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Abstract

We have previously shown that Good-Turing statistics can be applied to molecular
dynamics trajectories to estimate the probability of observing completely new (thus
far unobserved) biomolecular structures, and showed that the method is stable,
dependable and its predictions verifiable. The major problem with that initial
algorithm was the requirement for calculating and storing in memory the two-
dimensional RMSD matrix of the currently available trajectory. This requirement
precluded the application of the method to very long simulations. Here we describe a
new variant of the Good-Turing algorithm whose memory requirements scale linearly
with the number of structures in the trajectory, making it suitable even for extremely
long simulations. We show that the new method gives essentially identical results
with the older implementation, and present results obtained from trajectories
containing up to 22 million structures. A computer program implementing the new

algorithm is available from standard repositories.

Keywords : Molecular Dynamics Simulation, Biomolecular Simulation,
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1 Introduction

Biomolecular systems are so complex that it is practically impossible for a simulation
to sample all feasible structures of a macromolecule. In most cases, however, faithful
sampling of all accessible structures is not needed, and attempting to do so would be
a waste of computational resources. For example, if the question that we wish to
answer —given a trajectory— is whether a protein structure is stable at a given
temperature, then what we need is an estimate of the probability of observing
significantly different structures if the simulation was continued. If we could
somehow establish, for example, that the probability of observing a structure that
differs by more than 1.0A RMSD from those already observed is less than 107, then
we could safely conclude that the structure is indeed stable, and that continuing the
simulation is unnecessary. What is needed, is a method which based on the
information contained in an existing simulation, would estimate the probability of
observing completely new (thus far unobserved) structures. We have previously
described such a method’, which is based on the application of Good-Turing
statistics>® to molecular dynamics trajectories and showed that the method is stable,

dependable and its predictions verifiable.

We will introduce the subject of using Good-Turing statistics for estimating the
uncertainty of molecular dynamics simulations starting from the end, ie. by first

presenting the form of the results produced by this method".

Fig.1 shows the end-product of the Good-Turing analysis in the form of the results
obtained from four independent molecular dynamics trajectories of different proteins
and peptides. These four simulations cover the whole range from very stable NpT
simulations performed in folded state (ROP protein*), to extensive folding
simulations of two peptides (CLNo025°, 6NM2°) and one mini-protein (FipWWwW
domain’), and cover simulation lengths ranging from 6.6 to 20 ps. The following
paragraphs discuss the form of these graphs, the information content they carry, and

their application in quantifying the uncertainty of molecular dynamics simulations.

What the Good-Turing method does is to estimate —based on a given trajectory— the
probability (P) of observing a new structure that differs by more than (x) A RMSD

from all structures that we already observed in the given trajectory. All curves start



with very high probability values for low RMSDs which is equivalent to saying that “it
is very probable that if you extend the simulation you will observe structures that are
very similar to those you already observed”. But careful examination of Fig.1 shows
that even in this low RMSD part of the diagram, the curves differ significantly
between different simulations. For example, the folding simulations of the CLNo25
& 6NM2 peptides start at an RMSD of ~0.2A, whereas ROP and FipWW start
significantly later at RMSDs of ~0.5A or more. Even this seemingly small difference
is, however, meaningful : the two peptides are very short, of the order of ten residues,
whereas ROP, for example, is a 126-residue homodimer. The differences in the low
RMSD part of the graphs signify what we already expected, ie. that it is far more
probable to observe very low RMSDs when you have a small number of residues,

than it is when you study a reasonably large protein.
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Fig.1 Good-Turing probability curves of four different molecular dynamics trajectories. See
text for an extensive discussion of this Figure.

The exact form of the graphs and how (and at what RMSD values) they approach
small probabilities is a direct quantification of the structural uncertainty that is left
unaccounted for by the already recorded trajectories. For example, the differences
between the ROP and FipWW curves clearly indicate that for the simulation of ROP
(which was performed in the folded state) very little uncertainty remains

unaccounted for by the current trajectory, whereas the curve for the FipWW folding
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simulation leaves little doubt that completely different structures will be observed if
the simulation is extended. It is worth noting that the method as it stands now, can
also provide an estimate for the answer to the following question : “If we extend the
simulation by doubling the simulation time, what RMSD should we expect for the
most different newly observed structure ?”. To continue with the current example, for
the ROP simulation the method estimates that if we double the simulation time (from
20us 10 40us), then the most different structure that we should expect to observe
would differ by no more than approximately 0.954 RMSD from any of the already
observed structures (in the first 20us). In contrast, for the folding simulation of the
FipWW protein, the method estimates that if we double the simulation time (from
15.5us to 31us), then the most different structure that we should expect to observe
may differ by as much as 10.98A RMSD from any of the already observed structures.
We believe that this expected RMSD of ~11A for a mini-protein with only 34-residues
satisfactorily captures the enormous configurational space available to folding

simulations.

As a last example of the information content of the Good-Turing probability curves,
we will discuss and compare the results obtained from the folding simulations of the
CLNo25 and 6NM2 peptides (blue and green curves in Fig.1). These two peptides
are comparable in length (10 and 9 residues respectively), both simulations were
performed using adaptive tempering to enhance sampling, and the timescales of the
two trajectories are comparable (at 6.6 and 10 us respectively). Nonetheless, the
Good-Turing results differ significantly : the CLN025 peptide appears to have better
sampling at low RMSD values, but worse (higher probabilities) for larger RMSDs
which creates a cross-over point at approximately 1.2A. The explanation for this
behavior lies in the pronounced differences of the folding landscapes and structural

stabilities of the two peptides as shown in Fig.2.
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Fig.2 Dihedral PCA-derived folding landscapes (upper row) and RMSD matrices (lower row)
for the CLNo25 and 6NM2 peptides. The dPCA-derived landscapes are the log density
distributions of the projection of the trajectories on their respective top two principal
components (high density — dark blue). For the RMSD matrices the origin is at the upper
left-hand side corner, and the color coding ranges from dark blue (very low RMSDs, peptides
stably folded), through yellow (medium RMSDs), to dark red (large RMSDs, peptides
unfolded).

CLNo25 is a very fast and stable folder®, which spends most of the simulation time
visiting repeatedly its native [B-hairpin structure. This can be seen from its
corresponding RMSD matrix in Fig.2 which is characterized by the
overabundance of very low RMSD values (corresponding to blue colors in these
diagrams). Unfolding events (yellow-red colors) are short lived and quickly lead to
re-folding events. This over-stabilization of the native structure is brought forward by
the dihedral PCA-derived folding landscape®* which is essentially a single minimum

landscape (remembering that the folding landscapes are on a logarithmic scale).
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6NM2 on the other hand, is a flexible and mostly disordered peptide . It does have a
more stable helical conformation which is visited twice during the simulation (the
prominent blue-colored areas in the lower panel of Fig.2), but on the whole the
peptide spends most of its simulation time visiting new conformations. In the light
on this analysis, the predictions made by the Good-Turing probability curves are
meaningful. For example, the higher probabilities at very low RMSDs for the CLNo25
peptide encode the evidence obtained from its simulation, ie. that the peptide is so
stable that it is very likely to repeatedly visit its native structure (which will have very
low RMSD from the structures already observed). 6NM2 on the other hand, is highly
flexible and is rightly expected to visit many new different structures, leading to the
translation of the curve to higher RMSDs. The differences between the two curves at
higher RMSDs are also consistent with our expectations : 6NM2 by being mostly
disordered, has better sampled its configurational space, considering also the longer
simulation time, and that it is a shorter peptide compared to CLN025. The CLNo25
peptide on the other hand, by being mostly folded, has not extensively explored its
folding landscape which leads to significant probabilities for higher RMSDs.

In the sections that follow we present the technical aspects of the calculations
involved, discuss the practical application of the computer program that we

distribute, and close by an extensive discussion of its perceived limitations.

2 Algorithm

The essential result of the Good-Turing frequency estimation that we need for the
application to molecular dynamics trajectories is the following : given a pool of N
biomolecular structures that we observed in a trajectory, the probability P of
observing a thus far unobserved ‘species’ (i.e. a thus far unobserved structure) is
given by

P=N,/N

where N, is the number of distinct molecular conformations for which only one
individual structure was observed. This presentation immediately illustrates the

major problem with the application of the method : molecular dynamics trajectories
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are essentially continuous in the configurational space, and are not organized in the
form of distinct ‘species’. The important contribution' was to realize that what is
needed is a sub-sampling of the original trajectory in such a way that successive
structures (in this sub-sampled trajectory) are not mechanistically correlated (due to
the short time interval used for recording structures in the original trajectory) and
can be, thus, be treated as “distinct species from a distribution containing a currently
unknown number of species”. The procedure for determining this sub-sampling

factor from a molecular dynamics trajectory is discussed in the next section.

Once the required sub-sampling factor is known, the procedure as originally

described is complete :

1. The sub-sampled RMSD matrix is extracted.
2. This sub-sampled-RMSD matrix is treated as a distance matrix, and a
dendrogram is constructed using established hierarchical clustering methods.

3. The tree is cut at successively higher RMSD levels, and for each such cut the
number of clusters with just one member (X,) is calculated, as well as the
corresponding probability P = N, /N.

4. The final probability curve of P vs. RMSD is calculated.

This procedure was shown to work well, and to give dependable, consistent and
verifiable results’. The major problem with its application, however, is the very
significant memory requirements arising from the need to construct the full two-
dimensional RMSD matrix of the trajectory. We believe that the need to calculate,

store, and analyze the 2D RMSD matrix can be altogether avoided as follows.

Imagine examining an isolated row (say, the 1000th row) taken from the 2D RMSD
matrix. This row contains all RMSD values between the corresponding (1000th)
structure and all other structures recorded in the trajectory. The maximum of these
RMSD values (ie. the maximum of the corresponding row from the matrix) is the
answer to the following question : “Using as a reference structure the 100oth
structure recorded, find the value of the RMSD for the structure that differs the most
from this reference”. If we now calculate the maximal RMSDs from all rows of the
matrix and sort them numerically, then the largest value in this sorted list will
correspond to the maximum RMSD observed in the whole 2D matrix, and will thus

correspond to the one structure that differs the most from all the other structures
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observed. Imagine now that we had somehow calculated a dendrogram from the
RMSD matrix and produced a tree (as described in steps 2 & 3 above). Then, cutting
this tree at this (max-of-max) RMSD we found, would give one and only one cluster
with just one member for the given RMSD value (corresponding to the one structure
that differs the most from all the other structures). Clearly, this RMSD should be
associated with a probability of P = 1/N which gives us the first point of the (P vs.
RMSD) curve. The second largest RMSD from the sorted list will correspond to the
next bifurcation point of the (binary) tree, and thus the second largest RMSD should
be associated with a probability of P = 2/N. Continuing this procedure we associate
each of the per-row maximal RMSDs with its corresponding probability value and we
thus construct the sought (P vs. RMSD) curve. The important thing to notice here, is
that in order to calculate this list of maximal RMSDs (one per line), we do not need to
store and process the whole matrix. We only need to calculate isolated lines from the
matrix (one at a time) and only store one number (the maximum RMSD) from each

line. In other words, we trade speed of execution for physical memory requirements.

To summarize, the new algorithm that altogether avoids the calculation of the whole

2D matrix is the following :

1. Determine the sub-sampling factor (s) needed. See next section for how this is

achieved.

2. For each structure in the trajectory with a step of (s), use this structure as
reference, calculate the RMSDs between this structure and all other recorded
structures, and from all those RMSDs only keep and store the maximum RMSD
observed.

3. Sort in descending order this list of (IN) maximal RMSDs.

4. Successively associate each of these maximal RMSDs with a probability of P =
i/N where (i) is the one-based index of the RMSD under examination in the
sorted list.

5. Emit the final probability curve of P vs. RMSD.

Depending on the sampling factor (s), this procedure is repeated for different initial
offsets within the interval defined by (s). The result is not a single curve, but a family
of curves (as shown in Fig.1) whose variance provides an estimate of the uncertainty in

the probability estimation procedure.



Fig.3 shows a direct comparison between the Good-Turing curves obtained from the
old and the new implementations for the case of two independent trajectories (the
ROP and CLNo25 simulations shown in Fig.1). The excellent agreement between the
two methods is notable especially when considering that one method is based on
constructing the 2D matrix and perform hierarchical clustering, whereas the second
only involves a sorting of the maximum-per-line RMSDs. Based on our calculations
with tens of trajectories* 7>, this level of agreement is not always attainable, but the
reason for that probably lies with the different methods used for determining the sub-

sampling factor (s) discussed in the next section.
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Fig.3 Comparison of the results obtained from classical Good-Turing (green and orange
curves) versus the results obtained from the new algorithm (blue and red scatter plots) for two
independent trajectories. See text for details.
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3 Implementation

The algorithm described in the previous section is so simple and straightforward that
no further elaboration of its implementation details is required. What must be
discussed, however, is the procedure needed for estimating the value of the sub-
sampling factor (s) discussed above. This factor is the step/stride (along the original
trajectory) needed to guarantee that successive structures are not mechanistically
correlated due to the very short time interval between them. The principal idea for
estimating (s) is that it will correspond to a time interval (6t) so long that the
maximal RMSDs observed between all possible pairs of structures separated by (6t)

stop increasing and converge to a stable plateau. The algorithm is the following :

1. Starting from a small value of a time interval (6t), calculate all possible values
of RMSD between all possible pairs of structures separated by this time interval.
Note that these RMSDs are located on a superdiagonal of the RMSD matrix (the
one corresponding to the chosen value of 6t).

2. Sort these RMSD values, and only keep the largest.

3. Repeat the procedure for different offsets within the given interval (to obtain a
mean and a standard deviation for the given 6t).

4. Repeat the procedure for increasing values of (6t).

5. In the graph of (6t vs. RMSD) locate the point (s) at which the RMSDs reached a

plateau and converged.

Fig.4 shows the form of the primary results obtained from this procedure for the case
of the 6NM2 peptide discussed above (note that this Figure shows the raw data before
attempting to determine the value of s). This diagram clearly illustrates why the
determination of the sampling factor (s) is probably the single most difficult and weak
step of our algorithm : In the presence of noise and of different time scales,
determining the point at which the RMSDs converge not only is not straightforward,
it may even be questionable. For a solid example, examination of Fig.4 shows that
there are two points where the RMSDs reach an apparent plateau, the first at the
~110th superdiagonal, the second at the ~230th superdiagonal. Although in this
example we can easily discern the general trend (and correctly conclude that the
second solution is the correct one), encoding this algorithmically leads to solutions

that are sensitive to noise.
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In the previous version of our procedure' we tackled this problem by fitting the raw
data to a generalized limiting diode equation (black line in Fig.4) and then
attempting to identify points that deviate significantly from the curve (towards higher
RMSDs). In this version of the algorithm we have resorted to using a different

procedure which we believe is more stable and predictable.
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Fig.4 Determination of the sampling factor : Raw data. This graph shows the primary data
obtained from a folding simulation of a peptide. The horizontal axis corresponds to
successive superdiagonals of the RMSD matrix (and, thus, corresponds to increasing time
intervals 6t), the vertical axis are the maximal RMSDs observed for the given (6t). Because
for each (6t) different offsets within the interval are being tested, the result is not single
RMSD value, but a distribution which is characterized by a mean and a standard deviation as
depicted here. The black line is the non-linear fit of a generalized limiting diode equation, see
text for details.
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The principal idea with the new method we distribute is based on a piecewise linear
segmentation of the primary data, followed by a heuristic search of the longest
segment that fulfills predetermined criteria of length and slope. The piecewise linear
segmentation is performed with the R package dpseg()*"**, and Fig.5 shows an
example of how the primary data (shown in Fig.4) would have been interpreted. In
the case examined here, our heuristic implementation would have correctly selected

the beginning of the last (blue) segment as the sampling factor for the Good-Turing

analysis.
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Fig.5 Determination of the sampling factor : Linear segmentation. This graph shows an
example of how the primary data (identical with those shown in Fig.4) can be interpreted in
terms of successive linear segments obtained through the dynamic programming approach
encoded in the R package dpseg(), see text for details. In this example, our algorithm would
have picked a sampling factor corresponding to the beginning of the last (blue) segment.
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4 Discussion

We are convinced that the probabilistic Good-Turing estimates such as those shown
in the diagrams of Fig.1 are a useful addition to the established set of procedures*’
aiming to quantify the uncertainty of molecular dynamics trajectories of biological
macromolecules. The method appears to be dependable, and the results are
meaningful and verifiable. Having said that, we must emphatically note that there is
a fundamental weakness hidden in our procedure that can not be bypassed
algorithmically : Good-Turing statistics are strictly valid only for the case of sampling
distinct objects from a pool containing an unknown number of such objects. By
selecting a single sampling factor (s) for our analysis, we are essentially selecting a
specific timescale of the structural events that we wish to analyze. The fact that we
have not detected artifacts in our tests with a multitude of trajectories, is probably the
result of how analysts design simulations. For example, if the aim of our analysis is to
quantify the uncertainty of the conformations of the amino acid residues located in
the active site of an enzyme, then it is highly unlikely that we would have elected to
perform the simulation at a temperature where the whole enzyme may unfold within
the timescale of the simulation. To put this differently, we have not observed artifacts
from the mixing of different timescales not because they are not present, but because
we actively design our simulations in such a way as to examine and analyze
predetermined timescales that are relevant for the question in hand. Additionally,
and because our algorithm will by default select the longest timescale consistent with
the structural changes observed, it also works well with folding simulations (which
necessarily contain all shorter timescales), with the silent assumption being that
when you do a folding simulation, you do not care about structural details such as, for

example, the stability of the conformations of a given tryptophan residue.

This discussion about the mixing of different timescales in simulations also explains
the difficulties with the technically weakest part of the program that we distribute,
namely the determination of the sampling factor (s) as discussed in section §3. We
believe that the crux of the matter is that when well-separated timescales do mix in
the same trajectory, then what we are trying to interpret in terms of a ‘growth’ curve
with a single plateau, may in reality contain multiple plateaus corresponding to the

different timescales present. As already mentioned, the current version of our
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algorithm will by default use the longest timescale observed (which is almost always
the safest course of action since it avoids underestimating the structural uncertainty

that remains unaccounted for by the existing simulation).

To conclude, the application of Good-Turing statistics for quantifying the uncertainty
of molecular dynamics simulations appears to be a powerful technique. Being able
to quantitatively answer questions like “Will doubling the simulation time from 20pus
to 4o0us significantly affect my conclusions ?” is to our mind a significant step towards
solidifying the wvalidity of the conclusions drawn from molecular dynamics

simulations.

Software Availability

All calculations reported in this communication were performed with free open
source software which is immediately available for download via

https://github.com/glykos/GoodTuring and https://github.com/glykos/carma.
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