply that zn and
wn are bounded sequences. Now we will consider the solution (zn, vn) of (2.4) such that

z−1 = x−1, z0 = x0, v−1 = y−1, v0 = y0. (2.6)

Thus from (2.3) and (2.6) we get

xn ≤ zn, yn ≤ vn, n = 1, 2, . . . . (2.7)

Therefore it follows that xn, yn are bounded sequences. Hence from (2.2) the proof of the proposition is now complete. �

In the next proposition we will study the existence of invariant intervals of system (1.1).

Proposition 2.2. Consider system (1.1) where relations (2.1) hold. Then the following statements are true:

(i) The set
a,

a
1 − be−c


×


c,

c
1 − de−a


is an invariant set for (1.1).

(ii) Let ϵ be an arbitrary positive number and (xn, yn) be an arbitrary solution of (1.1). We then consider the sets

I1 =


a,

a + ϵ

1 − be−c


, I2 =


c,

c + ϵ

1 − de−a


. (2.8)

Then there exists an n0 such that for all n ≥ n0

xn ∈ I1, yn ∈ I2. (2.9)
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Proof. (i) Let (xn, yn) be a solution of (1.1) with initial values x−1, x0, y−1, y0 such that

x−1, x0 ∈


a,

a
1 − be−c


, y−1, y0 ∈


c,

c
1 − de−a


. (2.10)

Then from (1.1) and (2.10) we get

a ≤ x1 = a + bx−1e−y0 ≤ a +
ab

1 − be−c
e−c

=
a

1 − be−c

c ≤ y1 = c + dy−1e−x0 ≤ c +
cd

1 − de−a
e−a

=
c

1 − de−a
.

Then it follows by induction that

a ≤ xn ≤
a

1 − be−c
, c ≤ yn ≤

c
1 − de−a

, n = 1, 2, . . . .

This completes the proof of statement (i).
(ii) Let (xn, yn) be an arbitrary solution of (1.1). Therefore, from Proposition 2.1 we get

0 < l1 = lim inf
n→∞

xn, 0 < l2 = lim inf
n→∞

yn,

L1 = lim sup
n→∞

xn < ∞, L2 = lim sup
n→∞

yn < ∞.
(2.11)

It follows from (1.1) and (2.11) that

L1 ≤ a + bL1e−l2 , l1 ≥ a + bl1e−L2 , L2 ≤ c + dL2e−l1 , l2 ≥ c + dl2e−L1 ,

which imply that

a ≤ L1 ≤
a

1 − be−c
, c ≤ L2 ≤

c
1 − de−a

. (2.12)

Thus from (1.1), we see that there exists an n0 such that (2.9) holds true. This completes the proof of the proposition. �

In the next two propositions we will study the asymptotic behavior of the positive solutions of (1.1). The next lemma is
a slight modification of Theorem 1.16 of [24] and for readers convenience we state it without its proof.

Lemma 2.1. Let f , g, f : R+
× R+

→ R+, g : R+
× R+

→ R+ be continuous functions, R+
= (0, ∞) and a1, b1, a2, b2 be

positive numbers such that a1 < b1, a2 < b2. Suppose that

f : [a1, b1] × [a2, b2] → [a1, b1], g : [a1, b1] × [a2, b2] → [a2, b2]. (2.13)

In addition, assume that f (x, y) (resp. g(x, y)) is decreasing with respect to y (resp. x) for every x (resp. y) and increasing with
respect to x (resp. y) for every y (resp. x). Finally suppose that if m,M, r, R are real numbers such that

M = f (M, r), m = f (m, R), R = g(m, R), r = g(M, r), (2.14)

then m = M and r = R. Then the following system of difference equations

xn+1 = f (xn−1, yn), yn+1 = g(xn, yn−1) (2.15)

has a unique positive equilibrium (x̄, ȳ) and every positive solution (xn, yn) of the system (2.15) which satisfies

xn0 ∈ [a1, b1], xn0+1 ∈ [a1, b1], yn0 ∈ [a2, b2], yn0+1 ∈ [a2, b2], n0 ∈ N (2.16)

tends to the unique positive equilibrium of (2.15).

Proposition 2.3. Consider system (1.1) such that the following relations hold true:
If c ≥ a

b < ec
−a +

√
a2 + 4

2
, d < ea min


−c +

√
c2 + 4

2
,
c −

√
c2 − a2

a


(2.17)

and if a ≥ c, then

d < ea
−c +

√
c2 + 4

2
, b < ec min


−a +

√
a2 + 4

2
,
a −

√
a2 − c2

c


. (2.18)
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Then system (1.1) has a unique positive equilibrium (x̄, ȳ) and every positive solution of (1.1) tends to the unique positive
equilibrium (x̄, ȳ) as n → ∞.

Proof. We consider the functions

f (x, y) = a + bxe−y, g(x, y) = c + dye−x (2.19)

where

x ∈ I1, y ∈ I2, (2.20)

I1, I2 are defined in (2.8). Then from (2.17), (2.18)–(2.20), we see that for x ∈ I1, y ∈ I2

a ≤ f (x, y) ≤ a + b
a + ϵ

1 − be−c
e−c

=
a + ϵbe−c

1 − be−c
<

a + ϵ

1 − be−c
,

c ≤ g(x, y) ≤ c + d
c + ϵ

1 − de−a
e−a

=
c + ϵde−a

1 − de−a
<

c + ϵ

1 − de−a

and so f : I1 × I2 → I1, g : I1 × I2 → I2. Let (xn, yn) be an arbitrary solution of (1.1). Therefore, as relations (2.17), (2.18)
imply conditions (2.1), from Proposition 2.2 there exists an n0 such that relations (2.9) hold true.

Letm,M, r, R be positive real numbers such that

M = a + bMe−r , m = a + bme−R, R = c + dRe−m, r = c + dre−M . (2.21)

From (2.21) it follows that

r = ln


bM

M − a


, R = ln


bm

m − a


, m = ln


dR

R − c


, M = ln


dr

r − c


. (2.22)

Thus we see that relations (2.21) and (2.22) imply

(1 − be−r) ln


dr

r − c


= a, (1 − be−R) ln


dR

R − c


= a,

(1 − de−m) ln


bm

m − a


= c, (1 − de−M) ln


bM

M − a


= c.

(2.23)

We then consider the function

F(x) = (1 − de−x) ln


bx

x − a


− c. (2.24)

Let z be a solution of F(x) = 0. We claim that

F ′(z) < 0. (2.25)

From (2.24) we see that

F ′(z) = −
a(1 − de−z)

z(z − a)
+ de−z ln


bz

z − a


. (2.26)

Since z satisfies equation F(x) = 0, then it follows that

ln


bz

z − a


=

c
1 − de−z

. (2.27)

Therefore, relations (2.26) and (2.27) imply that

F ′(z) = −
a(1 − de−z)

z(z − a)
+

cde−z

1 − de−z
. (2.28)

Using (2.28), to prove our claim (2.25), it suffices to prove that

H(z) − G(z) < 0, H(z) = dcz(z − a), G(z) = aez(1 − de−z)2. (2.29)
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From (2.29) we get

H ′(z) = dc(2z − a), G′(z) = −ad2e−z
+ aez, H ′′(z) = 2dc,

G′′(z) = ad2e−z
+ aez H ′′′(z) = 0, G′′′(z) = −ad2e−z

+ aez .
(2.30)

Now from (2.17), (2.18) and (2.30), we see that as z > awe have

H ′′′(z) − G′′′(z) < 0. (2.31)

Since z > a, we take

H ′′(z) − G′′(z) < H ′′(a) − G′′(a). (2.32)

Using (2.30) we get

H ′′(a) − G′′(a) = 2dc − ad2e−a
− aea = −e−a(ad2 − 2dcea + ae2a). (2.33)

Moreover if c ≥ a, then from (2.17) it follows that 0 < d < ea c−
√

c2−a2

a and we get

ad2 − 2dcea + ae2a > 0. (2.34)

If c ≤ awe can easily prove that (2.34) holds true. Then from (2.33) and (2.34) we get H ′′(a)−G′′(a) < 0 and so from (2.32)
it follows that

H ′′(z) − G′′(z) < 0. (2.35)

Therefore from (2.35) and since z > a it follows

H ′(z) − G′(z) < H ′(a) − G′(a). (2.36)

Hence using (2.30) we get

H ′(a) − G′(a) = acd + ad2e−a
− aea = ae−a(d2 + dcea − e2a). (2.37)

Now observe that from (2.17), (2.18) we have 0 < d < ea −c+
√

c2+4
2 and so

d2 + dcea − e2a < 0. (2.38)

Therefore relations (2.37) and (2.38) imply that H ′(a) − G′(a) < 0 and so from (2.36) it follows that

H ′(z) − G′(z) < 0. (2.39)

Hence from (2.39) and as z > a, we get

H(z) − G(z) < H(a) − G(a). (2.40)

Now note that from (2.29) it is obvious that H(a) − G(a) < 0. Thus from (2.40), we get H(z) − G(z) < 0 which implies that
(2.25) is true. Since (2.25) holds, it is known that there exists an ϵ such that for x ∈ (z − ϵ, z + ϵ)

F ′(x) < 0. (2.41)

Therefore from (2.41) the function F is decreasing in the interval (z − ϵ, z + ϵ). Suppose that F has roots greater than the
root z. Let z1 be the smallest root of F such that z1 > z. From the argument above, we can show that there exists an ϵ1 such
that F is decreasing in the interval (z1 − ϵ1, z1 + ϵ1). Since F(z + ϵ) < 0, F(z1 − ϵ1) > 0 and F is continuous, we see that
F must have a root in the interval (z + ϵ, z1 − ϵ1). This is clearly a contradiction since z1 is the smallest root of F such that
z1 > z. Similarly we can prove that F has no solutions in (0, z). Therefore equation F(x) = 0 must have a unique solution.
Hence from (2.23) and (2.24)m,M are the solutions of the equation F(x) = 0. Thus we see thatm = M . Similarly if we set

G(x) = (1 − be−x) ln


dx

x − c


− a

and using (2.17), (2.18) we can show that equation G(x) = 0 has a unique solution. Also as r, R are the solutions of equation
G(x) = 0, it follows that r = R. Therefore from Lemma 2.1 the proof of the proposition is complete. �

Proposition 2.4. Consider system (1.1) and suppose that the constants a, b, c, d satisfy the following relations:

b <
ec

c + 1
, d < ea min


1 − be−c

1 − be−c + a
,
1 − b(c + 1)e−c

1 − be−c


. (2.42)
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Then system (1.1) has unique positive equilibrium (x̄, ȳ) such that

x̄ ∈


a,

a
1 − be−c


, ȳ ∈


c,

c
1 − de−a


. (2.43)

Moreover every positive solution of (1.1) tends to the unique positive equilibrium (x̄, ȳ) as n → ∞.

Proof. First we prove that (1.1) has a unique positive equilibrium such that relations (2.43) hold. First we consider the
following system of algebraic equations

x = a + bxe−y, y = c + dye−x. (2.44)

Observe that system (2.44) is equivalent to the following system:

x =
a

1 − be−y
, y =

c
1 − de−x

. (2.45)

So we set

F(x) =
a

1 − be−f (x)
− x, f (x) =

c
1 − de−x

, x ∈


a,

a
1 − be−c


. (2.46)

Then from (2.42) and (2.46) we get

F(a) =
abe−f (a)

1 − be−f (a)
> 0,

F


a

1 − be−c


=

a

1 − be−f


a
1−be−c

 −
a

1 − be−c

=
ab

1 − be−f


a
1−be−c


(1 − be−c)


e−f


a

1−be−c


− e−c


< 0.

(2.47)

Therefore from (2.47) equation F(x) = 0 has a solution x̄ ∈


a, a

1−be−c


.

Now we will prove that x̄ is the unique solution of F(x) = 0. From (2.42) and (2.46) it follows that

F ′(x) =
abcde−f (x)−x

(1 − be−f (x))2(1 − de−x)2
− 1 <

abcde−c−a

(1 − be−c)2(1 − de−a)2
− 1. (2.48)

Moreover from (2.42) we get,

be−c
+

cb
1 − de−a

e−c < 1, de−a
+

ad
1 − be−c

e−a < 1. (2.49)

Therefore from (2.49) it follows that

cb
(1 − de−a)(1 − be−c)

e−c < 1,
ad

(1 − de−a)(1 − be−c)
e−a < 1. (2.50)

Hence relations (2.48) and (2.50) imply that F ′(x) < 0 which implies that equation F(x) = 0 has a unique solution

x̄ ∈


a, a

1−be−c


. Then from (2.45) and (2.46) system (2.44) has a unique solution (x̄, ȳ) such that (2.43) holds.

Let (xn, yn) be an arbitrary solution of (1.1). Using relations (2.42) and Proposition 2.1, we see that (2.11) hold which also
imply that

L1 ≤
a

1 − be−l2
, l1 ≥

a
1 − be−L2

, L2 ≤
c

1 − de−l1
, l2 ≥

c
1 − de−L1

. (2.51)

From (2.51) we get

L1l2 ≤
al2

1 − be−l2
, l1L2 ≥

aL2
1 − be−L2

, L2l1 ≤
cl1

1 − de−l1
, l2L1 ≥

cL1
1 − de−L1
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and so we see that

cL1
1 − de−L1

≤
al2

1 − be−l2
,

aL2
1 − be−L2

≤
cl1

1 − de−l1
. (2.52)

Now we consider the functions

f (x) =
cx

1 − de−x
, g(y) =

ay
1 − be−y

, x ∈


a,

a
1 − be−c


, y ∈


c,

c
1 − de−a


. (2.53)

Then from (2.53) it follows that

f ′(x) =
c(1 − de−x(1 + x))

(1 − de−x)2
, g ′(x) =

a(1 − be−y(1 + y))
(1 − be−y)2

. (2.54)

From (2.49), consider x ∈


a, a

1−be−c


, y ∈


c, c

1−de−a



1 − de−x(1 + x) > 1 − de−a


1 +

a
1 − be−c


> 0,

1 − be−y(1 + y) > 1 − be−c


1 +

c
1 − de−a


> 0.

(2.55)

Therefore from (2.54) and (2.55) we see that

f ′(x) > 0, g ′(x) > 0, x ∈


a,

a
1 − be−c


, y ∈


c,

c
1 − de−a


.

Hence, f , g are increasing functions and this, together with (2.52) implies that l1 = L1. Then, from (2.52) again, we see that
l2 = L2. Therefore, this completes the proof of the proposition. �

In the last proposition of this section, we will study the global asymptotic stability of the positive equilibrium of (1.1).

Proposition 2.5. Consider system (1.1) such that either (2.17) and (2.18) hold or (2.42) holds. Also suppose that the following
relation holds true:

0 < be−c
+ de−a

+ bde−a−c
+

abcde−a−c

(1 − de−a)(1 − be−c)
< 1. (2.56)

Then the unique positive equilibrium (x̄, ȳ) of (1.1) is globally asymptotically stable.

Proof. First we will prove that (x̄, ȳ) is locally asymptotically stable. The linearized system of (1.1) about (x̄, ȳ) is

xn+1 = be−ȳxn−1 − bx̄e−ȳyn
yn+1 = de−x̄yn−1 − dȳe−x̄xn.

(2.57)

We clearly see that system (2.57) is equivalent to the system

wn+1 = Awn, A =

0 α β 0
γ 0 0 δ
1 0 0 0
0 1 0 0

 , wn =

 xn
yn

xn−1
yn−1

 ,

α = −bx̄e−ȳ, β = be−ȳ γ = −dȳe−x̄, δ = de−x̄.

Then the characteristic equation of A is

λ4
− (β + δ + αγ )λ2

+ βδ = 0. (2.58)

Since x̄, ȳ satisfy (2.44) it is obvious that x̄ > a, ȳ > c . Hence, from (2.56) and as x̄, ȳ satisfy (2.45) we get

|β| + |δ| + |βδ| + |αγ | = be−ȳ
+ de−x̄

+ be−ȳde−x̄
+

abcde−x̄−ȳ

(1 − de−x̄)(1 − be−ȳ)

< be−c
+ de−a

+ bde−a−c
+

abcde−a−c

(1 − de−a)(1 − be−c)
< 1. (2.59)
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Therefore, from (2.59) and Remark 1.3.1 of [2] all the roots of Eq. (2.58) are of modulus less than 1 which implies that (x̄, ȳ)
is locally asymptotically stable. Using Proposition 2.3 (x̄, ȳ) is globally asymptotically stable. This completes the proof of the
proposition. �

3. Existence of unbounded solutions of system (1.1)

It is our goal of this section to study the existence of unbounded solutions for (1.1).

Proposition 3.1. Consider Eq. (1.1). Then the following statements are true:

(i) Suppose that

b > ec . (3.1)

Then there exist solutions (xn, yn) of (1.1) such that

lim
n→∞

xn = ∞, lim
n→∞

yn = c. (3.2)

(ii) Suppose that

d > ea. (3.3)

Then there exists a solution (xn, yn) of (1.1) such that

lim
n→∞

xn = a, lim
n→∞

yn = ∞. (3.4)

(iii) Suppose that

b > ec, d > ea. (3.5)

Then there exists a solution (xn, yn) of (1.1) such that either (3.2) or (3.4) holds true.

Proof. (i) Using (3.1), consider a solution (xn, yn) of (1.1) with initial values x−1, x0, y−1, y0 such that

x−1 > M, x0 > M, y0 < m, y−1 < m, M = ln


dm
m − c


, m = ln b. (3.6)

Then from (1.1) and (3.6) we see that

y1 = c + dy−1e−x0 < c + dme−M
= m, x1 = a + bx−1e−y0 > a + bMe−m > M.

Therefore, it follows by induction that

yn < m, xn > M, n = 1, 2, . . . . (3.7)

Notice that from (1.1), (3.6) and (3.7) we get

xn+1 > a + bxn−1e−m
= a + xn−1, n = 0, 1, . . . . (3.8)

Therefore from (3.8) it follows that

lim
n→∞

xn = ∞. (3.9)

In addition, from (1.1) and (3.7) we see that

c ≤ yn+1 = c + dyn−1e−xn < c + dme−xn , n = 0, 1, . . . . (3.10)

Hence from (3.9) and (3.10) it follows that

lim
n→∞

yn = c. (3.11)

Thus from (3.9) and (3.11) the proof of statement (i) is completed.
(ii) Using (3.3) consider a solution (xn, yn) of (1.1) with initial values such that

x−1 < p, x0 < p, y0 > P, y−1 > P, P = ln


bp
p − a


, p = ln d. (3.12)

Then applying (3.12) and using the ideas as above we can prove (3.4).
(iii) Using (3.5), it suffices to find a solution (xn, yn) with initial values satisfying either (3.6) or (3.12). Then (xn, yn)

satisfies either (3.2) or (3.4). This completes the proof of the proposition. �
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