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Abstract

Over the last two decades, molecular modelling has emerged as an invaluable
tool for studying the protein folding in silico. Molecular mechanics calculations along
with computer graphics are now widely used to visualise molecular shape and
structure, and quantify steric demand. On the other hand, the most recent quantum
mechanics calculations continue to play an ever increasing role in Structural Biology,
promising high quality description of molecular structures. In this thesis, we examine
the accuracy of Molecular Dynamics simulations and their ability to approach systems
derived from quantum mechanics calculations. More specifically, three Molecular
Dynamics simulations of 5 us each in explicit water solvent were carried out for three
heptapeptides containing the Asn-Gly segment, in order to study their folding and
dynamics. Previous data, based on quantum mechanics calculations from Kang Y. K.
and Yoo . K., has proven that these peptides adopt f-turn and g-hairpin structures. The
results from the simulations’ analyses point out significant divergence from the ab initio
models, denoting severe dynamicity in our systems. The heptapeptides show a general
tendency to form S-turn conformations regarding their four-residue central part, but the
results do not utterly agree with the ab initio models, raising the question whether
Molecular Dynamics simulations are suitable for such dynamic systems.
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1. Introduction

1.1 Proteins: A Prelude

Since proteins were first recognised as a distinct class of biological molecules,
they have been a major concern to the scientific society. Characterised as the most
multifunctional macromolecules in living species serving a vital role in almost every
biological function, scientists still strive to unravel every aspect of their nature. Over
the last century, the study of protein structure and function has made a remarkable
advance thanks to the growth of computer power and the consequent development of
several breakthrough computational methods, such as X-ray Crystallography and
Nuclear Magnetic Resonance (NMR). However, throughout the years, as computers
began to replace the old “tactile models” in visualising molecular shape, the scientific
interest focused on a new concern: the dynamicity of proteins. The abundance of
protein structures that have been resolved during the last decades shed light on the
functionality and the dynamic behaviour of these molecules, explaining their different
properties and a wide range of biological mechanisms, but most importantly, decoded
what today is regarded as one of the most significant axioms in Structural Biology:
structure and function are two interdependent concepts. Nowadays, we know that it is
of crucial importance to identify the principal components of the way proteins are
being formed, in order to fully determine the various functions carried out by them.

Protein structure can be analysed into four main categories: primary structure,
secondary structure, tertiary and quaternary structurell. Each class of this hierarchy is
strictly dependent on its subordinate one. The final three-dimensional structures occur
as the primary (unfolded) amino acid chains are being folded in a way to produce
compact, self-contained structural domains. These domains either serve as subdomains
for the construction of a greater complex or they function autonomously in certain
biological processes (Figure 1.1)12.

Primary Secondary Tertiary Quaternary
structure structure structure structure

Amino acid residues « Helix Polypeptide chain Assembled subunits

Figure 1.1 Protein structure can be classified into four main stages: primary structure (the amino acid chain), secondary
structure, tertiary structure and quaternary structure. The final three-dimensional structure (native state) can possibly include
different polypeptide chains, thus forming a quaternary structure. [adapted without permission from Pearson Education Inc.,
2010]



In order to fully understand the function of proteins, one should be able to predict
the three-dimensional structure from the primary amino acid sequence, that is to say,
the folding process of a macromolecule. Over the last few decades, however, and
despite the efforts of the scientific community, the well-known “folding problem”
remains unsolved and still one of the most challenging questions in Structural and
Molecular Biology.

1.2 Protein Folding

The concepts of “folding” and “denaturation” of proteins were widely known
among the scientific community for almost a century, but the most notable findings
came into light through the work of Cristian Anfinseni3! and Cyrus Levinthall45! during
1960. The former, studying the renaturation of a fully denatured ribonuclease, under
certain conditions, proposed the “thermodynamic hypothesis” according to which, the
native functional structure of a protein in its normal physiological environment is the
one in which the Gibbs free energy of the whole system is lowest; in other words, the
native conformation is determined by the entirety of interatomic interactions and thus,
by the amino acid sequenceBl. The main driving force for folding water-soluble
globular proteins is the packing of hydrophobic amino acids into the interior of the
molecule to create a hydrophobic core. Yet, a few years earlier, Levinthal had already
studied the kinetic parameters of folding process. In his attempt to interpret the factors
that define how fast a protein can fold, he described this phenomenon as a random
search problem. Taken literally, this means that all
possible conformations of a polypeptide chain (except the

~
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native state) are equally probable, hence the native state
can be found only by an unbiased random searchlél. This
implies that the time a protein will consume to find its
native state, depends on both the total number of possible
configurations of the polypeptide chain and the time
required to find each conformation (a 100-residue protein,

for example, can adopt 1070 configurations, which leads

Figure 1.2 A simplified representation
of what nowadays is perceived as a
folding funnel. The vertical axis
represents the Gibbs free energy,
whereas the horizontal axis represents
the entropy of the system. As it can be
seen, energy landscapes are usually
“rough”, with several non-native local
minima in which partially folded
proteins may be trapped before
reaching the native state. [adapted
without permission from Wikipedia]

to an enormously long folding time of about 1050 years)!6l.
Since proteins generally fold in a timescale of
milliseconds to seconds, Levinthal’s statement fairly
characterised as a paradox.

Levinthal’s solution on the folding problem was that
the folding process is speeded as there are defined
pathways towards the native state; a suggestion became
known as the “kinetic theory” 5. Back then, most of the

proposals based on known structures, to reduce the size of the conformational pool
that is searched and the folding time to the experimental scale, did not contribute
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much to the resolution of Levinthal’s paradox. Examples include the “nucleation
growth model”7), the “diffusion-collision model”18l, the “framework model”19 and the
“jigsaw-puzzle model”1'9l. During the years that followed, though, studies suggested
that folding pathways are not the absolute solution to Levinthal’s paradox, bringing to
the foreground the landscape perspective. This theory successfully describes both the
procedure of reaching a global free energy minimum (Anfinsen’s “thermodynamic
hypothesis”) and the speed of folding process (Levinthal’s “kinetic hypothesis”)!11l. The
landscape is depicted as a funnel, exhibiting the free energy of each configuration in
relation to the degrees of freedom of the system (Figure 1.2)!'"l. Assuming that we want
to represent Levinthal’s paradox, in which every protein chain mandatorily undergoes
the same sequence of events until reaching the native state, based on the landscape
perspective, that would be depicted as a flat funnel upon which a protein may follow
almost infinite trajectories to end up eventually in the bottom of the funnel, the native
state (Figure 1.3a)!'". The folding funnel theory became widely popular among the
scientific community, as scientists attempted to examine different perspectives of the
theory (Figure 1.3). Nowadays, we have reached a consensus on which protein folding
is @ much more heterogenous process. Each individual protein chain may follow a
unique trajectory, but just like skiers descending a mountainside, they all may
eventually reach the same point at the funnel’s bottom, the native state (Figure 1.3d)!12].

Figure 1.3 Different perspectives on the folding funnel theory (N stands for native conformation). (a)
Levinthal’s “golf-course” energy landscape. (b) The “grooved golf-course” landscape depicting
Levinthal’s pathway solution to the random search problem. (c) The “HP+” model, one of the first
funnels presented as a solution to Levinthal’s paradox, is an idealised landscape describing the overall
decrease of the total possible conformations as the protein’s free energy is reduced. (d) A coarse
landscape with kinetic traps, energy barriers and numerous pathways towards native state; the
“bumpy bow!” model. This representation is considered as a realistic example of a folding funnel. (e)
The “moat” landscape illustrates that proteins can either fold fast (A) or slow if the protein shall first
adopt a metastable conformation before reaching the native state (B). (f) The “champagne glass”
funnel shows how conformational entropy can cause free energy barriers during the folding process.
[adapted without permission from Dill & Chan, Nature Stractural Biology, 19971



1.3 Experimental and in silico Methods in Protein Folding

While the folding problem remains unsolved and the de novo prediction of the
final native conformation of a protein seems almost inevitable, experimental methods
seem to be more reliable in identifying the three-dimensional structure of the protein.
So far, X-ray Crystallography and Nuclear Magnetic Resonance (NMR) tend to be the
two most widely used techniques in charge of discovering macromolecular structures.
X-ray Crystallography, the first and most important method for identifying protein
structures, is used for determining the atomic and molecular structure of a crystal,
assuming that the protein can form well-defined crystals that efficiently allow X-ray
diffraction13l. NMR, on the other hand, comprises, as well, an exceptionally reliable
technique providing information about the totality of a molecule’s interatomic
interactions!'4. Until today, various experimental methods have been developed for
identifying protein structure. Such techniques include Circular Dichroism (CD)!'4],
Mass Spectroscopy!'3!, Atomic Force Microscopy (AFM)(1el, Small-angle X-ray Scattering
(SAXS) and Fourier Transform Infrared Spectroscopy (FT-IR)!17.181,

Nevertheless, while experimental and theoretical studies have led to the
emergence of a unified protein folding mechanism and the discovery of a vast number
of protein structures, recents studies indicate that proteins are even more heterogenous
and complex macromolecules. Regardless the success and reliability of the above
methods, the incapability of managing massive data, the errors arising from the
experiment itself, and the difficulty of representing a complete, dynamic view of
molecules, hinder the resolution of the complete structure, function and folding
process of proteins. The most recent computational techniques, however, providing a
connection link between theoretical and experimental methods, act as a
complementary tool so as to fulfil the above mentioned insufficiencies. Towards this
direction, the growth of computer power, the establishment of numerous accessible
databases and the development of computational tools and algorithms have also
contributed radically in the evolution of Molecular Biology and Bioinformatics.

In general, predicting protein structure from its amino acid sequence regardless of
its natural folding process can only be accomplished using empirical methods, the
most notable of which are the prediction of protein secondary structure using artificial
neural networks!'9, homology modelling!20], threading recognition2!l and the de novo
prediction based on the “thermodynamic hypothesis”1221. Contrary to the above
empirical methods, energy-based methods attempt to predict protein structures based
on mathematical models that describe the system’s potential energy during the folding
process. Such example are Molecular Dynamics simulations by which we can
adequately examine the folding process of a protein, based on the principles of
classical mechanics.



1.4 Secondary Structure

Having an overview of the long process for discovering structures, it is high time
to have a closer look at the three-dimensional structure of proteins. As the amino acid
chain folds, driven by the “force” of hydrophobic interactions, proteins tend to form
compact structures, creating a hydrophobic core and a hydrophilic outer surface. The
packing of hydrophobic residues in the interior of proteins
is remarkably dense and taking into account the
conformational restrictions due to the steric hindrances ,
imposed by the side-chains, protein folding seems like a o-/ "
tricky puzzlel2l. In addition to this, along with side-chains,
protein’s backbone chain must, as well, fold into the

hydrophobic interior of the molecule. Proteins’ backbone,
however, are highly hydrophilic because of the occurrence
of imine (NH) and carbonyl (C’=0O) groups in each amino
acid, which act as proton donors and proton receptors

Figure 1.4 A trans peptide group
showing typical distances between
atoms.The imine and carbonyl
groups are on either side of each Ca
atom. A peptide group contains the
Ca atom and C'=O group of the n

residue, as well as the NH group
and Ca atom of n+7 residue.
[adapted without permission from
Stryer, Biochemistry|

respectively (Figure 1.4)121. In such hydrophobic
environment, these polar groups need to be neutralized.
The solution to this, is a consequent formation of local,
stable conformational patterns known as secondary structure elementsi2l. The most
common types of secondary structures are the a-helix and the f-sheet (Figure 1.5). Both
structures are held in shape by hydrogen bonds between the carbonyl O of one amino
acid and the imino H of another.

B-sheet

-helix

Figure 1.5 Stick figures within electron density and cartoon representations of a-helix (left) and f-sheet (right) structures. The
dotted lines in each structure represent the pattern of hydrogen bonds. [adapted without permission from Wikipedial

The two structural elements mentioned above are not the only ones that can be
found in protein structures. Variations of them, or even completely different
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conformational patterns, are parts of the secondary structure with potential significant

function. Such elements include the a;-helix, 3i¢-helix, z-helix, p-turns and even

random coils. The latter,

in spite of lacking periodicity on first sight, is usually

hydrophilic and can be found mainly on proteins’ surface taking part in protein-protein

interactions, formation of enzymes active sites and other functions.

1.5 Torsion Angles

The identification of hydrogen bonding pattern is not
enough in order to strictly define a secondary structure
element. Understanding the basic parameters that determine
the configuration of a polypeptide chain is vital for analysing
thoroughly a protein’s structural motifi23l. Since peptide groups
are uncharged, inflexible planes, due to the rigid nature of the
amide bond, they only have two degrees of freedom
corresponding to the torsions between N-Ca and Co-C’
bonds!2.231. These dihedral torsion angles are called phi (p) and
psi (y) respectively (Figure 1.6), and they are considered to be
among the most important local structural parameters by which
we can define the structure of a protein’s backbone.

Both ¢ and y dihedral angles can span from -180° to 1800
degrees. However, most combinations of ¢ and y values are
energetically and stereochemically unfavourable and thus not
permissible, due to short contacts between the side chain and
main chain atoms2l. In fact, the only residue that has clearly a

A

Figure 1.6 A diagram showing
the planar peptide groups.
While peptide bonds are rigid,
the conformation of the main
chain atoms is determined by
the ¢, y values of each amino
acid. [adapted without

Antiparallel Collagen triple
Bsheets  parallel  helix  gighetwisted
\\ Bsheets /7 Bsheets
; Y
o

Left-handed

L Right handed
a helix

i (degrees)

o +180
¢ (degrees)

Figure 1.7 A typical Ramachandran
plot showing the low-energy regions
(or the so-called “allowed” regions).
[adapted without permission from
Nelson & Cox, Lehninger Principles of
Biochemistry]

permission from Branden &

broad range of allowed ¢, y Tooze introduction to Protein
. . . . . Structure]

combinations is glycine; having
only one hydrogen atom as a side chain, it can adopt a
much wider range of configurations!2l. Glycine thus plays a
quite significant structural role, as it allows many and
unusual main-chain protein conformations.

Torsion ¢ and w angle pairs are usually plotted against
each other as dots in a two-dimensional diagram called the
Ramachandran plot2l. These diagrams proposed by the
indian biophysicist G. N. Ramachandran after he

calculated all the possible sterically allowed amino acid

conformationsi2.241. As seen in Figure 1.7, the Ramachandran plot contains high-density
distinct regions called “the low-energy regions”, that correspond to the allowed torsion
angle values of the residues that form the secondary structure elements. As a result,

these plots are a convenient representation to clearly distinguish three major regions

equivalent to the three major secondary structure elements: the a-helix region (lower
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left quadrant), the S-sheet region (upper left quadrant) and the a;-helix region (upper
right quadrant) (in more detailed Ramachandran plots, even more secondary structure
elements can bee seen, other than the above mentioned).

1.6 The f-turn Structure

B-turns are classified as a type of secondary structure elements, but unlike helices
and sheets, they constitute a non-repetitive structural patterni2526l. Regarding their
biological role, turns have a significant role in proteins providing a connection
between different secondary structure elements and a direction change for the
polypeptide chain, and involving in molecular recognition and protein folding[251. All
B-turns contain four residues (i to i+3) and are classified into categories based on the
values of their ¢ and y angles for the second and third residue.

Venkatachalam first proposed these secondary structure elements back in 1968.
While studying favourable conformations of three consecutive peptide units, he
recognised three distinct conformations (I, 1l and Ill) and their main-chain mirror
images (I, 1l and I11")127.28]_ A few years later, Lewis et. al. (1973) broadened the number
of p-turns to ten (I, I/, II, 1/, 1I, 11", 1V, V, VI and VII) defining not only ¢, v values, but
also less stringent criterial26l. What is now widely accepted, though, is based on the
work of Richardson (1981) and Thornton et. al. (1988, 1994) who studying the values
of ¢ and y angles, defined seven categories (I, I, II, II’, Vla, VIb and a miscellaneous
category V) and a new class of g-turn, type VIII25271. The conformations of the four
most common p-turn types, I, I, Il and Il’, can be seen in Figure 1.8. The

(d)

Type I’ Type II'

Figure 1.8 Schematic representations of type I (a), type Il (b), type I’ (c) and type 1I’ (d) p-turns ideal
conformations. R and R; indicate the Cp position of a side-chain. [adapted without permission from
Wilmot & Thornton, J. Mol. Biol., 1988]



Ramachandran nomenclature in Figure 1.9 illustrates the regions of the Ramachandran
plot occupied by residues i+1 and i+2 depending on

180

their ¢ and y angles.
Regarding their amino acid sequences, mostly

|35}—

\\m/\
25 \‘\\ mu\ o | o .
ul m\\% \ hydrophilic residues are preferred, as f-turn structures
ol \ \
I

5 o are usually exposed in the outer surface of proteins.
--.5}- \

Glycine, proline, asparagine and aspartic acid exhibit a

-0t N significant preference in f-turnsi25l. Hydrogen bonds
B i occurring by certain side-chains, also play an important
-186 %0 % " role in stabilising g-turn structures and thus in the

positional potential of each residuel25l. More
Figure 1.9 Schematic diagram showing a
Ramachandran plot of classic g-turn

types. ladapted without permission from  ogitions of turns, while glycine is preferred at positions
Wilmot & Thornton, J. Mol. Biol., 1988]

specifically, proline is highly favoured at the first two

i+2 and i+3, and asparagine and aspartic acid are
strongly preferred at positions i and j+2125],
Hydrophobic residues can also be present in p-turns, especially in types I’ and II" that
frequently occur in g-hairpin structures (a structural motif where two antiparallel -

strands are connected with a turn)251.

1.7 Purpose of Present Thesis

The main idea for this project came from a Kang & Yoo publication in which they
attempted to examine whether the Asn-Gly segment promotes the formation of f-turns
and f-hairpins. The propensities of certain Asn-Gly containing peptides (a tripeptide
and three heptapeptides derived from X-ray structures) to form f-turns and f-hairpin
structures were explored using the quantum mechanical density functional methods
and the implicit solvation model in both water and CHCl29.

Considering the fact that quantum mechanical methods are by far more expensive
than molecular mechanical calculations from a computational perspective, we
attempted to study the propensities of the same Asn-Gly heptapeptides to form S-turn
structures using molecular mechanical simulations and, by extension, comment on a
burning question: do molecular mechanics simulations provide sufficiently good results
compared to the “high quality”, but still computationally rigorous, quantum
mechanical calculations?

In brief, three Molecular Dynamics simulations of 5 ps each in explicit water
solvent were carried out for three heptapeptides containing the Asn-Gly segment, in
order to study their structural properties. But, before we proceed to the core of this
thesis, it is necessary to explain first some basic and useful concepts of molecular
modelling.



2. Molecular Modelling & Molecular Dynamics Simulations

2.1 Preface to Molecular Modelling

Molecular modelling encompasses all methods, theoretical and computational,
used to model or mimic the behaviour of molecules. Since all molecular modelling
methods aim in an atomistic level description of the molecular system, they take
advantage of physics and computer graphics instead of deducing microscopic
behaviour directly from experiment. There are two common ways in specifying the
atomic positions of a biological system. The most straightforward approach is to define
the Cartesian (x, y, z) coordinates of all atoms, whereas the alternative is to use the
internal coordinates, in which the position of each atom is described in relation to
other atoms in the systemB30l. The latter approach, is commonly used in quantum
mechanics programs, whereas the other is quite useful in molecular mechanics
calculationsi30l.,

2.2 An Introduction to Computational Quantum Mechanics

Before we emphasise the typical methods used in this project, it is better to make
a brief description of the basic elements of those quantum mechanical methods used
by Kang & Yoo in their work. The starting point for every discussion concerning
quantum mechanics is Schrodinger’s equation, the full, time-depended form of which is

e e e M 2

2+ 2+
2m\ dx~ dy” oz

The above equation refers to a single particle (e.g. an electron) of mass m, which is
moving through space (given by a position vector r=xi+yj+zk) and time (z) under the
influence of an external field U (e.g. an electrostatic potential due to the nuclei of an
atom). % is the Planck’s constant divided by 2z and i is the square root of -1. ¥ is the
wavefunction which describes the particle’s motion. When the external potential U is
independent of time, the wavefunction can be written as the product of a spatial part
and a time part30311, reducing the equation finally to

HY = E¥ (2.2)

To solve the Schrodinger equation that is operated upon by the Hamiltonian, it is

necessary to find values of E and function ¥ such that, it returns the wavefunction



multiplied by the energy. In other words, E and ¥ act as eigenvalue and eigenfunction,
respectively30l,

Solving the Schrodinger equation, however, for atoms with more than one
electron - not to mention polyelectronic atoms or even molecules - is complicated by a
number of factorsi30l. Any solutions that might be found for such systems can only be
approximations to the real and not the exact, true solutions of the equation3'l. One
complication is that the most general form of the wavefunction that describes the
properties of the system will be an infinite series of functions, indicating that there is no
form more “correct” than another31l. Another problem is that in multi-electron systems
it is necessary to account for electron spinB1l. It is possible, though, to solve the
equation concentrating only on the electronic motions, ignoring the motions of the
nuclei30311. The masses of the nuclei are considerably greater than the masses of the
electrons, meaning that the electrons can be fixed almost directly to any changes in the
positions of the nucleil30l. This is called the Born-Oppenheimer approximation, and the
total wavefunction of the molecule can be transformed in the following form, leading
to an “electronic” Schrédinger equation:

Y . (nuclei,electrons) =¥ (electrons)¥ (nuclei) (2.3)

A

electmnsLP electrons electrons\P electrons ( 2 4)

However, the electronic Schrodinger equation is still complex and further
approximations are required. One approach is to consider that the electrons move
independently of each other, assuming for each electron an average field of all other
electronsB3ll. The set of the molecular orbitals corresponding to the lowest energy is
obtained by a process called “self-consistent-field” or SCF procedure, the archetypal
form of which is the Hartree-Fock procedurel3'l. SCF methods also include density
functional procedures. Molecular orbitals then are being transformed into linear
combinations of a finite set of basis functions (Linear Combination of Atomic Orbitals
or LCAO approximation)B'l. The Hartree-Fock and LCAO approximations are finally
applied to the electronic Schrédinger equation, generating the Roothaan-Hall
equations, the solutions of which are termed as Hartree-Fock models or ab initio
modelsB1l. The term ab initio (“from the beginning”) models, applies generally to all
models arising from “non-empirical” methods to solve the Schrodinger equation.

The most significant drawback of Hartree-Fock theory is that it fails to adequately
describe electron correlationB311. In fact, electrons’ motions are correlated and they tend
to normally avoid each other, something that cannot be represented using the average
potential of the other electrons mentioned above. This can result to an overestimation
of the electron-electron repulsion energy and thus, to an over-increased total energy311.
One approach to treat the electron correlation is referred to as density functional
theory and it is based on the electron density, contrary to the traditional wavefunction-
based approaches. Density functional models are well-defined and result in successful
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determination of equilibrium conformations and geometries, but they are applicable
only to molecules of moderate size (50-100 atoms)311.

It is needless to delve into more approaches of quantum mechanical calculations.
Quantum mechanics is often considered to be a difficult subject and the underlying
physical and mathematical background is beyond the limits of this project. It is
preferable to move on to the basics of statistical mechanics and molecular dynamics
simulations, upon which our study was based.

2.3 Statistical Mechanics

Molecular mechanics describe the behaviour of the system based on
nuclear positions only as a function of time, contrary to quantum mechanical
methods which deal with the electrons in a system!30l. This obviously means that
molecular mechanics methods are computationally more efficient and less time-
consuming, making them even applicable to large biological systems. Molecular
mechanical calculations give rise to two major categories of simulations,
Molecular Dynamics simulations (MD simulations), a useful tool for theoretical
studies of the dynamic properties of a system, and Monte Carlo simulations (MC
simulations), a computerised mathematical method based on statistical and
probabilistic methods (the aforementioned methods are often used separately,
although occasionally a combination of them is preferred in aid of
computationally expensive and complex simulations - Langevin dynamics,
Brownian dynamics)i32. Usually MD simulations are convenient for studying the
folding and stability of proteins, molecular recognition, and ion transportation in
biological systems, as well as for drug design and structure determination.

The results obtained from MD simulations describe the behaviour of the
system in an atomic level using parameters such as position and velocity!33!.
Although this allows us to study many-body systems, not all properties can be
directly measured in a simulation!33:341. In fact, most of the properties that can be
measured in a simulation cannot be compared with the experimental data, as no
real experiment provide such detailed informationi3334l. A typical experiment
measures average properties, rather than the instantaneous kinetic parameters of
each atom. It is what kind of averages then we should aim to measure, if we
wish to use computer simulations as the numerical equivalent of
experiments!33.341. In order to do so, we need to introduce the “language” of
statistical mechanics. Statistical mechanics attempt to predict the macroscopic
behaviour of a system based on the properties of each atom separately. In other
words, averages corresponding to the experimental observables are defined in
terms of, what we call, ensemble averages. An ensemble is a collection of all
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possible systems which have different microscopic states, but an identical
macroscopic or thermodynamic state. This connection between microscopic and
macroscopic information can be achieved by means of a complex mathematical
background34l.

2.4 Classical Mechanics and Integration Algorithms

MD simulations are based on Newton’s second law. Knowing the force exerted
on each atom, it is possible to determine the acceleration of each atom in the system.
Integration of the equations of motion then yields a trajectory that describes the kinetic
parameters of particles, such as positions, velocities and accelerations as they vary with
time. Analysing this trajectory then can give us the opportunity to measure the average
properties of the system. The method is deterministic; once the positions and velocities
of the atoms are known, the state of the system can be predicted at every possible time,
in the future or the past.

Describing the above said with mathematical terms, Newton’s equation of motion

is given by
F =ma, (2.5)

where F; is the force exerted on a given particle i, m; is the mass of the particle i and a;
is the acceleration of that particle. The force can also be expressed as the gradient of
the potential energy

F=-VV (2.6)

The combination of equations (2.5) and (2.6) leads to the following equations

dv d’r,
—;zmi _dtz (27)
1 dv
4 dr 2.8)

It is therefore possible to calculate a trajectory knowing only the initial positions of the
atoms, a distribution of velocities and accelerations, determined by the gradient of the
potential energy function. The initial positions can be obtained from experimental
structures, resolved by techniques such as X-ray Crystallography and/or NMR
Spectroscopy. The velocities, vi, are usually obtained randomly from a Maxwell-
Boltzmann or Gaussian distribution at a given temperature

1/2
m, 1 myv?
v.)= i exp| ————& (2.9)
p(s,) [mB j p[ Zkﬂ
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The temperature can be calculated from the velocities using the relation

|p,
(31\7)Z

(2.10)

where N stands for the number of the atoms in the system. The potential energy, as we
can see, is a function of the atomic positions (3N). Due to the complexity of this
function, the equations of motion can only be solved numerically, but not analytical.
That is to say, there is no exact solution to the equations of motion, either because of
the complicated nature of the potential energy function, or because the computational
demand is high. Therefore, an approximately numerical method is used developed
upon the integration of the equations of motion. The most notable integration
algorithms include the Verlet algorithm, the Leap-frog algorithm, the Velocity Verlet and
the Beeman's algorithm.

In general, most of the algorithms are based on Taylor expansions, the usefulness
of which lies on the reduction of an equation’s terms, as they represent a function of a
finite sum of terms that are calculated from the values of the function’s derivatives at a

single point:
r(t+58t)= r(t)+v(t)5t+%a(t)5t2 + o (2.11)
v(t+ 1) = v(t)+a(t)5t+%b(t)5t2 +.. (2.12)
a(t+0t)=a(®)+b(t)ot + ... (2.13)

It is important to mention that the choice of the algorithm should be done wisely,
taking into account the algorithm’s computational efficiency, its capability to conserve
both the energy and the momentum of the system and its integration time step, so as
the results to be as accurate as possible34.

2.5 Empirical Force Field Models

Most of the current generation potential energy functions (or force fields) provide
a reasonably good agreement between accuracy and computational efficiency and
thus, with the experimental dataB34. The development of a potential energy function is
an extremely arduous task requiring extensive optimisation, making the construction of
force fields an area of advancing research. Among the most commonly used force fields
are the AMBER35, CHARMMB6l, GROMOSB7I and OPLS/AMBERI381,

So, force fields are empirical functions used for the calculation of the system’s
potential energy regarding particles’ interactions and positions. These interactions are

13



expressed in terms of internal, or bonded, interactions and external, or non-bonded,
interactions

V(R)=E,, ., +E (2.14)

non—bonded

Epondea is @ sum of terms related to three types of movement; bond stretching, angle
bending and bond rotation

Ebunded = Ebunds + Eangles + Etorsions (2 1 5)

The first term of the above formula is a harmonic potential representing the interaction
between two atoms bonded with one covalent bond (Figure 2.1a)

Ebonds: z Kb(b_b0)2 (216)

1,2 pairs
The energy of the bond is a function of the displacement from the ideal bond length,

bo. Kp is the force constant determined by the bond’s valance and represents the

strength of the bond. Both of the above components are determined by the chemical
type of each atom and thus, they are specific for each pair of bound atoms. The second
term in equation (2.15) is also a harmonic potential referred to the variation of a bond

angle from the ideal value 6y (Figure 2.1b)

Eangles = Z K9(9_90)2 (21 7)

angles

Values 6y and K also depend on the chemical type of each atom, being specific for
each pair of atoms constituting the angle. The last term of equation (2.15) calculates the
potential energy of the system as a function of the rotations of dihedral angles (Figure
2.1¢). This potential is considered to be periodic and is often expressed as a cosine

function
Etorsions = 2 K(p (1 - COS(n(D)) (21 8)
1,4 pairs
\_ -/ ’
v O
O tmmeae- )
Bond stretching Angle bending Bond rotation
(torsion)
a b c

Figure 2.1 Schematic representation of the three basic internal contributions to a molecular mechanics force field: (a) bond
stretching, (b) angle bending and (c) bond rotation. [adapted without permission from Leach, Molecular Modelling]
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The energy term representing the non-bonded interactions in the potential
function has two components, the van der Waals interaction energy and the
electrostatic interaction energy

E

van—der—Waals

+E

electrostatic

(2.19)

non—bonded —

The van der Waals interaction between two atoms is the result of a balance between
attractive and repulsive forces. As shown in Figure 2.2, there is a specific distance in
which the potential energy reaches a minimum. This
is the equilibrium distance and it depends on the
chemical type of the atoms, being approximately
equal to the sum of the Van der Waals radii of the
atoms. If the distance between the atoms becomes !
shorter, the repulsive force becomes dominant due to g :

van der Waals
/ contact distance

Repulsion

Distance

Energy
o
N

the electron distributions interactions, whereas if the

distance increases, the attractive force becomes
dominant as the electron cloud of one atom gives rise

. . X R Figure 2.2 Energy of van der Waals interaction
to an Instantaneous deOle, mducmg therefore a astwo atom approach each other. The energy

. . is most favourable at the van der Waals
dlpole in another atom!34l. The van der Waals contact distance. ladapted without permission
from Stryer, Biochemistry]

interactions are often represented using the Lennard-
Jones 6-12 potential

A, C,
Evan—der—WaalS = 2 [Tg - —GI{J (2 2 O)
k

nonbonded rz rik
pairs
The other component of equation (2.19), the electrostatic interaction energy, is nothing
more than the representation of Coulomb potential

_ 9.9
E electrostatic — Dr-k (2 21 )

nonbonded
pairs

Despite the fact that empirical force field models - at least the ones mentioned
above - share a common calculation methodology, there are differences relating to the
calculations of bonded and non-bonded parameters. Consequently, their development
remains an intense area of research in order to achieve even more agreement with the
experimental datal34..

Last but not least, another important issue that should be considered is that the
potential energy function does not include entropic contributions. This directly means
that the minimum of the potential energy does not correspond to the equilibrium state.
Due to the fact that experiments are generally carried out under constant temperature,
pressure and space, the equilibrium state corresponds to the minimum of Gibbs free
energy, G341,
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2.6 Role of Solvent in Molecular Dynamics Simulations

The use of solvent, usually water, in MD simulations has an essential influence on
the structure and dynamics of biological macromolecules. One of the most important
roles of solvent is the screening of electrostatic interactionsi34l. Using a water solvent
model, simulations and thermodynamic calculations can be applied to procedures that
take place in a solution, as analogous to the cellular environment39401,

There are two ways to include solvent effects in an MD simulation. The first
treatment is to include a dielectric constant in the electrostatic term of the potential
energy function, instead of including explicitly solvent moleculesB4l. This is known as
the implicit treatment of the solvent and it provides an approximate description of the

: : : : solvent behaviour. The other treatment is the explicit
...... : : : L ... solvent model. Contrary to the implicit models, every

® ® ® . . -
.. . . solvent molecule is included explicitly providing a
e L o

more realistic concept similar to real experiments.

Apparently, this approach acquires the imposition of
boundary conditions (Figure 2.3), in order first to
O (9 |9 prevent the diffusion of solvent molecules, and

S T N second, to calculate macroscopic properties using a
"""""" limited number of solvent molecules. The imposition
of periodic boundary conditions treats the system in
such a way that the molecule under study is placed in

Figure 2.3 2D schematic representation of

periodic boundary conditions. The box in : .
Vellow is the primary box. [adapted without & central box, the primary box, surrounded by eight

permission from Steinhauser & Hiermaier,  nejghbour boxes which are actually copies of the
Int. J. Mol. Sci., 2009]

primary one. Every atom can interact with the
neighbouring ones either in the central box, or in the surrounding boxes. Thus, if an
atom leaves the primary box, then the equivalent atom from an antiparallel cell enters
the primary box maintaining the periodicity of the systemi3441. Other approaches of
solvation treatment include the surrounding of the protein or just a part of a protein

with a sphere of water, reducing the computational costi34..

16



3. Preparation of the System and Methods

3.1 Technical Characteristics of our Simulations

In order to study the propensities of the Asn-Gly segment to form f-turn structures

we conducted three MD simulations considering three capped heptapeptides: Ac-Ala-
Ala-Asn-Gly-Ala-Ala-NHMe (hpnc-1), Ac-Leu-Val-Asn-Gly-Gln-Tyr-NHMe  (hpne-2,
from PDB entry 1EST.ent) and Ac-Phe-Val-Asn-Gly-Leu-Phe-NHMe (hpng-3, derived
form an octapeptide with the similar sequence Boc-Leu-Phe-Val-Aib-p-Ala-Leu-Phe-
Val-OMe that forms a type I’ Aib-p-Ala g-turn)i29l. The NAMDI42l software and the
AMBER 99SB-STAR-ILDN force field were used for the peptides” simulations.

Each of the simulations was carried out by Norma, a stateless Beowulf-class
computing cluster based on the Caos NSA GNU/Linux distribution. Norma consists of
40 CPU cores, 46 GB of physical memory and 6 GPGPUs distributed over 10 nodes,
based on Intel's Q6600 Kentsfield 2.4 GHz quad processors and connected via a
dedicated HP ProCurve 1800-24G gigabit ethernet switch. Each of the nine nodes
offers four cores, 4 GB of physical memory and two (gigabit) network interfaces, with
the exception of one node based on Intel’s i7 965 extreme which offers 6GB of
physical memory plus a CUDA-capable GTX-295 card. Of the eight Q6600-based
nodes, four are equipped with an Nvidia GTX-460 GPU. The head node exempts from
the others as it comes with four cores, 8 GB of physical memory, 1.5 TB of storage in
the form of a RAID-5 array of four disks, three gigabit network interfaces and a Nvidia
GTX-260 GPU. Norma is presently used almost exclusively by the group of Structural
and Computational Biology in Democritus University of Thracel43!.

3.2 Starting a Simulation with NAMD

Before starting the simulation, NAMD requires the following files:

e A PDB file containing the initial coordinates of the molecular system. PDB files are
either accessible through the PDB database (http://www.rcsb.org/pdb/), or they can
be created by the user. These files include information about atoms’ number and
type, residues’ name and number, atomic coordinates, occupancies and temperature
factors.

e The customised parameter and topology files of a compatible force field required for
the calculation of the system'’s potential energy. In this case, the AMBER 99SB-STAR-
ILDN force field was used and the parameter files were created with the LEaP
program.
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e An NAMD configuration file which includes the dynamic options and values that
NAMD should use, in order to control exactly how the system will be simulated. The
configuration file includes specific information, such as which options are enabled
or disabled, the number of timesteps that must be performed, initial temperatures,
etcl42l. The configuration file that was used for the three simulations of our
heptapeptides can be found in the Appendix (A1).

The steps of our simulations are presented in detail in the next chapter below.

3.3 System Preparation and Simulations

The first step was the preparation of the system in each of the simulations. The
PDB files for the initial extended structures of heptapeptides were generated. The
peptides were solvated explicitly each one in a rectangular box of TIP3P water model.
The final systems contained 1572 atoms for hpnc-1, 1584 atoms for hpng-2 and 1997
atoms for hpng-3, within a box dimension of 27 A.

Prior to the beginning of the simulations, the systems were minimized so as to
remove any strong van der Waals interactions that may lead to an unstable simulation
and/or a structural distortion. The entire boxes of water were then overlaid onto the
proteins and the water molecules that overlapped the proteins were removed. Another
energy minimisation is also necessary resulting in the fixation of the proteins’ positions
in their energy minima, readjusting simultaneously the water molecules to the protein
molecules. Subsequent to this step is the heating phase, during which initial velocities
at a low temperature are assigned to each atom and the simulation begins. Periodically,
new velocities are assigned at a slightly higher temperature and the simulation
continues. The procedure is repeated until the ideal temperature is achieved. In our
systems the temperature was increased with a AT step of 20 K until the final desired
temperature. This was followed by an equilibration period for the production of the
NpT runs with both temperature (320 K) and pressure (1 atm) controlled using the
Nosé-Hoover Langevin Dynamics and Langevin piston barostat control method, as
implemented by NAMD. During this period several properties of the system are
observed until they become stable with respect to time. For the production run the
Verlet-l multiple time step integration algorithm was used. The inner time step was 2.5
fs. The long-range electrostatic interactions were calculated using the particle-mesh
Ewald treatment. The van der Waals interactions were cut off at 9 A and the covalent
bond lengths were constrained using the SHAKE algorithm. Finally, the adaptive
tempering method was implemented on the simulations and the temperature ranged
between 280 K and 480 K.

Trajectories were obtained by saving the atomic coordinates of the whole systems
every 0.4 ps. Each of the simulations had a total duration of 5 ps and resulted in
approximately 5,000,000 frames.
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3.4 Analysis of the Simulations and Programming Languages

In order to process our data and results for analysing the trajectories, we used
mainly the Perl programming language. Perl was originally developed by Larry Wall in
1987 and is a high-level, multi-purpose, interpreted, dynamic programming
language!44l. Although Perl is rather slow compared to other compiled programming
languages such as C, yet it is among the most popular Unix scripting languages used in
Bioinformatics and Computational Biology, in part because of the regular expression
and string parsing abilities. The R statistical packagel#5!, an open source programming
language and environment suitable for statistical analyses and graphics, was used as
well for plotting part of the data. Lastly, the fact that UNIX systems are used in the
laboratory, gives us the advantage of using bash scripting and languages such AWK, for
the automation of our work and quick process of our data.

The overall workflow that was followed for this project is stated below:

e Construction of the free energy landscapes of the heptapeptides via dihedral angle
Principal Component Analysis and cluster isolation.

e Structural analysis of the isolated clusters taking into account 500 equally spaced
structures from each cluster, using the promotifl4él program. Instead of analysing
each structure separately we divided those 500 structures of each cluster into eight
groups of approximately 65 structures each (source code: Appendix, Script 01). The
next step was to identify the population of each turn type observed in each cluster
(source code: Appendix, Script 02).

e Structural analysis of the representative structures of each cluster.

e Temperature based analysis of the trajectories.

e Construction of the PDB files of the ab initio structures from Kang & You publication
using their XYZ files (source code: Appendix, Script 03) and conversion into DCD
files.

e RMSD analysis of the trajectories using as reference structures the aforementioned
ab initio structures.

e Construction of hierarchical dendrograms using the UPGMA algorithm (source code:
Appendix, Script 04) and cluster isolation to find conformations similar to the
experimental data.

e RMSD and population analysis of the isolated clusters in order to identify which
clusters denote similarity with the ab initio models.
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4. Results

4.1 Introduction

In this part of the thesis, we are going to analyse the trajectories derived from
the MD simulations we performed on the three heptapeptides: Ac-Ala-Ala-Asn-Gly-
Ala-Ala-NHMe (hpne-1), Ac-Leu-Val-Asn-Gly-GIn-Tyr-NHMe (hpnc-2) and Ac-Phe-Val-
Asn-Gly-Leu-Phe-NHMe (hpng-3)291. As it can be seen, the peptides are capped with
an acetyl group at the N-terminal end, and an N-methylamide at the C-terminal end.
Termini capping is a common process in computational analysis of proteins. N-
terminal acetylation and C-terminal amidation reduce the overall charge of the peptide,
increasing its overall solubility and thus leading to a closer mimic of the native state.

The data analysis of the simulations was carried out mainly by carmal4”! and its
GUI program grcarmal#8l. This program requires as input a pair of a DCD/PSF files.
DCD file constitutes a binary file that contains the trajectory produced by the
simulation. Each set of coordinates including in the DCD file corresponds to one frame
at a time. The PSF file (Protein Structure File) contains all of the atomic-specific
information needed to apply a particular force filed to a molecular system. Among the
atomic information included (atoms, bonds, angles, etc.), there are also details about
atomic charge and massi#9. Other programs used include plotl>0l, PyMOLI51, VMDI52]
and promotif.

4.2 Principal Component Analysis & Clustering

Biomolecular processes such as protein folding and protein function can be

described in terms of the molecule’s free energy
AG(r)=—k,T[InP(r)—~1nP,_ | 4.1)

where P is the probability distribution of the molecular system along some (generally
multidimensional) coordinate » and Pua denotes its maximum, which is subtracted to

ensure that AG=0 for the lowest Gibbs free energy minimum. The resulting free energy
landscape is essential for understanding protein folding!53!.

Dihedral angle Principal Component Analysis (dPCA) is a systematic approach,
useful for the construction of a low-dimensional free energy landscape from a classical
MD simulation”?. In contrast to Cartesian Principal Component Analysis (cPCA), it is
known that the dPCA method provides a more detailed representation of the free
energy surface when it comes to studying the conformational dynamics of small
peptides. That is because the substantial internal motion can successfully be separated
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)P4 Internal motion,

by the trivial overall motion (translation and overall rotation
despite being subtle, corresponds to the most important conformational degrees of
freedom, thus illustrating molecular structure and interactions, and reducing the
complex protein dynamics to its essential degrees of freedom[551.

The dPCA method is based on the dihedral angles (¢;, w) of the peptide
backbone. The reason for considering only the dihedral angles of a flexible molecule is
because they undergo changes of large amplitudes (bearing in mind the scale of the
forces that typically influence protein folding), contrary to other internal coordinates

[54]

such as bond angles and bond lengths™*. However, dihedral angles are circular and

periodic
@,y €[0°,360°] (4.2)

unlike regular data, such as Cartesian coordinates, where

X e(—oo,+<>o) (4.3)

which makes the definition of a metric not straightforward and as a result difficult to
calculate distances or means. Thus, to recover a metric coordinate space (i.e., a linear
vector space for which distances between all members of the set are well-defined), it is
necessary to perform a sin- and cos-transformation, by which every angle is
represented by its equivalent vector (x,y) on the unit circlel5456!

{x:cosgo
Qo . (4.4)
y=sme

Following the transformation, the next step is to calculate the mean and the covariance
matrix. Through the diagonalization of the covariance matrix we obtain the
eigenvectors vn and the eigenvalues 15, which are organised in descending order, i.e.,

A; represents the largest eigenvalue. The eigenvectors with the largest eigenvalue are
the principal components and they tend to contain most of the atomic fluctuations
derived from the simulation. Hence, a large part of the system’s fluctuations can be
described in terms of only a few PCA eigenvalues!>4l.

The free energy landscapes of our trajectories were constructed using grcarma
and the dPCA method, and are shown below in Figure 4.1-4.4. As an initial step we
decided to take into account the dihedral angles of the entire peptides (Figure 4.1) and
afterwards the dihedral angles of the four central residues only (Figure 4.2-4.4). All
figures show the free energy (in kcal/mol) as a function of the first three principal
components. Following these, a colour-coding cluster representation based on the
dPCA of the four central residues made by the plot program (Figure 4.2-4.4) and a table
containing the populations of the most prominent clusters (Table 1) are presented.
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Figure 4.1 Two-dimensional representations of the free energy landscapes as obtained by the dPCA method taking into account
the torsion angles of the entire heptapeptides: (a-c) AG plots along the first three principal components of hpne-1, (d-f) AG plots
along the first three principal components of hpng-2, (g-i) AG plots along the first three principal components of hpne-3. The
blue regions in the diagrams correspond to the various energy minima.
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Figure 4.2 Two-dimensional representations of the free energy landscapes as obtained by the dPCA method taking into account
the torsion angles of the four central residues of hpnc-1: (a-c) AG plots along the first three principal components of the
trajectory. The blue regions in the diagrams correspond to the various energy minima. (d-f) Colour-coding panels illustrating the
conformational clusters obtained by the dPCA analysis of the four central residues

PC3 PC3

PC1
PC1
pPC2

Figure 4.3 Two-dimensional representations of the free energy landscapes as obtained by the dPCA method taking into account
the torsion angles of the four central residues of hpng-2: (a-c) AG plots along the first three principal components of the
trajectory. The blue regions in the diagrams correspond to the various energy minima. (d-f) Colour-coding panels illustrating the
conformational clusters obtained by the dPCA analysis of the four central residues
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Figure 4.4 Two-dimensional representations of the free energy landscapes as obtained by the dPCA method taking into account
the torsion angles of the four central residues of hpnc-3: (a-c) AG plots along the first three principal components of the
trajectory. The blue regions in the diagrams correspond to the various energy minima. (d-f) Colour-coding panels illustrating the
conformational clusters obtained by the dPCA analysis of the four central residues

As it can be seen, the free energy landscapes are quite rugged with several free energy
minima that correspond to specific conformational structures. As it was expected, the number
of clusters that observed is being reduced as we progressively reduce the amount of dihedral
angles included in the dPCA analysis. The decrease in the number of prominent structures
comes in agreement with the fact that the peptides’ edges present a more dynamic behaviour,
whereas the central parts containing the Asn-Gly segment adopt relatively more stable
conformations resulting possibly in certain secondary structure motifs with certain patterns of
torsion angles and hydrogen bonds.

It is also obvious that the free energy landscapes of the entire peptides (Figure 4.1) have
a lower signal-to-noise ratio than those of the central residues (Figure 4.2-4.4). This explains the
fact that many unstable intermediate states being formed during the simulation and promoted
by the dynamic peptides’ ends, may have quite similar structural patterns with the stable ones,
making the energy minima broader without well defined limits, rather than sharp and distinct
to each other.

The bottom panels in Figure 4.2-4.4 illustrate the most prominent clusters visualized
upon the free energy landscapes and Table I below contains the populations of the most
prominent conformational states of the heptapeptides in water as obtained by the dPCA
analysis
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Table I: Populations of the most prominent clusters of heptapeptides in water.

hpne-1 hpng-2 hpne-3 hpng-1 hpng-2 hpne-3

No. of Cluster (full length) (full length) (full length)  (central part) (central part) (central part)

1 7.06 34.44 19.56 11.88 20.10 20.66
2 11.45 25.30 13.02 4.26 14.09 17.38
3 8.34 10.62 11.49 8.65 4.55 16.50
4 19.84 6.50 6.38 7.23 9.54 4.22
5 9.83 4.19 6.25 7.67 10.02 11.33
6 4.87 3.80 7.09 6.32 10.13 6.92
7 0.80 4.36 3.58 5.16 3.24 7.48
8 1.52 3.11 7.96 10.74 5.98 3.87
9 9.60 2.14 1.80 9.40 7.55 2.65
10 0.69 1.20 2.16 5.10 4.39 2.71
11 1.01 1.72 1.54 6.46 2.42 1.40
12 0.82 0.79 2.62 5.97 241 1.74
13 1.30 1.52 1.88 2.30 2.85 1.64
14 1.30 0.15 3.53 2.75 2.44 1.08
15 4.59 0.16 4.02 3.01 0.28 0.41
16 1.01 0.90 2.06

17 0.98 1.18 0.67

18 0.71 2.79 0.37

19 4.67 1.05

20 1.86 0.43

21 1.41 0.53

22 0.87 0.12

23 0.19

24 1.01

25 0.33

26 0.34

27 0.65

28 0.15

29 0.94

30 0.22

31 0.16

32 0.12

34 0.27

Table I: Shown are the population probability (among clustered frames in %) for the conformational clusters derived from
each dPCA analysis. The table contains only resulting clusters with a population probability greater than or equal to 0.1%.
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4.3 Structural Analysis

In order to identify the presence of f-turns in each cluster derived from the
Principal Component Analysis we used the promotif program. The program provides
details of the locations and types of stractural motifs that are present in proteins.
Concerning S-turns, these are defined by four consecutive residues (i to i+3) with the
distance between the Co atoms of residues i and j+3 being less than 7 A and where the
central two residues are not helicall2546l. Promotif can potentially assign a structure to
one of the nine classes of f-turns based on the ¢, y angles of the i+1 and i+2 residues.
The ideal angles for each f-turn category are shown below in Table II. The ¢, y angles

were allowed to vary by £300° form these ideal values, with one angle being allowed to
deviate by as much as 40c.

Table I1: Ideal angles for g-turn types.

Dihedral Angles (0)

Turn Type Qi+ Vit Pis2 Vie2

I -60 -30 -90 0

I 60 30 90 0

Il -60 120 80 0

1 60 -120 80 0

Viatl* -60 120 -90 0

Via2* -120 120 -60 0
Vib -135 135 -75 160
Vil -60 -30 -120 120

v Turns excluded from the above categories

Table II: g-turns are divided into nine categories based on the dihedral angles of the central residues i+1 and i+2.
*Vlal and Vla2 require cis-proline at position i+2 and thus this type is not being studied in this project.

To have an overall view of the g-turns occupancy in each cluster, we studied the

presence and the corresponding populations of each g-turn class in every cluster, using
500 equally spaced structures from each cluster, as obtained from the dPCA analysis of

the peptides’” four-residue central part. The following charts show the occupancy of g-
turns among these 500 structures in every cluster for the three heptapeptides. Clusters

in which g-turns were not identified are omitted. A more detailed list of the populations
of f-turns in each cluster’s sample dataset can be found in the Appendix (A2).
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As it can bee seen, for hpne-1, two of the most populated clusters are occupied
mainly by type | turns. Type I’ and Il turns are also present in some less populated
clusters with type Il being more preferred. For hpnc-2, the most populated cluster is
occupied mainly by type I’ turns. The second most preferred g-turn type for this
heptapeptide is type I, followed by type 1l which is present in less populated clusters.
hpnc-3 shows a strong preference for type | and type I’ turns. Type Il turns are also
present in lesser populations. Regarding type IV turns, almost every cluster is occupied
by minor populations of this turn category. The population of type VIII turns in each
heptapeptide is barely observable, whereas type II” and type VIb turns are not present at
all. It is important to stress again that not all frames of each cluster were analysed. This
structural analysis refers to a dataset of about 500 representative structures obtained by
each cluster.

The next step was to perform a structural analysis on the representative

structures of each cluster that produced by grcarma. The results produced by promotif
can be seen in the following tables.

hpne-1
(Ala-Asn-Gly-Ala)

No. of

. Central i, i+3 hydrogen ~ Ramachandran
Representative Turn Type Resid bond Regi
Structure esidues on egion

1 v Ala-Asn Yes AB

2 \% Asn-Gly No Aa

8 \Y Ala-Asn No Aa

10 [ Gly-Ala Yes AA
12 [ Ala-Asn No Aa
14 | Ala-Asn Yes AA
16 [ Asn-Gly Yes AA

I\ Gly-Ala No Aa

17 I Gly-Ala Yes A

19 [ Ala-Asn Yes AA

\Y Asn-Gly No Aa

Table 111: Shown are only the representative structures of hpng-1 that form f-turn motifs. From left to
right are listed the number of cluster of which is the representative, the turn type, the i+1 and i+2
central residues, the presence of hydrogen bond between the CO group of residue i and the NH
group of residue i+3, and the regions of the Ramachandran plot occupied by residues i+1 and i+2.
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hch-2

(Val-Asn-Gly-Gln)
No. of Central i, i+3 hydrogen  Ramachandran
Representative Turn Type . ! yaros :
S Residues bond Region
tructure
1 I Gly-GIn Yes AA
5 | Val-Asn No AA
9 v Gly-Gln No A
10 I Gly-GlIn Yes AA
1 v Val-Asn No Aa
v Asn-Gly No alL
12 v Gly-Gln No Aa
13 | Val- Asn Yes AA
15 v Asn-Gly No AP

Table IV: Shown are only the representative structures of hpng-2 that form g-turn motifs. From left to
right are listed the number of cluster of which is the representative, the turn type, the i+1 and i+2
central residues, the presence of hydrogen bond between the CO group of residue i and the NH
group of residue i+3, and the regions of the Ramachandran plot occupied by residues i+1 and i+2.

hch-3
(Val-Asn-Gly-Leu)

No. of

R . Central i, i+3 hydrogen  Ramachandran
epresentative Turn Type . .
Structure Residues bond Region
1 | Val-Asn No AA
3 v Val-Asn No Aa
v Gly-Leu Yes A
4 v Asn-Gly Yes PL
5 v Gly-Leu No AA
7 v Val-Asn No AB
9 I Gly-Leu No AA
13 I Gly-Leu Yes AA
14 Vil Val-Asn No AB
15 I Val-Asn Yes AA
v Gly-Leu No A

Table V: Shown are only the representative structures of hpng-3 that form f-turn motifs. From left to
right are listed the number of cluster of which is the representative, the turn type, the i+1 and i+2
central residues, the presence of hydrogen bond between the CO group of residue i/ and the NH
group of residue i+3, and the regions of the Ramachandran plot occupied by residues i+1 and i+2.
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As shown above, the results of the structural analysis between the representative
cluster structures and the 500-sample groups from each cluster differ a lot. As shown in
Tables I11-V only one representative in each heptapeptide adopts a type IV f-turn
structure with Asn-Gly being the central segment. The remaining representatives adopt
mainly g-turn motifs with Asn or Gly being only one of the central two residues. A
minority of representatives also have been found to either adopt double turns or even
random coils. But why is there such difference between these two structural analyses?
The representative structure refers to the structural configuration that corresponds to the
centre of the cluster. Due to the increased kinetic frustration of our peptides a
representative structure may differ a lot compared to a group of 500 equally spaced but
random configurations of the cluster. Following, we present a superimposed sample
dataset of the most populated clusters of the three heptapeptides along with the
representative structure for each cluster. All 3D models were created in PyMOL.

For hpng-1 the three major clusters have a population of 11.8% (Cluster No. 1),
10.74% (Cluster No. 8) and 9.40% (Cluster No. 9). The representative structures of
clusters No. 1 and No. 8 correspond to a type IV f-turn with Ala and Asn being the
central residues i+1 and i+2 respectively. The representative of cluster No. 9
corresponds to a random coil instead of a turn (Figure 4.5).

- Ala-Asn
*\..[ AV

Lreoy

3\?“ \(

2
N
Cluster No. 1
X Ala-Asn
I ‘5 pIv
N AN \ ~
J ’ A {xr\\_x ) -
A~ |
_ Cluster No. 8
r
\ AN "\_j\
; v ‘(\“ l
) %
= N
2

Cluster No. 9

Figure 4.5 Representative structures (left) along with the 500 equally spaced superimposed structures for the four central residues
(right) of the three major clusters of hpng-1. The colours of the superimposed structures denote the RMS fluctuations, varying
from blue (small values of RMSF) to red (large values of RMSF).
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For hpng-2 the three major clusters have a population of 20.10% (Cluster No.
1), 14.09% (Cluster No. 2) and 10.13% (Cluster No. 6). Cluster No. 5 has a population
of 10.02% almost equal to the third cluster. The representative structures of clusters No.
1 and No. 5 both adopt a type | S-turn. In the first case the central segment consists of
Gly-Gln, whereas in the second case of Val-Asn. Representatives from clusters No. 2
and No. 6 do not adopt any specific conformation (Figure 4.6).

: 1( Gly Gln

’T‘}"

<€\

= {

/

\ “ 4
7 A b4
Z\ 4 ‘4\ , _\'

Cluster No. 1

Cluster No. 6

= Val-Asn
§ f

Cluster No. 5

Figure 4.6 Representative structures (left) along with the 500 equally spaced superimposed structures for the four central residues
(right) of the four major clusters of hpng-2. The colours of the superimposed structures denote the RMS fluctuations, varying from
blue (small values of RMSF) to red (large values of RMSF).
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For hpng-3 the three major clusters have a population of 20.66% (Cluster No.
1), 17.38% (Cluster No. 2) and 16.50% (Cluster No. 3). Cluster No. 5 has also a
significant population of 11.33%. The representative structure of Cluster No. 1 forms a
type | Val-Asn p-turn and that of Cluster No. 5 a type IV Gly-Leu p-turn. The
representative of Cluster No. 3 forms a double turn, while that of Cluster No. 2 does
not adopt any specific conformation (Figure 4.7).

Val-Asn

‘, RC
4
4 !
A g o A
L0 red
},. A\ #
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Cluster No. 2

Cluster No. 3

Gly-Leu

Cluster No. 5

Figure 4.7 Representative structures (left) along with the 500 equally spaced superimposed structures for the four central residues
(right) of the four major clusters of hpng-3. The colours of the superimposed structures denote the RMS fluctuations, varying from
blue (small values of RMSF) to red (large values of RMSF).
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As for the representative structures that form an Asn-Gly g-turn, the analysis
assigned only one representative structure in each of the heptapeptides. For hpnc-1, the
representative of Cluster No. 2 forms a type IV g-turn. Cluster No. 2 has a population of
4.26%. For hpnec-2, the representative structure of Cluster No. 15, that has a population
of 0.28%, forms a type IV p-turn. Finally, for hpnc-3, the representative structure of
Cluster No. 4 adopts also a type IV g-turn. The population probability for that cluster is
4.22% (Figure 4.8).

hpng-3: Cluster No. 4

Figure 4.8 Representative structures (left) along with the 500 equally spaced superimposed structures for the four central residues
(right) of the clusters that correspond to Asn-Gly g-turns. The colours of the superimposed structures denote the RMS fluctuations,
varying from blue (small values of RMSF) to red (large values of RMSF).
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4.4 Temperature Based Analysis

For our simulations with the NAMD program the adaptive tempering method
was implemented. This method dynamically updates the simulation temperature. The
temperature T varies between a range of [Tmin, Tmax]. The general idea behind this
method is that when the potential energy of a given structure is below the so far
calculated average energy, the temperature is lowered. Conversely, when the current
energy is higher than the average, the temperature is increased. The resulting effect is a
faster conformational sampling in order to find minimum energy structures!42.571. Figure
4.9 below presents a temperature based analysis of our trajectories.

T(K)
T(K)

time (ps) time (ps)

T(K)

time (us)

Figure 4.9 Diagrams of temperature distribution as a function of the simulation time for (a) hpnc-1, (b) hpng-2 and (c) hpne-3.
Blue colours correspond to a low number of conformations, while red and black to a large number of conformations. The
diagrams were produced using the plot program.
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As shown above, most of the conformations, and possibly the more stable ones,
are present in low temperatures (less than 360 K). However, there are no distinct, stable
folding events for any of the three heptapeptides, meaning that they present quite a
dynamic behaviour during the whole time of their simulation.

4.5 Comparison with the ab initio Models

In this part of the thesis we are going to compare the results from our MD
analyses with the ab initio models of the same heptapeptides presented by Kang & Yoo.
In order to do so, we first perfformed an RMSD analysis of our trajectories using as
reference structures the four g-turn models (I, I, 11, 1I’) and an extended one, produced
by their work using quantum mechanical calculations and the DFT method.

The Root Mean Square Deviation (RMSD) is a common analysis in Structural
Biology, notably when carrying out an MD simulation. The RMSD calculates the
average distance between atoms of different superimposed conformations. It is thus a
comparative method for analysing protein structures!58l.

The RMSD can be calculated by the following equation

RMS = <(ri” —riﬁ)2>2 = NLZ(ri” —rﬁ)2 (4.5)

i

where r“states the atomic coordinates of a specific structure at a specific time, r the

atomic coordinates of another structure, in our case the reference structure, and N is
the number of the atoms. The lesser the magnitude of the RMSD value is, the greater
the similarity between the two superimposed structures. Conversely, the greater the
RMSD value is, the larger the difference between the superimposed structures. In case
of identical structures, the RMSD value is 0 A. Usually, values of RMSD less than or
equal to 2.0 A denote sufficient and obvious similarity between structures.

For the RMSD analysis we used only frames that correspond to temperatures of
less than 360 K, in order to focus only on the more stable conformations and avoid
excess noise in our results. The following figures were created with the Grace plotting
tooll59 (Figure 4.10-4.12) and are histogram charts showing the distribution of RMSD
fluctuations during the simulation time in reference to the ab initio models.
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Figure 4.10 Histogram charts presenting the distribution of the RMS deviations of each hpng-1 conformation of our trajectory (<
360 K) in reference to each of the ab initio models.
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Figure 4.11 Histogram charts presenting the distribution of the RMS deviations of each hpne-2 conformation of our trajectory (<
360 K) in reference to each of the ab initio models.
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Figure 4.12 Histogram charts presenting the distribution of the RMS deviations of each hpng-3 conformation of our trajectory (<
360 K) in reference to each of the ab initio models.
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Most of the conformations of the hpne-1 trajectory show a reduced convergence
with the ab initio models. However, some of the RMSD histograms of hpng-2 and
hpne-3 contain distinct peaks at low values of RMSD denoting that there are groups of
conformations that present sufficient similarity with the ab initio models. In order to
compare our trajectories with the ab initio models, we shall first choose an RMSD
cutoff so as to isolate only clusters which are considerably similar to those models that
were identified through quantum mechanical calculations. The RMSD cutoff that was
chosen equals to 2.2 A and was selected after observing the width of each distinct peak
at low values of RMSD in each of the histogram charts.

The next step was to perform an RMSD based cluster analysis in all our three
trajectories independently of the ab initio models. The concept of this, lies in the fact
that, since there are frames in our trajectories that present such high similarity with the
ab initio models (the above RMSD analysis presented values even less than 1 A in some
cases), there will be clusters of conformations sufficiently similar to the ab initio
models. Therefore, we constructed a hierarchical dendrogram for each of the three
trajectories using the UPGMA algorithm and choosing the above mentioned threshold
of 2.2 A (Figure 4.13-4.15). Table VI also summarises the populations of all clusters
found. It is important to mention that the RMSD values for each heptapeptide were
calculated every 1000th frame, thus resulting in the examination of 5033 frames from
the first trajectory, 5010 frames from the second trajectory and 5027 frames from the
third trajectory.

o _
™

<
™

v _|
ai J_‘

g ,ﬁ,{ g M ik

Peptides

Figure 4.13 The hierarchical dendrogram produced by the RMSD analysis of hpng-1, as created using the UPGMA algorithm.
The red line indicates the RMSD cutoff set for the cluster analysis and isolation, and the amount of clusters isolated.
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Table VI: Populations of the clusters produced from the RMSD analysis.

No. of Cluster hpng-1 hpne-2 hpne-3
1 2.26 14.81 16.01
2 7.69 6.99 8.89
3 1.99 11.78 4.26
4 2.42 17.58 9.89
5 11.19 14.67 12.02
6 7.25 4.79 8.12
7 7.41 15.55 11.60
8 6.24 3.91 6.03
9 12.66 2.97 6.17
10 8.44 2.65 7.14
11 6.12 4.29 5.09
12 7.49 4.79
13 6.24
14 9.80
15 2.80

Table VI: Shown are the populations (among examined frames in %) of clusters from each
heptapeptide as produced by the RMSD based clustering analysis.

At this point, in order to examine which clusters indicate significant structural
similarity with the ab initio models for each of the heptapeptides, we have to proceed
on an RMSD analysis of each cluster using as reference conformations the
experimental models. For this purpose, we created pseudo-trajectories for each
heptapeptide by concatenating sequentially each cluster’s frames. The RMSD analysis
was made via grcarma and the following graphs (Figure 4.16-4.18) were produced by
the Grace plotting tool.
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Figure 4.16 RMSD diagrams of the hpng-1 pseudo-trajectory representing all clusters and using as reference conformation the ab
initio model for type | f-turn (a), I’ f-turn (b), Il p-turn (c) I’ -turn (d) and the extended conformation (e).

Cluster No. 14 (Frames: 4399-4892), which has a population of 9.80%, presents
the greatest similarity with type I, I, Il and II’ S-turns of the ab initio models for hpng-1.
The RMSD in each case fluctuates around 2.0 A, 2.2 A, 2.1 A and 2.1 A respectively.
Cluster No. 05 (Frames: 723-1286), that has a population of 11.19%, presents the
greatest similarity with the extended conformation of the ab initio models for hpne-1,
with the RMSD values in this cluster fluctuating around 2.5 A.
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Figure 4.17 RMSD diagrams of the hpng-2 pseudo-trajectory representing all clusters and using as reference conformation the ab
initio model for type | B-turn (a), I’ B-turn (b), Il B-turn (c) I’ B-turn (d) and the extended conformation (e).

Cluster No. 04 (Frames: 1682-2563), that has a population of 17.58%, presents
the greatest similarity with type I, I’, Il and II f-turns of the ab initio models for hpng-2.
The RMSD in each case fluctuates around 2.3 A, 1.8 A, 2.2 A and 2.0 A respectively.
Cluster No. 07 (Frames: 3538-4317), that has a population of 15.55%, presents the
greatest similarity with the extended conformation of the ab initio models for hpng-2,
with the RMSD values in this cluster fluctuating around 2.2 A.
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Figure 4.18 RMSD diagrams of the hpng-3 pseudo-trajectory representing all clusters and using as reference conformation the ab
initio model for type | S-turn (a), I’ B-turn (b), Il B-turn (c) I’ B-turn (d) and the extended conformation (e).

As for hpnc-3, Cluster No. 05 (Frames: 1963-2567), having a population of
12.02%, denotes significant similarity with the ab initio type | p-turn, while Cluster No.
02 (Frames: 805-1252), with a population probability of 8.89%, indicates the greatest
similarity with the remaining g-turn ab initio models. The RMSD in each of the above
cases fluctuates around 2.1 A, 1.8 A, 2.4 A and 2.0 A regarding |, I, Il, II” turn types
respectively. Cluster No. 07 (Frames: 2975-3558), which has a population of 11.60%,
presents the greatest similarity with the extended conformation of the ab initio models,
with the RMSD values in this cluster fluctuating around 2.5 A.
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How can only one cluster denote similarity with more than one g-turn types of
the ab initio models? Maybe the structural differences among these turn types are
relatively small and along with the RMSD cutoff that has been chosen for the cluster
analysis, the cluster isolation might not represent such accurate discretion among the
clusters” structures and the experimental models. Nevertheless, clusters that indicate
significant similarity with the ab initio models correspond to relatively large
populations, but still they do not describe more than 20-30% of the trajectory in each
case. Clusters that are similar with the extended ab initio configurations have
considerable populations, however, they fluctuate around relatively large RMSD
values. Clusters similar to the experimental S-turns denote better similarity, but still we
cannot have a highly-accurate perspective of the data. The hypothesis that the Asn-Gly
peptides can adopt g-turn conformations can in general be true, but further research is
necessary in order to prove whether this type of structural motif is strongly favoured for
these peptides.
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5. Conclusions and Discussion

The primary aim of this project was to evaluate the ability of MD simulations to
sufficiently predict the structure and dynamics of small peptides compared to the “high
quality” quantum mechanical calculations. For this purpose, we performed three 5 us
MD simulations on three Asn-Gly heptapeptides, analysed the results and compared
them with their corresponding ab initio models.

While quantum mechanics calculations have shown that type I’ g-turn is the
most preferred motif in aqueous solution for the three heptapeptides containing the
Asn-Gly segment (with some variations depending on the sequence of the peptides and
the solvent polarity), the results obtained from our MD simulations seem to diverge
significantly. It appears that the peptides suffer from severe kinetic frustration with
many non-native structures being transiently stabilized during our simulations. The
resulting free energy landscapes and the following cluster analysis have shown that
there is no funnel-like gradient leading to a native state and thus, no noticeable highly
populated native-like intermediate. Furthermore, peptides’ central four-residue part
appears to be more stable without, however, affecting extensively the general dynamic
behaviour of our systems.

The clusters’ structural analysis, on the other hand, implies the presence of S-
turn motifs in a significant number of clusters in each heptapeptide. However, the
preference in positions i+1 and i+2 in f-turns varies between the four central residues,
with the Asn-Gly segment preferring the aforementioned positions in a negligible
proportion in relation to the whole trajectory. For hpng-1 the most preferred structure is
an Ala-Asn gIV turn motif, whereas for hpng-2 and hpne-3 the most preferred structures
are a Gly-GIn and a Val-Asn pl turns respectively. The remaining structures show a
strong preference in Sl and SIV turns, as well as there are representative structures that
form a random coil rather than a canonical secondary structure pattern. Such
difference between our results and the ab initio models can be attributed not only in
the short peptides’ length and their corresponding kinetic dynamicity, but it might also
emanate from the positional potential of each residue among the different turn types.
For instance, the Asn residue is in general considerably favoured at position j+2
(Thornton et. al., 1994). The formation of hydrogen bonds between side chains that
stabilize the turns and thus the amino acid sequence of each heptapeptide might also
play a particular role.

Also, the RMSD based analysis of our trajectories in comparison with the ab
initio models denoted some similarity. Examining the frames of the whole trajectories
that correspond to lower temperatures and thus to more stable configurations, and
performing RMSD analyses using as reference structures the experimental models, we
found notable conformation populations around low values of RMSD (2.2 A).
Consequent cluster isolation using the UPGMA algorithm and RMSD based clustering
analyses have indeed shown similarity to the ab initio models in considerable
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proportions of the trajectories. The tendency of the Asn-Gly heptapeptides to form
generally f-turn structures is relatively apparent, but the tendency among the different
p-turn types is not clearly distinguishable. A further analysis with a lower RMSD
threshold may be able to group conformations of closer structural similarity and reduce
excessive noise.

To have an overall view, we can ascertain that the Asn-Gly heptapeptides
present a dynamic behaviour in aqueous solution with a general tendency to form f-
turn conformations, as the four-residue central part presents a more stable behaviour.
The preference of amino acids varies in positions i+1 and i+2 and the peptides are
inclined to adopt mainly type | and IV g-turn conformations. Regarding the question
we initially posed, whether MD simulations can provide sufficiently comparable results
to quantum mechanical calculations, the answer is still not absolutely clear. MD
simulations seem to apply better to larger, more stable molecules, rather than small and
dynamic systems. But in order to be assured of this hypothesis, further systematic
research is necessary so as to confirm our results and make a step closer to the answer
of this question.
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Appendix

A1: Configuration File used for hpng-1

#

# Input files

#

amber on
readexclusions yes

parmfile asn-gly-1.prmtop
coordinates asn-gly-1.pdb

#

# Output files & writing frequency for DCD
# and restart files

#

outputname output/heat_out
binaryoutput of f

restartname output/restart
restartfreq 1000
binaryrestart yes

dcdFile output/heat_out.dcd
dcdFreq 400

#

# Frequencies for logs and the xst file
#

outputEnergies 400
outputTiming 1600

xstFreq 400

#

# Timestep & friends

#

timestep 2.5
stepsPerCycle 20
nonBondedFreq 1
fullElectFrequency 2

#

# Simulation space partitioning

#

switching on

switchDist 7

cutoff 8

pairlistdist 9

#

# Basic dynamics

#

temperature 0

COMmotion no

dielectric 1.0

exclude scaledl-4
1-4scaling 0.833333
rigidbonds all

#

# Particle Mesh Ewald parameters.

#

Pme on

PmeGridsizeX 32 # <===== CHANGE ME
PmeGridsizeY 32 # <===== CHANGE ME
PmeGridsizeZ 32 # <===== CHANGE ME
#

# Periodic boundary things

#

wrapWater an

wrapNearest on

wrapAll on
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cellBasisVectorl
cellBasisVector2
cellBasisVector3
cellOrigin

#

27.00 0.00
0.00 27.00
0.00 0.00 2
0.00 0.00

# Langevin dynamics parameters

#

langevin
langevinDamping
langevinTemp
langevinHydrogen

langevinPiston
langevinPistonTarget
langevinPistonPeriod
langevinPistonDecay
langevinPistonTemp

useGroupPressure

#

on
10

320
off

on
1.01325
200

100

320

yes

# run one step to get into scripting mode

#
minimize

langevinPiston

#

0

off

# minimize nonbackbone atoms

#
minimize
output

#

2000
output/min_fix

# heat with CAs restrained

#
set temp 20;

while { $temp < 321 } {

langevinTemp
run
output

$temp
1000
output/heat_ca

set temp [expr $temp + 20]
}

#

# equilibrate volume with CAs restrained

#
langevinPiston
run

output

on
12000
output/equil_ca
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2.00
0.00
7.00
0.00

CHANGE ME
CHANGE ME
CHANGE ME
CHANGE ME
# <===== Check me
# <===== Check me
;# <===== CHANGE ME
i # <===== Check me
1 # <===== CHANGE ME
;# <===== CHANGE ME



A2: Populations of g-turns per cluster
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Script 01

#!/usr/bin/perl -w

(@ARGY == 9) or die "Usage: script®6.pl filel outfilel outfile2 outfile3 outfile4 outfile5 outfile6 outfile7 outfiled8\n";

open (IN, $ARGV[@]) || die "Can not open $ARGV[@] for reading\n";

open ( OUT_1, ">$ARGV[1]") || die "Can not open $ARGV[1] for writing\n";
open ( OUT_2, ">$ARGV[2]") || die "Can not open $ARGV[2] for writing\n";
open ( OUT_3, ">$ARGV[3]") || die "Can not open $ARGV[3] for writing\n";
open ( OUT_4, ">$ARGV[4]") || die "Can not open $ARGV[4] for writing\n";
open ( OUT_5, ">$ARGV[5]") || die "Can not open $ARGV[5] for writing\n";
open ( OUT_6, ">$ARGV[6]") || die "Can not open $ARGV[6] for writing\n";
open ( OUT_7, ">$ARGV[7]") || die "Can not open $ARGV[7] for writing\n";
open ( OUT_8, ">$ARGV[8]") || die "Can not open $ARGV[8] for writing\n";

$/=undef;

$input = <IN>;

@super_pdb = split (/ENDMDL/, $input);
Ior ($1=0; $i<=64; $i++)

printf OUT_1 "$super_pdb[$i]";

%or ($1=65; $i<=129; $i++)
{ printf OUT_2 “$super_pdb([$il";
ior ($1=130; $i<=194; $i++)
; printf OUT_3 "$super_pdb[$il";

for ($i=195; $i<=259; $i++)
! printf OUT_4 "$super_pdb([$i]";
for ($i=260; $i<=324; S$i++)
t printf OUT_5 "S$super_pdb[$il";
zor ($1=325; $i<=389; $i++)

printf OUT_6 "$super_pdb[$il";

ior ($1=390; $i<=454; $i++)
{ printf OUT_7 "$super_pdb[$i]";
zor ($1=455; $i<=519; $i++)
i printf OUT_8 "$super_pdb[$il";

close{ OUT_1);
close( 0UT_2);
close( OUT_3)
close( 0UT_4);
close( OUT_5)
close( OUT_6);
close{ OUT_7);
close( 0UT_8);
close (IN);

exit(0);

Script 02

#!/usr/bin/perl -w

(@ARGV == 2) or die "Usage: script@7.pl filel outfile\n";
open (IN, $ARGV[@]) || die "Can not open $ARGV[@] for reading\n";
open ( OUT, ">$ARGV[1]") || die "Can not open $ARGV([1] for writing\n";

$a=0;

$b=0;

$c=0;

$d=0;

$e=0;

$f=0;

$/=undef;

$input = <IN>;

@turns = split (/\n/, $input);
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foreach $turns (@turns)
if ($turns =~ /\sI\s/)
{

$a++;
$turns=$"';

}
elsif ($turns =~ /I\'/)
{

Sb++;
$turns=s$';

}
elsif ($turns =~ /\sII\s/)
{

SC++;
$turns=$';

}
elsif ($turns =~ /II\'/)
{

Sd++;
$turns=$';

}
elsif ($turns =~ /VIII/)
{

$e++;
$turns=$';

}
elsif ($turns =~ /IV/)
{

$f++;
$turns=$';

}
elsif ($turns =~ /Cluster\s+(\d+)\S\s+(\d+)/)
{

print OUT "Total number of conformations in Cluster $1: ", $2, "\n";
$tot=%$2;

}

$sum=$a+$b+$c+sd+se+s$f;
$x1=100%%a;
$x2=100%%b;
$x3=100x$c;
$x4=100x%d;
$x5=100x%e;
$x6=100x%f;

print OUT "Total number of beta-turns: ", $sum, "\n";

printf OUT "%13s %5d %- 2.1f %1s\n", "Type I(%):", $a, ($x1/$tot), "%";
printf OUT "%13s %5d %- 2.1f %1s\n", "Type I'(%):", $b, ($x2/%tot), "%";
printf OUT "%13s %5d %- 2.1f %1s\n", "Type II(%):", $c, ($x3/$tot), "%" ;
printf OUT "%13s %5d %- 2.1f %1s\n", "Type II'(%):", $d, ($x4/%tot), "s";
printf OUT "%13s %5d %- 2.1f %1s\n", "Type VIII(%):", $e, ($x5/%$tot), "%";
printf OUT "%13s %5d %- 2.1f %ls\n\n", "Type IV(%):", $f, ($x6/%$tot), "%";

close ( OUT);
close (IN);

exit(Q);

Script 03

#!/usr/bin/perl -w
open (INFILE, $ARGV[@]) || die "Can not open $ARGV([@]\n";
$i=1;
$/=undef;
$input = <INFILE>;
@pdb = split (/\n/, $input);
foreach $pdb (@pdb)
{
if (Spdb =~ /7C\s*(\S=x)\sk(\S*)\sk(\S*)\s*(\S*)\s*x(\Sx)\s=(\S*)/)
{
printf "%-6s %4d %-3s %3s %1s %3d %11.3f %7.3f %7.3f %5.2f %5.2f %1ls\n", ATOM, $i, $6, $4, A, $5, $1, $2, $3, 1, 0, C;
$i++;
$pdb=s’;
}
:lsx' ($pdb =~ /~N\s*(\S#)\sw{\Sw)\ s (\Sw)\sw(\Sw)\sk(\S=)\sx(\S%)/)
printf "%-6s %4d %-3s %3s %1s %3d %11.3f %7.3f %7.3f %5.2f %5.2f %11s\n", ATOM, $i, $6, $4, A, $5, $1, $2, $3, 1, @, N;
$i44;
$pdb=s';
elsif ($pdb =~ /~0\s*(\S*)\s*(\S#)\sk(\S#)\s*(\Sx)\s*(\S=)\s*(\S%)/)
{
printf "%-6s %4d %-3s %3s %1s %3d %11.3f %7.3f %7.3f %5.2f %5.2f %11s\n", ATOM, $i, $6, $4, A, $5, $1, $2, $3, 1, 0, O;
$i+4;
$pdb=$"';
}
print "END\n";

close (INFILE);
exit(@);
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Script 04

#Example of the script used for the first heptapeptide.

A <- matrix(scan("asn-gly-1.RMSD.matrix", n=5033%5033), 5033, 5033, byrow = TRUE)
hc <= hclust( as.dist(A), method="complete")

plot(hc)

postscript(hc)

plot(hc)

dev.off()

cutree( hc, h = 2.2)

rect.hclust( he, h= 2.2, border="red")

clusters <- cutree( hc, h = 2.2)

as.data.frame(clusters)

names(a) <- NULL

write.table(a, file = "all_clusters.list", sep = " ", guote = FALSE)
q()
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