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Atomic packing is an important metric for characterizing protein structures, as it significantly influences various
features including the stability, the rate of evolution and the functional roles of proteins. Packing in protein
structures is a measure of the overall proximity between the proteins’ atoms and it can vary notably among
different structures. However, even single domain proteins do not exhibit uniform packing throughout their
structure. Protein cores in the interior tend to be more tightly packed compared to the protein surface and the
presence of cavities and voids can disrupt that internal tight packing too.

Many different methods have been used to measure the quality of packing in proteins, identify factors that
influence it, and their possible implications. In this work, we examine atomic density distributions derived from
21,255 non-redundant protein structures and show that statistically significant differences between those dis-
tributions are present. The biomolecular assembly unit was chosen as a representative for these structures.
Addition of hydrogen atoms and solvation was also performed to emulate a faithful representation of the
structures in vitro.

Several protein structures deviate significantly and systematically from the average packing behavior. Hier-
archical clustering indicated that there are groups of structures with similar atomic density distributions. Search
for common features and patterns in these clusters showed that some of them include proteins with characteristic
structures such as coiled-coils and cytochromes. Certain classification families such as hydrolases and trans-
ferases have also a preference to appear more frequently in dense and loosely-packed clusters respectively.

Regarding factors influencing packing, our results support knowledge that larger structures have a smaller
range in their density values, but tend to be more loosely packed, compared to smaller proteins. We also used
indicators, like crystallographic water molecules abundance and B-factors as estimates of the stability of the
structures to reveal its relationship with packing.

1. Introduction

Atomic packing has been an important metric for characterizing
protein structures since 1974, when it was observed that the average
packing density within proteins’ interiors is roughly equivalent to that of
small organic molecule crystals [1]. Although numerous methods had
been developed to calculate the packing and interactions of amino acid
residues within proteins, the use of packing density as a criterion for
evaluating model protein structures was developed explicitly in 1990
[2].

To date, several approaches have been tested to measure the atomic
packing in structures. The Voronoi procedure is a widely-used method,
in which a unique volume is assigned to individual atoms in order to
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study variations in packing of proteins [3-7]. Another well-established
method for analyzing packing interactions in proteins is based on the
calculation of the occluded molecular surface [8]. Other methods and
approaches for analyzing protein packing have also been reported
[9-15].

Packing is an important aspect of protein structures. A compact
packing of amino acid residues is known to affect both the thermal
stability and folding rate of proteins. [16-25]. Protein stability is of
significant interest to the biotechnological, pharmaceutical, and food
industries. The effects of packing on protein stability has extensively
been studied to the point that modeling programs have incorporated
packing as a parameter, aiming to predict protein stability after muta-
tions [26]. Moreover, hydrogen bonds, which increase the packing
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density in the protein interior are known for their indirect contribution
to protein stability [27]. Recent studies indicated that the major de-
terminants of protein stability include packing and van der Waals in-
teractions [28-30].

As the structural comparison shown in Figs. 1 and 2 exemplifies,
proteins do not exhibit uniform packing throughout their structure [31].
Localized packing defects appear as cavities, and their presence can
compromise the stability of the protein [32]. Additionally, the distri-
bution of these voids (cavities) is highly heterogeneous across different
proteins [33]. Despite the presence of occasional cavities, the interior of
spherical proteins remains tightly packed. The Voronoi volumes of
surface atoms, modeled with solvent surrounding the protein, are
approximately 7 % larger [34,35], indicating that packing is less dense
on the protein surface.

Experimental studies have shown that mutations in protein cores,
where small residues are replaced with larger ones, generally destabilize
the protein. This suggests that there is minimal empty space available to
accommodate additional atoms [23,36]. This can be explained by the
a-helical and p-sheet secondary structures in globular proteins. These
elements organize in a manner that allows non-polar side chains to
interlock like jigsaw puzzle pieces, creating densely packed cores. As a
result of this tight packing, van der Waals forces are considerably
stronger in the interior [27]. However, due to energetically unfavorable
atomic overlaps, protein cores cannot exceed some density limits [37].
The rigidity of protein cores is also shown to be strongly correlated with
packing density [38,39]. Furthermore, studies have shown that the
interior of proteins evolves slowly, in contrast to the surface which has
more rapid evolution [40,41]. Solvent accessibility has become the de
facto structural measurement to use in protein evolution studies. How-
ever, more recent work has called the central role of solvent accessibility
into question and has identified packing as an important factor too [42].
The two packing measures most frequently employed in evolutionary
studies are the contact number and the weighted contact number.
For a given amino acid, the contact number represents the total count
of other residues within its local structural neighborhood. In contrast,
the weighted contact number considers all residues in the protein,
assigning weights to them based on the square of their inverse distance

Fig. 1. Schematic diagram of a ferritin-like protein structure with a low density
profile. This is the biological assembly corresponding to PDB entry 3r2k colored
according to atomic temperature factors.
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Fig. 2. Schematic diagram of the structure of a protein with a high density
profile. This is a cytosolic copper storage protein (PDB entry 6zif) colored ac-
cording to atomic temperature factors, with the copper atoms indicated as
solid spheres.

to the amino acid under examination [43,44].

Atomic packing is affected by a combination of different factors. A
statistical analysis of the radius of gyration for 3769 protein domains
across four major classes (o, B, o/f, and a+p) revealed that each class
exhibits a characteristic radius of gyration, indicating its specific level of
structural compactness. For example, o-helical proteins exhibit the
highest radius of gyration across the considered protein size range,
indicating a less compact packing compared to § and (« + p) proteins. In
contrast, o/p proteins display the lowest radius of gyration, character-
istic of the most compact packing among the classes [45].

Another study showed that for proteins with a molecular weight
below 20 kDa, the average density shows a positive deviation that be-
comes more pronounced as molecular weight decreases, indicating that
smaller proteins are more densely packed than larger ones, which tend
to have a looser packing structure [46]. Additionally, an analysis of 152
non-homologous proteins demonstrated that variations in protein
packing are influenced by a complex interplay of protein size, secondary
structure, and amino acid composition. They showed that helices appear
to be more efficiently packed compared to strands and that large pro-
teins are expected to have increased overall packing [47].

In this communication we attempt to approach the problem of
characterizing and analyzing protein density not through average sta-
tistical or structural properties, but by building and directly comparing
individual density profiles which were created for an extended set of
more than 21,000 proteins. The essence of our approach is the following:
For each atom of each structure we calculate the density (in Da/}o\e’)
inside a sphere centered on that atom. If, for example, a given protein
structure contains 5000 atoms, then we would calculate 5000 density
values (one for each atom). These density values are then used to
calculate a histogram of their distribution which is characteristic of the
protein structure under examination. Having collected the density



S. Touliopoulos and N.M. Glykos

distributions, we can quantify and analyze their similarities and differ-
ences using established metrics such as the Euclidean distance (calcu-
lated between any given pair of distributions). By doing an all-to-all
comparison of those distributions, we can quantitatively characterize
structural and functional patterns present in these distributions, as well
as evolutionary relationships between diverse families of proteins. In the
following paragraphs we present details of this method, and of the
structural, functional, and evolutionary results obtained from its
application.

2. Methods
2.1. Calculation of density distributions

The starting set of protein structures (see previous paragraph) is an
extended sample obtained from the PDB and comprising representative
culled proteins (identity cutoff<50 %), hydrogenated and hydrated to
simulate in vitro conditions (see section §2.2 below for details of how the
representative structures were obtained and how hydrogens and waters
were added). Throughout our calculations we have tested three different
sphere radii (5 Io\, 6 Io\, 7 A) to remove the bias that this otherwise
arbitrary choice would incur. Greater values (>7 /o\) have also been
tested but were found lacking the resolution needed by our method. In
the first stage, our method parses the x,y,z coordinates of atoms and
calculates the distance between every possible combination of atoms (i,
j). For any given radius R (5 A, 6Aor7 10\), it calculates whether the
distance between the atoms i and j is smaller than R, and if so, the mass
(in Dalton) of atom j is counted as lying inside the sphere of atom i. This
is performed recursively for every atom, and after division with the
volume of the sphere, the atomic density distribution of the protein
under examination is obtained (in units of Dalton per cubic [o\ngstrt')rn).
As will be discussed later, our choice to perform the analysis is units of
Dalton/A® is crucial for being able to differentiate functionally impor-
tant groups of proteins (for example, metal-containing proteins). We
should also note that this approach is based on counting only the pres-
ence or absence of atoms lying inside spheres centered on every other
atom. Each atom contributes as a whole to the density calculation when
it lies inside a sphere, with no correction being made for the part of the
atom’s volume that is outside the sphere. Finally, we note that this al-
gorithm is only applied to protein atoms (and not, for example, to the
water molecules that were added to simulate a fully hydrated protein
structure or to the protein’s ligands). Fig. 3 shows a graphical repre-
sentation of this procedure.

2.2. Representative structures and system preparation

The PISCES server [48] was used to obtain a set of proteins with
diverse structural and functional characteristics from the Protein Data

Fig. 3. Graphical representation for centering atoms on the calculation
of density.
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Bank. The full list of selection criteria given to PISCES are shown in
Table 1, which resulted to a set of 22478 structures. For all structures,
the biological assembly was used for all further calculations. An addi-
tional cutoff of a maximum of 80,000 protein atoms per structure was
applied to final list of structures.

OpenBabel [49,50] was used to add missing hydrogen atoms to PDB
files. The program Solvate (https://www.mpinat.mpg.de/grubmueller/
solvate) was used to perform hydration of structures by adding and
energy minimizing a sufficiently large box of pre-equilibrated water
molecules around the solute, emulating a physically convincing fully
hydrated protein structure in vitro. Care was taken to avoid adding water
molecules in buried protein cavities. Fig. 4 shows a schematic illustra-
tion of this procedure for the case of a small protein.

3. Results

3.1. Probability distributions indicate the presence of significant density
variability

The density distributions (one for each protein examined) were
calculated as described in section §2.1. To simplify the subsequent
calculation of distance metrics between different distributions, the same
number of histogram bins (equal to 100) was used for all proteins. This
choice for the number of bins was guided by the application of the
Freedman-Diaconis rule to a randomly selected subset of protein struc-
tures. In the final step of preparing the initial data set, the individual
distributions were normalized by dividing with the total number of
atoms of each protein, thus converting the units to frequencies (of
observing the corresponding density, see Fig. 5 below). The final data set
comprises three (21255 x 100) matrices, corresponding to the three
radii we examined (5 ;\, 6 f\, 7 A). In each of these matrices, every row
corresponds to a different structure and every column to a different bin
from the density distribution of the given protein (and for the given
radius). Fig. 5 shows the probability density distributions (i.e., over all
21255 proteins) for each of the radii we examined.

It can be seen that several data points are significantly distant from
the mean, with several of them deviating by more than 3¢ from the
average. This implies that there could be certain distributions that would
be characterized as ‘outliers’ when compared with the average distri-
bution. The observation that as the radius increases, the distributions
become tighter about their mean is fully consistent with our expecta-
tions: as the volume of the spheres increases, the density calculated from
each sphere approaches the same value (which is the average density of
protein structures). Equivalently, as the radius is increasing, the ‘high
resolution’ information about the variation of density inside a protein
structure is diminished due to extensive averaging.

3.2. Principal component analysis allows the identification of unusual
density distributions

Before proceeding with the main theme of our analysis ~which is
based on the clustering of the primary data through hierarchical clus-
tering methods (discussed below)- we used PCA as a preliminary step to

Table 1

Criteria given to PISCES server for culling the Protein Data Bank.
Criteria Value
Resolution 0.0-2.2
R-factor 0.25
Sequence length 50-10000
Sequence percentage identity <50.0
X-ray entries Included
EM entries Excluded
NMR entries Excluded
Chains with chain breaks Included Included
Chains with disorder Included
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Fig. 4. Preparation of the final systems before density calculation: Addition of
hydrogens using OpenBabel, and of a pre-equilibrated water box using Solvate.

visualize the distribution of data in the reduced principal component
space. Fig. 6(a,b,c) show the PCA distributions obtained from the matrix
calculated with the 6 A radius and projected on the top three principal
components. We observe that the data points are not harmonically
distributed in these projections and that they deviate significantly from
two-dimensional Gaussian distributions. There is a pronounced high
density area (corresponding to an ‘average’ density distribution), but
significant excursions from normality are immediately obvious (for
example the tails clearly seen in Fig. 6(a)). To help visualize the amount
of deviation present in the density distributions, we show in Fig. 6(d) the
average density distribution (black line) versus the density distributions
obtained from two outliers (structures 1JOP and 3NIO). The 1JOP
structure is a cytochrome and its density distribution is markedly shifted
to the right (higher density values). The 3NIO structure on the other
hand is shifted to the left (lower density values) and corresponds to a
guanidinobutyrase protein. This is an early indication that structures
with uncommon distributions exist. Further examination of outliers re-
veals structures with a preference in light-harvesting (cytochromes) and
copper-storage proteins. The biological significance of these deviations
from a harmonic behavior are analyzed in the following sections.

3.3. Hierarchical clustering allows the identification of distinct groups of
proteins

Starting from the three (21255 x 100) matrices corresponding to the
three radii we examined (see section §3.1), we calculated the corre-
sponding distance matrices by calculating the Euclidean distance be-
tween all possible pairs of distributions. These distance matrices are the
primary data upon which hierarchical clustering methods are based.
Fig. 7 shows a visualization of these symmetrical distance matrices in the
form of heatmaps where distances are encoded as colors ranging for dark
blue (small distances), through yellow (intermediate distances), to red
(large distances). The lower three panels in Fig. 7 show the same
matrices but after exclusion of the 100 most distant proteins (this was
done in order to increase the dynamic range of these graphs). Please note
that all matrices shown in Fig. 7 have been scaled to the same maximum
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distance (they are on the same color scale).

The general appearance of the distance matrices shown in Fig. 7 is
fully consistent with the results discussed in sections §3.1 and §3.2. For
example, the increase of the average distances as we move from the 5 A
matrix, to 6 A, and to 7 A (going from mostly blue colors to mostly
yellows in Fig. 7), is consistent with the tighter and higher density dis-
tributions seen in Fig. 5: Higher values of frequencies (as seen, for
example, in Fig. 5(c)) lead to larger on average Euclidean distances,
leading to the systematic trend observed in Fig. 7. To put this in
numbers, Table 2 shows the averages, standard deviations and maximal
distances recorded for the three distance matrices shown in Fig. 7.

The second important feature of these matrices concerns their in-
ternal consistency (which, however, is more difficult to discern due to
their relatively low contrast of the heatmaps). Closer examination of the
graphs in Fig. 7, however, does show that the patterns of small/large
distances (dark/light colors) is more-or-less the same irrespectively of
which matrix is being examined. To put this observation in numbers, we
compared these three matrices by calculating the values of the linear
correlation coefficient between all possible pairwise combinations. The
comparison of the (5 A matrix) vs. (6 A matrix) gave a value of the linear
correlation coefficient of +0.86, the 6 A vs. 7 A comparison gave a value
of +0.93, and the 5 A-7A combination a value of +0.76. The fact that the
matrices are so similar and internally consistent is reassuring: it implies
that the subsequent calculation of dendrograms is robust and not highly
sensitive to the value of the averaging radius. The lower correlation for
the 5 A-7A pair, combined with the value of +0.93 for the 6 A-7A pair
indicates the information content of the matrices has stabilized
(converged) once we reach the 6 A radius. For this reason, all further
calculations reported in this communication were based on the matrix
calculated with the 6 A averaging radius [diagrams (b) and (e) in Fig. 7].

Fig. 8(a) shows the dendrogram obtained by performing hierarchical
clustering of the 6 A distance matrix using the R package for statistical
computing. Hierarchical clustering produced well-separated clusters of
structures, with the individual clusters having similar atomic density
distributions and being of a size suitable for further statistical analysis.
Other clustering algorithms such as k-means and HDBSCAN have also
been tested, but failed to produce well-separated clusters (which is not
unexpected given the relatively uniform distribution of the raw data as
principal component analysis clearly indicated, see Fig. 6). However, k-
means and HDBSCAN did provide additional information on outliers or
small groups of structures with common characteristics.

The fact that the dendrogram is well-structured does not alleviate the
problem of how to select the cutoff distance (‘height’) needed for cluster
definition. Using the data shown in Table 2, a cutoff of (mean-+2c) for
the 6 A matrix would have given a value for the cutoff of 0.15 units. We
have elected to slightly lower this number to 0.14 units in order to
differentiate between the two clusters that their lineage separated at that
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panels (d,e,f) are the same matrices but after removal of the 100 most distant
structures to allow visualization of smaller distances in the matrices.

Table 2
Statistics for the three distance matrices shown in Fig. 7.

Matrix Average distance Standard deviation Maximum distance
R=54 0.05 0.02 0.29
R=6A 0.07 0.04 0.35
R=74 0.10 0.06 0.47

height (these are the clusters shown in purple and cyan in Fig. 8(b), the
2nd and 3rd from the left). This selection resulted to a total of 12 clus-
ters. All further analyses discussed below will be referred to these
clusters.

Examination of the dendrogram indicates that these 12 clusters vary
significantly not only in size, but also on their distance separation (the
‘height’ of their last common ancestor). To be able to focus on the distant
clusters (which are the most informative), we decided to quantify the
distances between these 12 clusters by calculating a Z-score matrix (one
Z-score for each possible pairwise cluster combination).

To perform this calculation, we started by fitting the atomic density
distributions of the proteins that belong to each cluster to a Gaussian
(see Fig. 9(b) for a pictorial explanation of the procedure). Once the
means and standard deviations were available for each cluster, the Z-
score matrix could be constructed, and used for another round of hier-
archical clustering. The resulting dendrogram (this time showing re-
lationships between clusters of proteins) is shown in Fig. 9(a).

The availability of this dendrogram, and after exclusion of clusters
with less than 100 members, allowed us to focus on just five clusters of
proteins that demonstrate significant deviations between them. Statis-
tics for those five clusters are shown in Table 3. Fig. 9(b) and (c) show an
explicit (raw data-based) comparison between the density distributions
of proteins that belong to clusters 1, 4, 5 and 6. These graphs clearly
indicate the presence of significant deviations at the raw-data level, with
two clusters showing a shift to lower densities (clusters 1 & 4), and two
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Table 3
Statistics for the five clusters of interest sorted on the basis of their median
atomic density.

Cluster Sample size Median density (Dalton/A%)
4 344 0.77
1 5813 0.79
3 7045 0.81
5 2821 0.84
6 400 0.85

showing a shift to higher densities (clusters 5 & 6).

One important question at this point, is whether the differences of
the distributions seen for example in Fig. 9(b) are due to the presence of
ligands containing heavy atoms, or whether they reflect genuine dif-
ferences in the packing of atoms. To tackle this issue, we recalculated for
clusters 4 & 6 the protein density distributions, but instead of using units
of “Daltons per cubic Angstrém”, we calculated the distributions in units
of “atoms per cubic Angstrém”, thus ignoring the atomic weights of the
atoms involved. The results from this calculation are shown in Fig. 9(d).
Comparison between panels (b) and (d) in this figure indicates that a
genuine difference of the atomic packing of the proteins that belong to
these clusters appears to be present (and is not just systematic differ-
ences in the presence of ligands that lead to the observed differences). In
the sections that follow we present some indications concerning the
source of the observed systematic density deviations.

3.4. Structural implications of the atomic density distributions

In this section we examine the relationships between the density
distributions we obtained above versus structural characteristics of the
respective proteins such as size, secondary structure, temperature fac-
tors, and abundance of water molecules.

The first observation is that the median distribution has a wider
spread (it is more scattered) and a right-skew for smaller proteins, see
Fig. 10. Additionally, it appears that the number of residues is weakly
anti-correlated with the median atomic density. This weak anti-
correlation is quantified by the value of the spearman coefficient
which is equal to —0.18 for the 6 A data, and —0.27 for the 5 A radius
data. This finding is in good agreement with data from other studies
which indicated that larger proteins tend to be packed more loosely than
smaller ones [51,52]. Examination of the scatter plot in Fig. 10(b), in-
dicates that as the number of amino acids increases, the variance of the
median density values decreases. This finding may indicate the presence
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of systematic structural/thermodynamic or evolutionary constraints
that make a tight atomic packing of larger proteins uncommon. To put
this observation in numbers, we divided the sample based on the
quartiles of the residues. The median and standard deviation values of
each quartile are shown in Table 4. There is a pattern in both metrics
when going from samples representing small proteins to samples rep-
resenting large structures, with both median and standard deviation
decreasing in larger structures. Small proteins seem to have increased
variability when it comes to packing, as indicated by their wider density
limits. This finding may align well with the conclusion of a previous
study that “Proteins are not optimized by evolution to eliminate packing
voids” [52]. It is also in good agreement with an additional study, which
showed a reduction in the range of density values in larger proteins. In
their analysis small proteins exhibit a broad range of packing densities,
varying from 0.67 to 0.87, while for large proteins densities range from
0.69 to 0.74 [53].

Furthermore, and in terms of molecular evolution, it is expected that
archaic proteins would be small size and evolutionarily actively selected
to be resistant to thermal denaturation and unfolding, properties that
imply the presence of increased packing density and stability. This
increased stability is also known to be associated with an increased
resistance to proteolysis [54,55]. With the emergence of larger proteins
within the progressively more complex and compartmentalized cellular
environment, the evolutionary pressure to maintain dense and stable
packing was reduced, and flexible and less well-packed proteins
emerged [56].

Among the rest of the factors characterizing crystallographically
determined protein structures, the abundance of ordered water mole-
cules, and the mean value of the atomic temperature factors (“B-fac-
tors”) were found to be strongly correlated with atomic density. The B-
factor is a measure of an atom’s displacement about their mean position,
and it provides a measure of the flexibility and stability of the structure
[57,58]. Ordered water molecules, on the other hand, become

Table 4
Median and standard deviation values in groups of structures with different size.

Size group Median (Dalton/ Standard Deviation (Dalton/
A3 A3

51 < aminoacids <182 0.822 0.020

182 < aminoacids <281 0.818 0.018

281 < aminoacids <406 0.817 0.017

406 < aminoacids <664 0.814 0.017

664 < aminoacids <4682 0.812 0.016

(b)
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Fig. 10. Protein size versus atomic density. (a) Scatter plot with regression line for number of amino acid residues vs. median density. The Spearman correlation is
—0.18. (b) Scatter plot of the corresponding standard deviations. Notice the change of scale in the two graphs.
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immobilized on the surface of stable structures. In these stable struc-
tures, the reduced mobility of side chains promotes favorable in-
teractions and bond formation with water molecules. Thus,
crystallographic water abundance and B-factors can be used as in-
dicators of stability, to examine the relationship between stability and
packing. The relationship between packing density and these two factors
is shown in Fig. 11(c) and (d) respectively. Water abundance shows a
strong positive correlation with median density values (Pearson +0.76,
Spearman +0.78), indicating that the more densely packed a structure
is, the more crystallographic waters are likely to be resolved.
Conversely, the median of B-factors shows a pronounced
anti-correlation with the median density (Pearson —0.56, Spearman
—0.57), which indicates that the flexibility and displacements of atoms
in densely packed structures are reduced, compared to loosely packed
structures. This shows that packing density significantly affects struc-
tures, by providing an increased stabilization (lower B-factors), and thus
an increased probability of crystallographically observing ordered water
molecules.

We have also examined the data for the presence of putative corre-
lations between secondary structure composition and the atomic density
profiles. The program STRIDE [59] was used to assign secondary
structure state to each amino acid of the protein clusters identified in
section §3.3 and shown in Table 3, and to also calculate the per residue
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Solvent Accessible Surface Area (SASA). Although no outstanding
pattern was found connecting the SASA with our density analysis (see
Fig. S2 in Supplementary Material), this was not the case for the sec-
ondary structure: When the percentage of all secondary structure as-
signments was calculated across all structures of each cluster, significant
correlations were detected for B-strands and a-helices, but not for other
elements, such as turns and loops. The distribution of the elements’
percentages is shown in Fig. 11(a) and (b). Examination of these figures
indicates that as we move from loose (clusters 4 & 1) to dense (clusters 5
& 6) clusters, the percentage of p-strands is decreasing, while the per-
centage of a-helices is increasing. This is an indication that certain types
of structures such as, for example, coiled-coils may appear only in the
dense clusters. To investigate this, we collected the structure-related
keywords from the corresponding HEADER records of the PDB files.
The keyword “COILED” appeared in 6.5 % of the proteins of the dense
cluster, but not at all in the loosely packed cluster. We have also visually
inspected the coiled-coil structures that matched the keyword with
molecular graphics to validate the existence of the motif. Coiled-coils are
thus found to be structures with increased packing density. The
coiled-coil, a slightly twisted arrangement of two or more a-helices
frequently found in fibrous proteins, was proposed by Crick in 1953
[60]. These structures have a ‘knobs-into-holes’ type of packing in which
a hydrophobic core residue from one helix is packed in a “hole” formed
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Fig. 11. Relationship between packing density and secondary structure elements, water molecules abundance and atomic temperature factors. (a) Violin plot of the
percentage of residues contributing to p-strands across clusters. The order of clusters is sorted on decreasing density (dense clusters on the top, less dense towards the
bottom), (b) Violin plot of the percentage of residues contributing to a-helices across clusters. (c) Correlation between median density and abundance of water
molecules. (d) Correlation between median density and the atomic temperature factors (B-factors). See text for details.
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by four residues of the other helix, resulting in a tight side-by-side
arrangement of the hydrophobic core residues [61]. In addition, the
hydrophobic core present in this motif offers stabilization in these
structures [62]. Since some coiled-coils appear in fibrous proteins (e.g.
keratin, myosin, kinesin) with structural and motor roles, mechanical
stability is needed, in order to function properly. This stability, espe-
cially when accompanied by large internal cavities (to store substances)
in polymeric coiled-coil domains, makes these motifs ideal for thera-
peutic applications in the form of efficient drug delivery systems. Lastly,
the simplicity and structural robustness of this motif makes it ideal for
many other key biological processes such as transcription and commu-
nication [63].

We extended this keyword-based procedure beyond coiled-coils, and
we calculated percentages of all possible PDB-derived keywords be-
tween the five clusters shown in Table 3. We then isolated those with a
differential abundance in the various clusters. The one keyword that
stands-out in this procedure is the keyword “CYTOCHROME” which
appeared in 5.25 % of the proteins of the dense cluster, but not at all at
the less densely packed clusters. Cytochromes form a diverse group of
proteins with only a few features in common. They all contain proto-
heme IX or one of its derivatives and function in electron transport [64].
Packing density is a crucial parameter for effective electron transport
[65,66]. It has been shown that even slight reductions in the distances of
through-space jumps in electron transport pathways, or enhancements
in atomic packing density, can significantly accelerate the rate of
transfer [67]. Our data are in good agreement with those observations as
indicated by the over-representation of cytochromes in the dense
clusters.

3.5. Functional implications of the atomic density distributions

In this last section of our analysis we attempt to identify and char-
acterize possible relationships between the atomic density distributions
and the functional properties of the respective proteins. We aimed to
explore whether certain families of proteins show a detectable prefer-
ence for a loose or dense packing in order to function properly. For that
purpose, we collected the classification terms from the HEADER area of
each PDB file and calculated the abundances for each of the clusters we
described in section §3.3. Results are shown in Fig. 12.

It can be seen that the distribution of protein families across clusters
is not uniform. Instead, certain groups appear in higher percentages in
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specific density clusters. Since cluster sizes and total family abundances
vary, two different normalization approaches were applied to get com-
parable percentages. For Fig. 12(a), the abundance of each family in a
cluster was divided by the total abundance of the family across the
sample of the 5 clusters (so percentages are comparable only within each
cluster). We can see that Hydrolases have a higher percentage in cluster
5 (dense cluster) compared to Transferases, whereas in cluster 1 (loose
cluster) the percentage of Transferases is higher than the one of Hy-
drolases. For Fig. 12(b), the abundance of each family in a cluster was
divided by the total abundance of the 4 families within this cluster and
thus, family percentages are directly comparable across clusters. We can
see that ligases and transferases prefer loose clusters, while hydrolases
the denser ones. For oxidoreductases there is a slight preference for the
average cluster (cluster 3). Furthermore, the electron transport family
which was seen increased in the dense clusters does not appear in the
plot. This family includes cytochromes, that were analyzed in a previous
section. Other known protein families with no significant changes across
clusters do not appear in the plot.

The observed differences across protein families indicate that
through protein evolution, a variation in packing density occurred, and
that this variation is linked with the functional properties of the
respective protein families. Multiple studies have noted that the emer-
gence of new enzymatic specificities is often linked to a decrease in the
protein’s thermodynamic stability, indicating the presence of a trade-off
between gaining new enzymatic functions and maintaining stability
[68-71]. A fine balance between stability and activity is essential for
enzymes to function optimally. However, the extent of this trade-off
across different protein regions and its dependence on environmental
conditions remains unclear [72]. It is also important to mention that
enzymes catalyzing reactions with relatively simple mechanisms (for
example, hydrolysis) were likely to be one of the earliest to evolve. This,
alongside the fact that earlier proteins were probably more tightly
packed (see previous section), is connected with the question of whether
hydrolases were among the first protein classes to be established in
terms of molecular evolution. In addition, transferases, which transfer
non-water functional groups, are able to prevent the mechanistically
similar process of hydrolysis in the cellular environment, where water is
more abundant than any other substrate [73,74]. Some transferases,
which are seen to prefer a looser packing, could share a common
ancestor with hydrolases especially when considering the function/st-
ability trade-off and their similar reaction mechanism. This discussion,
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Fig. 12. Distribution of protein families across the various clusters. In both of these diagrams, low density clusters are to the left, high density clusters to the right.
Panel (a) shows how the members of a given protein family are distributed across all five clusters. The scaling is such that summing all frequencies for any given
family adds-up to 100 %. This diagram has not been corrected for cluster size, which explains the marked differences observed. Panel (b) shows the relative dis-
tribution of protein families on a per-cluster basis (and not across all clusters as in panel (a)).
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however, remains largely speculative and should be viewed as an
open-ended question, requiring further studies on protein evolution to
gain a better understanding of the underlying molecular evolution
mechanisms.

4. Discussion

In this work, we explored the role of packing in proteins, by
analyzing a large sample of crystallographically resolved, in silico hy-
drogenated and hydrated protein structures. Our results agree with and
further validate previous studies on the relationships between packing
and stability on one hand, and packing and protein size on the other.
Small proteins are seen to have a wider variability of density values, but
in general are more compact than larger ones. The reduced density of
larger proteins, may result from biological constraints, as discussed in
§3.4. The correlations between median density and the abundance of
crystallographic water molecules and B-factors, shown in Fig. 11, sup-
ports existing knowledge concerning the effect of packing on stability. It
also indicated that our algorithm for calculating atomic density distri-
butions provides quality metrics that can be used to classify the packing
level of a protein structure.

Furthermore, search for structural patterns across clusters of interest,
revealed special folding patterns such as coiled-coils and cytochromes,
with a high percentage in the most dense cluster. Both cases are char-
acteristic examples of how a protein’s atomic density may be connected
with the functional requirements. Mechanical stability (coiled-coils) and
effective electron transport (cytochromes) actively promote a denser
packing which is probably needed for them to function properly.

Regarding the functional implications of atomic density, we observe
a preference for some protein families on specific density clusters. This
further supports the packing-function relationship we discussed for
coiled-coils and cytochromes. Except for the stability aspect, which
plays a crucial role in determining a protein’s function, the close prox-
imity of atoms within a structure may also be an important factor for
some enzymatic reactions to happen. This is because density of packing
may affect the volume and flexibility of active sites and determine which
substrates have the appropriate size to be accommodated and stabilized
inside them. Following this point of view may provide further insight
into how transferases minimize their hydrolytic activity given that water
is the most abundant substrate in the cell enrivonment: Transferases
with their preference being for less well-packed structures, may be un-
able to interact with and stabilize water molecules. Conversely, hydro-
lases could immobilize water molecules more easily, as they are more
stable themselves and the distances between side chains of their struc-
tures tend to be smaller.

Although no similar work of functionally clustering proteins based
on their atomic density profiles exists, there are several studies that aim
to group proteins from other features and reveal functional insights. For
instance, sequence-structure-function relationships can be visualized
through clustering of protein networks, providing a unified view of how
proteins are organized and classified across various databases. Using
methods such as minimum span clustering (MSC), thousands of enzymes
have been systematically grouped to investigate discrepancies between
classifications based on sequence, structure, and function [75]. More
recently, structural alignment-based approaches such as Foldseek
cluster have enabled the clustering of hundreds of millions of protein
structures, including all entries from the AlphaFold database. This
large-scale effort identified over two million non-singleton clusters, a
substantial fraction of which lack existing annotations, suggesting the
presence of previously undescribed or species-specific folds [76].
Beyond global clustering, recent advances in deep learning have facili-
tated finer-grained functional grouping. Embedding-based representa-
tions derived from protein language models such as ProtBERT and
PB-Tucker allow the subdivision of protein superfamilies into more
functionally consistent subfamilies [77]. At an even more granular level,
microenvironment-based clustering approaches have been proposed to
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rapidly group millions of local residue environments across thousands of
protein chains, revealing recurrent spatial motifs associated with shared
structural or functional roles [78].

To conclude, we have exhaustively analyzed and compared density
profiles for an extended set of more than 21,000 proteins. Our analysis
and subsequent all-to-all comparison of those distributions allowed us to
quantitatively characterize structural and functional patterns present in
these distributions, and to validate and further elaborate previous re-
sults in the field. Based on our analysis, we can corroborate the general
view on the subject of protein density distributions: although systematic
patterns of differences in atomic density are indeed present, these are not
on a fixed one-to-one correspondence with structural and functional
characteristics of the respective proteins. In a sense, the variability of
atomic density that we observe in present-day proteins may be viewed as
a remnant of the molecular evolution processes that led to those pro-
teins, and not the direct result of a presently active selection process.
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