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Abstract

We have previously shown that Good-Turing statistics can be applied to molecular

dynamics trajectories to estimate the probability of observing completely new (thus

far  unobserved)  biomolecular  structures,  and  showed  that  the  method  is  stable,

dependable  and  its  predictions  verifiable. The  major  problem  with  that  initial

algorithm  was  the  requirement  for  calculating  and  storing  in  memory  the  two-

dimensional  RMSD matrix  of  the  currently  available  trajectory. This  requirement

precluded the application of the method to very long simulations. Here we describe a

new variant of the Good-Turing algorithm whose memory requirements scale linearly

with the number of structures in the trajectory, making it suitable even for extremely

long simulations.  We show that the new method gives essentially identical  results

with  the  older  implementation,  and  present  results  obtained  from  trajectories

containing up to 22 million structures. A computer program implementing the new

algorithm is available from standard repositories.

Keywords : Molecular Dynamics Simulation, Biomolecular Simulation,

Convergence,  Sufficient  sampling,  Uncertainty  of  simulations,  Protein  folding

simulations.
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1 Introduction

Biomolecular systems are so complex that it is practically impossible for a simulation

to sample all feasible structures of a macromolecule. In most cases, however, faithful

sampling of all accessible structures is not needed, and attempting to do so would be

a waste of computational resources. For example, if the question that we wish to

answer  —given  a  trajectory—  is  whether  a  protein  structure  is  stable  at  a  given

temperature,  then what we need is an estimate of the probability of observing

significantly different  structures  if  the  simulation  was  continued. If  we  could

somehow establish, for example, that the probability of observing a structure that

differs by more than 1.0Å RMSD from those already observed is less than 10-9, then

we could safely conclude that the structure is indeed stable, and that continuing the

simulation  is  unnecessary. What  is  needed,  is  a  method  which  based  on  the

information contained in an existing simulation, would estimate the probability of

observing completely new (thus far unobserved)  structures.  We have previously

described such a method1, which is based on the application of Good-Turing

statistics2,3 to molecular dynamics trajectories and showed that the method is stable,

dependable and its predictions verifiable.

We will introduce the subject of using Good-Turing statistics for estimating the

uncertainty of molecular dynamics simulations starting from the end, ie.  by first

presenting the form of the results produced by this method1.

Fig.1 shows the end-product of the Good-Turing analysis in the form of the results

obtained from four independent molecular dynamics trajectories of different proteins

and  peptides. These four simulations cover the whole range from very stable  NpT

simulations performed in folded state (ROP protein4), to extensive folding

simulations of two  peptides (CLN0255, 6NM26) and one mini-protein (FipWW

domain7), and cover simulation lengths ranging from 6.6 to 20 μs. The following

paragraphs discuss the form of these graphs, the information content they carry, and

their application in quantifying the uncertainty of molecular dynamics simulations.

What the Good-Turing method does is to estimate —based on a given trajectory— the

probability (P) of observing a new structure that differs by more than  (x) Å RMSD

from all structures that we already observed in the given trajectory. All curves start
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with very high probability values for low RMSDs which is equivalent to saying that “it

is very probable that if you extend the simulation you will observe structures that are

very similar to those you already observed”. But careful examination of Fig.1 shows

that even in this  low  RMSD  part  of  the  diagram,  the  curves  differ  significantly

between different simulations. For example, the folding simulations of the CLN025

&  6NM2  peptides  start at an RMSD of ~0.2Å, whereas ROP and FipWW start

significantly later at RMSDs of ~0.5Å or more. Even this seemingly small difference

is, however, meaningful : the two peptides are very short, of the order of ten residues,

whereas ROP, for example, is a 126-residue homodimer. The differences in the low

RMSD part of the graphs signify what we already expected, ie. that it is far more

probable to observe very low RMSDs when you have a small number of residues,

than it is when you study a reasonably large protein.

Fig.1 Good-Turing probability curves of four different molecular dynamics trajectories. See
text for an extensive discussion of this Figure.

The exact form of the graphs and how (and at what RMSD values) they approach

small probabilities is a direct quantification of the structural uncertainty that is left

unaccounted for by the already recorded trajectories. For example, the differences

between the ROP and FipWW curves clearly indicate that for the simulation of ROP

(which was  performed  in  the  folded  state)  very  little  uncertainty  remains

unaccounted for by the current trajectory, whereas the curve for the FipWW folding
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simulation leaves little  doubt that completely different structures will be observed if

the simulation is extended. It is worth noting that the method as it stands now, can

also provide an estimate for the answer to the following question : “If we extend the

simulation by  doubling  the simulation time, what RMSD should we expect for the

most different newly observed structure ?”. To continue with the current example, for

the ROP simulation the method estimates that if we double the simulation time (from

20μs το 40μs), then the most different structure that we should expect to observe

would differ by no more than approximately 0.95Å RMSD from any of the already

observed structures (in the first 20μs). In contrast, for the folding simulation of the

FipWW protein, the method estimates that if we double the simulation time (from

15.5μs το 31μs), then the most different structure that we should expect to observe

may differ by as much as 10.98Å RMSD from any of the already observed structures.

We believe that this expected RMSD of ~11Å for a mini-protein with only 34-residues

satisfactorily captures the enormous configurational  space  available  to  folding

simulations.

As a last example of the information content of the Good-Turing probability curves,

we will discuss and compare the results obtained from the folding simulations of the

CLN025 and 6NM2 peptides (blue and green curves in Fig.1). These two peptides

are  comparable  in  length (10 and 9 residues respectively),  both simulations were

performed using adaptive tempering to enhance sampling, and the timescales of the

two trajectories  are  comparable  (at  6.6  and 10 μs  respectively). Nonetheless,  the

Good-Turing results differ significantly : the CLN025 peptide appears to have better

sampling at  low RMSD values,  but  worse (higher probabilities)  for  larger RMSDs

which  creates a cross-over point at approximately 1.2Å. The explanation for this

behavior lies in the pronounced differences of the folding landscapes and structural

stabilities of the two peptides as shown in Fig.2.
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Fig.2 Dihedral PCA-derived folding landscapes (upper row) and RMSD matrices (lower row)
for  the  CLN025  and  6NM2  peptides. The  dPCA-derived  landscapes  are  the  log  density
distributions  of  the  projection  of  the  trajectories  on  their  respective  top  two  principal
components (high density  dark blue).→  For the RMSD matrices the origin is at the upper
left-hand side corner, and the color coding ranges from dark blue (very low RMSDs, peptides
stably  folded),  through  yellow  (medium  RMSDs),  to  dark  red  (large  RMSDs,  peptides
unfolded).

CLN025 is a very fast and stable folder5, which spends most of the simulation time

visiting  repeatedly  its  native  β-hairpin  structure. This  can  be  seen  from  its

corresponding RMSD matrix in Fig.2 which is characterized by the

overabundance of very low RMSD values (corresponding to blue colors in these

diagrams). Unfolding events (yellow-red colors) are short lived and quickly lead to

re-folding events. This over-stabilization of the native structure is brought forward by

the dihedral PCA-derived folding landscape8–12 which is essentially a single minimum

landscape  (remembering  that  the  folding  landscapes  are  on  a  logarithmic  scale).



7
\\

6NM2 on the other hand, is a flexible and mostly disordered peptide . It does have a

more stable helical conformation which is visited twice during the simulation (the

prominent  blue-colored  areas  in  the  lower  panel  of  Fig.2),  but  on  the  whole  the

peptide spends most of its simulation time visiting new conformations. In the light

on this  analysis,  the  predictions  made by  the  Good-Turing  probability  curves  are

meaningful. For example, the higher probabilities at very low RMSDs for the CLN025

peptide encode the evidence obtained from its simulation, ie. that the peptide is so

stable that it is very likely to repeatedly visit its native structure (which will have very

low RMSD from the structures already observed). 6NM2 on the other hand, is highly

flexible and is rightly expected to visit many new different structures, leading to the

translation of the curve to higher RMSDs. The differences between the two curves at

higher RMSDs are also consistent with our expectations : 6NM2 by being mostly

disordered, has better sampled its configurational space, considering also the longer

simulation time, and that it is a shorter peptide compared to CLN025. The CLN025

peptide on the other hand, by being mostly folded, has not extensively explored its

folding landscape which leads to significant probabilities for higher RMSDs.

In the sections that follow we present the technical aspects of the calculations

involved,  discuss the practical application of the computer program that we

distribute, and close by an extensive discussion of its perceived limitations.

2 Algorithm

The essential result of the Good-Turing frequency estimation that we need for the

application to molecular dynamics trajectories is the following : given a pool of  N

biomolecular  structures  that  we  observed  in  a  trajectory,  the  probability  P of

observing a  thus far  unobserved ‘species’  (i.e.  a  thus far  unobserved structure)  is

given by

P = N1 / N

where  N1 is  the  number  of  distinct  molecular  conformations  for  which  only  one

individual  structure  was  observed. This  presentation  immediately  illustrates  the

major problem with the application of the method : molecular dynamics trajectories
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are essentially continuous in the configurational space, and are not organized in the

form of distinct ‘species’. The important contribution1 was to realize that what is

needed is  a  sub-sampling of  the  original  trajectory  in  such a  way that  successive

structures (in this sub-sampled trajectory) are not mechanistically correlated (due to

the short time interval used for recording structures in the original trajectory) and

can be, thus, be treated as “distinct species from a distribution containing a currently

unknown number  of species”. The procedure for determining this sub-sampling

factor from a molecular dynamics trajectory is discussed in the next section.

Once the required sub-sampling factor is known, the procedure as originally

described is complete :

1. The sub-sampled RMSD matrix is extracted.

2. This  sub-sampled-RMSD  matrix  is  treated  as  a  distance  matrix,  and  a

dendrogram is constructed using established hierarchical clustering methods.

3. The tree is cut at successively higher RMSD levels, and for each such cut the

number of clusters with just one member  (N1) is calculated, as well as the

corresponding probability P = N1 /N.

4. The final probability curve of P vs. RMSD is calculated.

This  procedure  was  shown to  work  well,  and  to  give  dependable,  consistent  and

verifiable  results1. The  major  problem  with  its  application,  however,  is  the  very

significant memory requirements arising from the need to construct the full two-

dimensional RMSD matrix of the trajectory. We believe that the need to calculate,

store, and analyze the 2D RMSD matrix can be altogether avoided as follows.

Imagine examining an isolated row (say, the 1000th row) taken from the 2D RMSD

matrix. This row contains all RMSD values between the corresponding (1000th)

structure and all other structures recorded in the trajectory. The maximum of these

RMSD values (ie. the maximum of the corresponding row from the matrix) is the

answer  to  the following question : “Using as a reference structure the 1000th

structure recorded, find the value of the RMSD for the structure that differs the most

from this reference”. If we now calculate the maximal RMSDs from  all  rows of the

matrix  and  sort  them  numerically,  then  the  largest  value  in  this  sorted  list  will

correspond to the maximum RMSD observed in the whole 2D matrix, and will thus

correspond to the one structure that differs the most from all the other structures
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observed. Imagine  now that  we had somehow calculated a dendrogram from the

RMSD matrix and produced a tree (as described in steps 2 & 3 above). Then, cutting

this tree at this (max-of-max) RMSD we found, would give one and only one cluster

with just one member for the given RMSD value (corresponding to the one structure

that differs the most from all the other structures). Clearly, this RMSD should be

associated with a probability of  P = 1/N which gives us the first point of the (P vs.

RMSD) curve. The second largest RMSD from the sorted list will correspond to the

next bifurcation point of the (binary) tree, and thus the second largest RMSD should

be associated with a probability of  P = 2/N. Continuing this procedure we associate

each of the per-row maximal RMSDs with its corresponding probability value and we

thus construct the sought (P vs. RMSD) curve. The important thing to notice here, is

that in order to calculate this list of maximal RMSDs (one per line), we do not need to

store and process the whole matrix. We only need to calculate isolated lines from the

matrix (one at a time) and only store one number (the maximum RMSD) from each

line. In other words, we trade speed of execution for physical memory requirements.

To summarize, the new algorithm that altogether avoids the calculation of the whole

2D matrix is the following :

1. Determine the sub-sampling factor (s) needed. See next section for how this is

achieved.

2. For each structure in the trajectory with a  step of  (s),  use this  structure as

reference, calculate the RMSDs between this structure and all other recorded

structures, and from all those RMSDs only keep and store the maximum RMSD

observed.

3. Sort in descending order this list of (N) maximal RMSDs.

4. Successively associate each of these maximal RMSDs with a probability of  P =

i/N where (i)  is  the one-based index of  the RMSD under examination in the

sorted list.

5. Emit the final probability curve of  P vs. RMSD.

Depending on the sampling factor (s), this procedure is repeated for different initial

offsets within the interval defined by (s). The result is not a single curve, but a family

of curves (as shown in Fig.1) whose variance provides an estimate of the uncertainty in

the probability estimation procedure.
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Fig.3 shows a direct comparison between the Good-Turing curves obtained from the

old and the new implementations for the case of two independent trajectories (the

ROP and CLN025 simulations shown in Fig.1). The excellent agreement between the

two methods is  notable especially when considering that one method is  based on

constructing the 2D matrix and perform hierarchical clustering, whereas the second

only involves a sorting of the maximum-per-line RMSDs. Based on our calculations

with tens of trajectories4–7,13–20, this level of agreement is not always attainable, but the

reason for that probably lies with the different methods used for determining the sub-

sampling factor (s) discussed in the next section.

Fig.3 Comparison of the results obtained from classical Good-Turing (green and orange
curves) versus the results obtained from the new algorithm (blue and red scatter plots) for two
independent trajectories. See text for details.
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3 Implementation

The algorithm described in the previous section is so simple and straightforward that

no  further elaboration of its implementation details is required.  What must be

discussed,  however,  is  the  procedure needed for  estimating the  value of  the  sub-

sampling factor (s) discussed above. This factor is the step/stride (along the original

trajectory) needed to  guarantee  that  successive  structures  are  not  mechanistically

correlated due to the very short time interval between them. The principal idea for

estimating  (s) is that  it  will  correspond  to  a  time  interval  (δt) so  long  that  the

maximal RMSDs observed between all possible pairs of structures separated by (δt)

stop increasing and converge to a stable plateau. The algorithm is the following :

1. Starting from a small value of a time interval (δt), calculate all possible values

of RMSD between all possible pairs of structures separated by this time interval.

Note that these RMSDs are located on a superdiagonal of the RMSD matrix (the

one corresponding to the chosen value of δt).

2. Sort these RMSD values, and only keep the largest.

3. Repeat the procedure for different offsets within the given interval (to obtain a

mean and a standard deviation for the given δt).

4. Repeat the procedure for increasing values of (δt).

5. In the graph of (δt vs. RMSD) locate the point (s) at which the RMSDs reached a

plateau and converged.

Fig.4 shows the form of the primary results obtained from this procedure for the case

of the 6NM2 peptide discussed above (note that this Figure shows the raw data before

attempting to determine the value of  s). This diagram clearly illustrates why the

determination of the sampling factor (s) is probably the single most difficult and weak

step  of  our  algorithm  : In  the  presence  of  noise  and  of  different  time  scales,

determining the point at which the RMSDs converge not only is not straightforward,

it may even be questionable. For a solid example, examination of Fig.4 shows that

there are two points where the RMSDs reach an apparent plateau, the first at the

~110th superdiagonal, the  second  at  the  ~230th  superdiagonal. Although  in  this

example we can easily  discern the  general  trend (and correctly  conclude that  the

second solution is the correct one), encoding this algorithmically leads to solutions

that are sensitive to noise.
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In the previous version of our procedure1 we tackled this problem by fitting the raw

data to a generalized limiting diode equation (black line in Fig.4) and then

attempting to identify points that deviate significantly from the curve (towards higher

RMSDs). In  this version of the algorithm we have resorted to using a different

procedure which we believe is more stable and predictable.

Fig.4 Determination of the sampling factor : Raw data. This graph shows the primary data
obtained from a folding simulation of a peptide.  The horizontal axis corresponds to
successive superdiagonals of the RMSD matrix (and, thus, corresponds to increasing time
intervals δt), the vertical axis are the maximal RMSDs observed for the given (δt). Because
for each (δt) different offsets within the interval are being tested, the result is not single
RMSD value, but a distribution which is characterized by a mean and a standard deviation as
depicted here. The black line is the non-linear fit of a generalized limiting diode equation, see
text for details.
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The principal idea with the new method we distribute is based on a piecewise linear

segmentation  of  the  primary  data,  followed  by  a  heuristic  search  of  the  longest

segment that fulfills predetermined criteria of length and slope. The piecewise linear

segmentation is performed with the  𝑅 package  dpseg()21,22, and Fig.5 shows an

example of how the primary data (shown in Fig.4) would have been interpreted. In

the case examined here, our heuristic implementation would have correctly selected

the beginning of the last (blue) segment as the sampling factor for the Good-Turing

analysis.

Fig.5 Determination of the sampling factor : Linear segmentation. This graph shows an
example of how the primary data (identical with those shown in Fig.4) can be interpreted in
terms of successive linear segments obtained through the dynamic programming approach
encoded in the  𝑅 package dpseg(), see text for details. In this example, our algorithm would
have picked a sampling factor corresponding to the beginning of the last (blue) segment.
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4 Discussion

We are convinced that the probabilistic Good-Turing estimates such as those shown

in the diagrams of Fig.1 are a useful addition to the established set of procedures23

aiming to quantify the uncertainty of molecular dynamics trajectories of biological

macromolecules. The method appears to be dependable,  and the results are

meaningful and verifiable. Having said that, we must emphatically note that there is

a  fundamental  weakness  hidden  in  our  procedure  that  can  not  be  bypassed

algorithmically : Good-Turing statistics are strictly valid only for the case of sampling

distinct  objects  from a  pool  containing  an  unknown number  of  such  objects. By

selecting a single sampling factor (s) for our analysis, we are essentially selecting a

specific timescale of the structural events that we wish to analyze. The fact that we

have not detected artifacts in our tests with a multitude of trajectories, is probably the

result of how analysts design simulations. For example, if the aim of our analysis is to

quantify the uncertainty of the conformations of the amino acid residues located in

the active site of an enzyme, then it is highly unlikely that we would have elected to

perform the simulation at a temperature where the whole enzyme may unfold within

the timescale of the simulation. To put this differently, we have not observed artifacts

from the mixing of different timescales not because they are not present, but because

we  actively  design  our  simulations  in  such  a  way  as  to  examine  and  analyze

predetermined timescales that are relevant for the question in hand. Additionally,

and because our algorithm will by default select the longest timescale consistent with

the structural changes observed, it also works well with folding simulations (which

necessarily  contain  all  shorter  timescales),  with  the  silent  assumption  being  that

when you do a folding simulation, you do not care about structural details such as, for

example, the stability of the conformations of a given tryptophan residue.

This discussion about the mixing of different timescales in simulations also explains

the difficulties with the technically weakest part of the program that we distribute,

namely the determination of the sampling factor (s) as discussed in section §3. We

believe that the crux of the matter is that when well-separated timescales do mix in

the same trajectory, then what we are trying to interpret in terms of a ‘growth’ curve

with a single plateau, may in reality contain multiple plateaus corresponding to the

different  timescales present. As already mentioned, the current version of our



15

algorithm will by default use the longest timescale observed (which is almost always

the safest course of action since it avoids underestimating the structural uncertainty

that remains unaccounted for by the existing simulation).

To conclude, the application of Good-Turing statistics for quantifying the uncertainty

of molecular dynamics simulations appears to be a powerful technique. Being able

to quantitatively answer questions like “Will doubling the simulation time from 20μs

to 40μs significantly affect my conclusions ?” is to our mind a significant step towards

solidifying the validity of the conclusions drawn from molecular dynamics

simulations.

Software Availability

All calculations reported in this communication were performed with free open

source  software which is immediately available for download via

https://github.com/glykos/GoodTuring and https://github.com/glykos/carma.

https://github.com/glykos/carma
https://github.com/glykos/GoodTuring
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