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ABSTRACT: Short peptides serve as minimal model systems
to decipher the determinants of foldability due to their
simplicity arising from their smaller size, their ability to echo
protein-like structural characteristics, and their direct implica-
tion in force field validation. Here, we describe an effort to
identify small peptides that can still form stable structures in
aqueous solutions. We followed the in silico folding of a
selected set of 8640 tryptophan-containing tetra- and
pentapeptides through 15 210 molecular dynamics simulations
amounting to a total of 272.46 μs using explicit representation
of the solute and full treatment of the electrostatics. The
evaluation and sorting of peptides is achieved through scoring
functions, which include terms based on interatomic vector distances, atomic fluctuations, and rmsd matrices between successive
frames of a trajectory. Highly scored peptides are studied further via successive simulation rounds of increasing simulation length
and using different empirical force fields. Our method suggested only a handful of peptides with strong foldability prognosis. The
discrepancies between the predictions of the various force fields for such short sequences are also extensively discussed. We
conclude that the vast majority of such short peptides do not adopt significantly stable structures in water solutions, at least based
on our computational predictions. The present work can be utilized in the rational design and engineering of bioactive peptides
with desired molecular properties.

1. INTRODUCTION

Peptide folding simulations1−8 have evolved to a highly active
research field because their significance is threefold: peptides
serve as model systems to optimize and validate force fields,9−13

as model systems to study the protein folding problem,14−16

and as potential candidates in drug design studies.17−20 Fast-
folding miniproteins are the new “play toys” because their
folding can be approximated by both theory and experi-
ment.21−33

The quest for fast-folding proteins reveals questions
regarding the lower size limit of peptides that can adopt stable
folds in aqueous solutions. To our knowledge, the smallest
peptides of unique structure comprise approximately 10
residues, like chignolin34 and CLN025,35 thus termed as
microproteins. Capped terminal ends and unnatural amino
acids lower further the size limit for protein-like fold stability to
7−10 residues.36 Smaller peptides of biological interest have
been studied occasionally3,37−42 but were found to be only
marginally stable in water solutions. However, the usage of
peptides in real-world applications, such as in molecular
biology, nanomedicine, and nanotechnology,43 depends on
their size, foldability, and solubility.17−19,44 De novo design of
non-natural peptides often results in compounds with variable
solubility, low bioavailability, and limited stability, which
impedes their therapeutic application, whereas naturally
occurring peptides have greater specificity and lower toxicity

but are large enough to be typically subject to proteolysis.17−19

Therefore, there is a need to design low-molecular weight
peptides that adopt stable folds in water environments and
possess particular molecular properties that fit each specific
need at a time. By using the ever-increasing power of
computers, state-of-the-art empirical force fields, and algorithms
to explore systematically a large number of peptides, we can
narrow them down to a manageable number of putatively
structurally stable ones.
To this end, we performed a systematic search for putatively

foldable peptides that are four- and five-residue long.
Tetrapeptides and pentapeptides have been implicated in the
initiation of folding,45−47 in structure prediction studies,48 and
in peptide design,49,50 whereas larger peptides (greater than
eight residues) are prone to aggregation due to low
solubility.51−53 In this work, a subset of 8640 peptides from
the vast total of 3 360 000 possible sequence combinations is
examined. We followed their in silico folding and structural
characterization through an exhaustive set of 15 210 independ-
ent molecular dynamics simulations resulting in a total of
272.46 μs of simulation time in explicit solvent and with full
treatment of the electrostatics. We present a combination of
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scoring functions designed specifically to identify folding events
and designate stably folded peptides.
In what follows, we show that, according to the general

expectation, the vast majority of tetrapeptides and pentapep-
tides is quite disordered with their folded population occupying
only a small fraction of the observed simulation time.
Systematic analysis of these simulations only identified four
peptides (two pentapeptides and two tetrapeptides) for which
computational evidence is consistent with the presence of a
stable structure. The present study revealed great discrepancies
in the predictions of the various examined force fields regarding
the folding behavior of this particular set of peptides. The same
peptide can be predicted to be anything from fully disordered
to folded to either one or more distinct structures, according to
some or all force fields. The predicted structures are sometimes
the same or differ even among force fields of the same family.
We conclude with possible interpretations of our findings and
their role in the validation and improvement of the current-
generation theoretical tools.

2. METHODS
2.1. Peptide Selection. The initial peptide pool that we

examined comprises 1440 tetrapeptides and 7200 pentapep-
tides (Table 1 and Figure 1). The reduction of the total number
of unique sequence combinations (160 000 and 3 200 000,
respectively) was accomplished through the incorporation of a
set of restrictions. The first was the requirement for the
presence of a tryptophan residue to favor the development of
electrostatic interactions and hydrophobic packing54,55 and also
to be able to obtain near-UV CD spectra56 for later
experimental validation. The second restriction was the
requirement for the presence of two charged residues of
opposite charges, which would guarantee solubility in aqueous
solutions and favor the development of stabilizing interac-
tions6,57 with the tryptophan residue. For the pentapeptide set,
we used as a restriction the presence of three unique charged
residues (two with a positive charge, one with negative, or the
opposite).
2.2. System Preparation and Simulation Protocol. The

system preparation procedure was performed automatically for
all simulations reported here (a grand total of 15 210
independent runs). All simulations were performed with
NAMD58 using explicit solvent, full treatment of the electro-
statics, and periodic boundary conditions. We examined the
force fields CHARMM22,59 CHARMM27-CMAP,60 OPLS-
AA,61,62 AMBER99SB,63,64 and AMBER99SB-ildn,65 as noted
in Table 1. The choice of force field in each simulation round
was made based on the performances of the force fields at the
time the simulations took place,13,66 regarding the folding of
small peptides.12,67,102,107,108

The starting structure of the peptides was in the fully
extended form, as obtained from the program Ribosome
(Shrinivasan, http://www.roselab.jhu.edu/~raj/Manuals/
ribosome.html) with both terminal ends unprotected. For
both the CHARMM and the OPLS force fields, missing
hydrogen atoms were built with the program PSFGEN from
the NAMD58 distribution and solvation and ionization were
performed with VMD.68 In the case of AMBER, system
preparation was performed with the program TLEAP from the
AMBER tools distribution.69 In all cases, peptides were
embedded in a truncated octahedral water box, with initial
cube dimensions of 28 × 28 × 28 Å3 and an initial solute−
solute distance of 12 Å, filled with pre-equilibrated TIP3P70

water molecules along with sodium and chloride ions to a final
concentration of ∼30 mM. All final systems comprised
approximately 900 atoms.
The simulation protocol was the following: At first, systems

were energy minimized for 1000 conjugate gradient steps. Then
the temperature was increased with a ΔT step of 20 K until a
final temperature of 320 K (or to the final temperature noted in
Table 1) over a period of 32 ps. Subsequently the systems were
equilibrated for 1000 steps with the positions of the Cα atoms
restrained followed by an equilibration period for the
production of the NpT runs with the temperature (320 K)
and the pressure (1 atm) controlled using the Nose−́Hoover
Langevin Dynamics and Langevin piston barostat control
method and the Verlet-I multiple-time step integration
algorithm, as implemented by NAMD.58 The Langevin
damping coefficient was set to 1 ps−1, and the piston’s
oscillation period was set to 200 fs, with a decay time of 100 fs.
The production run was performed with the impulse Verlet-I71

multiple time step integration algorithm as implemented by
NAMD.58 The inner time step was 2 fs, with nonbonded
interactions calculated every two time steps and full electro-
statics every four time steps using the particle mesh Ewald
method72 with a grid spacing of approximately 1 Å and a
tolerance of 10−6. A cutoff for the van der Waals interactions
was applied through a switching function, acting between 7 and
9 Å. The SHAKE73 algorithm (with a tolerance of 10−8) was
used to restrain all bonds including the hydrogen atoms.
Trajectories were obtained by saving the atomic coordinates of
the whole system every 0.8 ps.

2.3. Design of Simulations and Sorting of Peptides.
Given the known theoretical4,37,39,74,75 and experimental76−87

folding rates of such short peptides, we performed five
independent simulation rounds for each of the two sets of
peptides, as presented in Table 1. The initial pass comprises all
peptide sequences and short trajectories (5 ns for the
tetrapeptides and 20 ns for the pentapeptides) aiming toward
identification of early folding events. These comprise mainly
loop-closure events and formation of the first turn of a helix
(helix nucleation) that occur in the 10−2079−84 and 1−5 ns
time scale,85−87 respectively, for peptide sequences of
comparable length.
During this first pass, short trajectories were evaluated

through a scoring function designed to specifically identify a
rapid transition that leads to a loop-closure event along with the
formation of a stable structure. This target function is based on
interatomic vector distances and will be referred to as TF1 (see
section 2.4 for more details). Peptides were selected by
systematic application of the TF1.
In the second pass, peptides were evaluated through another

scoring function to identify stably folded peptides. This second
target function is based on an rmsd matrix between structures
from successive frames of the trajectory and will be referred to
as TF2 (section 2.4). Prominent peptides were selected again
by systematic application of the TF2 function. The efficacy of
both scoring functions, TF1 and TF2, in sorting the peptides
according to certain criteria (section 2.4), was ascertained after
visually examining the majority of the produced graphs.
In the third pass, peptides were selected after applying the

full battery of analysis, principal component analysis and
corresponding cluster analysis, calculation of average atomic
fluctuations, especially of the tryptophan’s side-chain, along
with the scoring function TF2. Two putatively stably folded
tetrapeptides were identified after examining different force
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fields and simulation temperatures (fourth and fifth pass in
Table 1). Foldable pentapeptides were identified through 1 and
2 μs simulations (fourth and fifth pass in Table 1).
2.4. Target Functions. The first scoring function, TF1, is

applied to short trajectories (first pass in Table 1) and its
purpose is to capture folding events. For such short sequences a
direct and computationally efficient way to follow structural
changes is the evolution of interatomic distances (Figure S1,
Supporting Information). Distance is a measure that allows also
a direct comparison between theory and experiment. For
example, FRET88 studies on small peptides (9−10 resi-
dues)89,90 and a series of polyproline polymers (6−40
residues)91 showed an excellent agreement with the simu-
lation-derived distances.
We follow the evolution of three distances between the three

pairs of Cα atoms that are more distant (Figure S1, Supporting
Information). The distances are evaluated based on the
observation of transitions, their number and duration, and the
correlation among all three possible pairs of the three calculated
distances. High scores are attributed to peptides with fast and
early transitions and as few and coordinated transitions as
possible. The TF1 score is a summation over all unique (Cαi−
Cαj) distances of the following function:

∑=
= ≠

T t t t tCorr( )
i j i j

i j i j
, 0,

2

where

=t
D max

aver min rmsdi j,
rmsd

rmsd

where Corr(titj) is the Pearson correlation coefficient between
the variation versus time of two (Cαi−Cαj) distances, D is the
difference between the maximum and minimum observed
distance value, aver is the mean value and rmsd is the
corresponding root-mean-square deviation calculated over all
observed distance values, and maxrmsd and minrmsd are the
maximun and minimum rmsd values calculated over a sliding
window of a certain width.
The D parameter is used to evaluate the sharp transitions, the

aver parameter is used to exclude peptides that remained in the
extended conformation, and the rmsd parameter is used to
exclude peptides with multiple folding/unfolding transitions;
rmsd is calculated over a sliding window (400 fs in this case) to
evaluate gradient transitions of the distance’s values and local
fluctuations between the transitions in order to rank peptides
appropriately.
The second scoring function, TF2, is applied to all

trajectories from the second round of simulations onward
(Table 1) and its purpose is to identify stably folded peptides.
We identify the formation of a cluster of closely related
structures through the calculation of root-mean-square matrices
(rmsd matrix, see Figure S1, Supporting Information). These
matrices are square and symmetrical, with their axes
representing structures from successive frames of the trajectory.
The matrix entries are filled with the rmsd value between two
structures after their superposition. The rmsd values are
calculated using all heavy atoms so as to find folded structures
where both the backbone and the side chains have stabilized.
The goal is to identify the formation of a cluster of closely
related (low rmsd values) structures. The color interpretation
of the formation of a cluster of structures is a large dense blue
box (rmsd < 2.0 Å) along the diagonal in the graphical

representation of a matrix (Figures 2 and 3, see also Supporting
Information Figures S1, S3, S4, and S5).
The TF2 function (a graphical representation of which is

shown in Figure S2, Supporting Information) is calculated
through a custom computer program: (1) read the square
matrix; (2) convert it to binary mode by assigning every rmsd
value ≥2.0 Å to 0 and every other value to 1; (3) for every
possible symmetric submatrix of dimensions (N − m) × (N −
m), where N is the initial matrix dimensions and m ranges from
2 to N − 2, count the percent of matrix entries with value 1; (4)
calculate a histogram of the distribution of the percent of matrix
entries with value 1 per dimension of each submatrix of the
previous step; (5) return the product of median and mode of
the distribution.

2.5. Trajectory Analysis. The program CARMA92 together
with custom scripts were used for most of the analyses,
including removal of overall rotations and translations,
calculation of the evolution of the Cα distances, calculation
of the rmsd matrices, principal component analysis in both
Cartesian93,94 and dihedral space95,96 and corresponding cluster
analysis, calculation of average structures and of the atomic
root-mean-square fluctuations, and production of PDB files
from the trajectories. All molecular graphics work and figure
preparation was performed with the programs VMD66 and
CARMA.92

2.6. Sufficient Sampling. To demonstrate that the
extreme systems we have chosen (approximately 900 atoms
and an initial solute−solute distance of 12 Å, referred to as
small PBC box) do not suffer from altered dynamics and
periodicity artifacts, we performed two additional simulations.
Two peptides, RWPD (Figure 1, see also Supporting
Information Figures S2, S4, and S7) and ECKRW (see
Supporting Information Figures S5 and S6), were studied
through folding simulations until convergence was achieved
(446 and 388 ns, respectively). We followed the same
simulation protocol (section 2.2) except for the initial cube
dimensions, which were 32 × 32 × 32 Å3 (large PBC box), and
the initial solute−solute distance, which was 16 Å. The final
systems comprised approximately 1700 atoms.
Convergence was examined by dividing the trajectories into

two nonoverlapping halves and performing dihedral angle
principal components analysis on each half, followed by the
calculation of the eigenvector overlap (as a function of the
number of eigenvectors) for the two halves. The overlaps in
dihedral space using the top three and top six eigenvectors are
0.77 and 0.87 for the tetrapeptide system. The corresponding
values for the pentapeptide system are 0.69 and 0.73 for the top
three and top six eigenvectors, respectively.
To validate our extreme systems (small PBC box), we

calculated the eigenvector overlap between the trajectories of
the RWPD and ECKRW peptides that were produced by the
two protocols with the small and large PBC boxes. As
representative trajectories for the small PBC box, we used the
1 μs trajectories from the fifth pass and fourth pass (as noted in
Table 1) for the two peptides. In the case of the tetrapeptide
system, the overlap in dihedral space is 0.89 with three
eigenvectors and 0.95 with six eigenvectors, thus indicating that
the two trajectories are consistent. Similarly, for the
pentapeptide system, the overlap in dihedral space is 0.81
with the three eigenvectors and 0.82 with the six eigenvectors.
The choice of a slightly smaller PBC box that still produces

equivalent trajectories allows, however, an increase in the
observed throughput by 30%, which has a significant impact on
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the physical time needed to complete the grand total of 15 210
simulations reported here (see section 2.7).
2.7. Computational Means and Requirements. All

simulations reported here (a grand total of 15 210 independent
runs) were performed on a stateless Beowulf cluster (http://
norma.mbg.duth.gr) based on quad core processors on a gigabit
interconnect using an SMP-enabled version of NAMD (v.2.6,
v.2.7b, or v2.8). Due to the small size of the systems, the
simulations scaled to either one or four cores, giving a
maximum observed throughput of 30 ns/day or 100 ns/day,
respectively, for a 900 atom system, requiring 461 days of
physical time on 32 dedicated cores for a total of 272.46 μs of
simulation time.

3. RESULTS
3.1. Most Tetrapeptides and Pentapeptides Are

Disordered. Figures 1 and 2 (and Figure S3 in the Supporting
Information) show the order of peptides after the application of
the scoring functions TF1 and TF2, during the successive
simulation rounds, as presented in Table 1.
In the word cloud of Figure 1, we see all of the 8640 peptides

that participated in the simulations presented here (Table 1).

Greater prominence, in the sense of larger font, is given
according to their foldability, as evaluated by both scoring
functions TF1 and TF2 and from all simulations. The
distribution of these cumulative scores reveals only a small
fraction (<1%) of outlier peptides that receive high score by the
target functions TF1 and TF2. Most peptides are disordered
and are characterized by multiple folding/unfolding events,
which leads to their underscoring by both target functions. This
great difference in the scores that separates the fraction of
folder peptides from the large population of nonfolders enables
the distinction and consequent selection of the cluster of
peptides that are likely to be foldable based on the evolution of
the interatomic vector distances and the frame-to-frame rmsd
matrices.
Less than 10% of the peptides under study where designated

as putatively foldable by the target function TF1 during the first
pass and qualified for the next simulation round. As the
simulation time increases at the second pass (Table 1), we can
view with greater ease the formation of a folded structure,
which is evaluated by the scoring function TF2. Figure 2 and
Figure S3 (in the Supporting Information) show the order of
the pentapeptides and tetrapeptides, respectively, after the

Figure 1. Word cloud of 8640 tetrapeptides and pentapeptides of their respective foldability. Greater prominence is given to the putatively foldable
peptides according to a cumulative score from all five independent simulation rounds as presented in Table 1 (TF1 score from first pass and TF2
score from second through fifth pass).

Table 1. Summary of All Simulations Performed in the Two Sets of Tetrapeptides and Pentapeptidesa

number of
peptides

number of
runs

simulation time per
run (ns) notes

Tetrapeptides
1st pass 1440 4 5 four independent repeats performed with CHARMM22 at 320 K
2nd pass 130 1 30 one repeat performed with CHARMM22 at 320 K
3rd pass 36 1 100 one repeat performed with CHARMM22 at 320 K
4th pass 4 4 300 four independent repeats performed with CHARMM22 at 283, 298, 320, and 340 K
5th pass 2 3 1000 three independent repeats performed with CHARMM-CMAP, AMBER99SB, OPLS-AA, at

320 K
Pentapeptides

1st pass 7200 1 20 one repeat performed with CHARMM22 at 320 K
2nd pass 480 1 100 one repeat performed with CHARMM22 at 320 K
3rd pass 32 4 120 four independent repeats performed with CHARMM-CMAP, AMBER99SB, AMBER99SB-

ildn, OPLS-AA at 320 K
4th pass 8 1 1000 one repeat performed with AMBER99SB-ildn at 320 K
5th pass 2 3 2000 three independent repeats performed with AMBER99SB-ildn at 298, 340, and 360 K

aFor each successive round of simulations, we indicate the number of peptides under study and the length and number of independent runs of
simulations, along with the temperature and the force field used in each case. The total simulation time amounts to 47.1 μs (37.680 core hours) and
225.36 μs (135.216 core hours) for the tetrapeptide and pentapeptide set, respectively.
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application of the target function TF2 at the second round of
simulations. Only 10% of the pentapeptides (Figure 2) folds to
a cluster of closely related structures occupying most of the 100
ns trajectory. Most peptides present a large and dispersed
cluster of structures, characteristic of unstable behavior with
multiple folding−unfolding events. This is in agreement with
the results of Figure S2, Supporting Information, which shows
the results from the application of the scoring function TF2 on
the tetrapeptide set.
These results taken together show that the vast majority of

the peptides under study are highly flexible and disordered for
most of the observed simulation time. The second scoring
function has the advantage of being independent of the peptide
length, unlike the scoring function TF1: the interatomic vector
distances in the tetrapeptide set are calculated between Cα
atoms that are separated by one or two peptide bonds, whereas
in the pentapeptide set they are separated by two or three,
resulting in higher distance values, which in turn means higher
scoring by the target function TF1. However, the distribution
of the scores in the tetrapeptide set inclusively shares the same
characteristics with the pentapeptide set, revealing only a small
fraction of folder tetrapeptides. The apparent conclusion from
the first two simulation rounds is that the number of putatively
foldable peptides is very small compared with the number of
possible sequence combinations.
A secondary conclusion from the examination of the rmsd

matrices of the folding trajectories (Figure 2 and Figures S3 and
S4, Supporting Information) is that apart from the great
population of highly flexible and disordered peptides, we also

observe peptides with a unique well-defined structure (last row
in Figure 2 and Figure S3, Supporting Information). What is
even more interesting is the observation of peptides with two
well-defined structures (Figure 2 and Figures S3 and S4,
Supporting Information). Non-two-state behavior has been
observed experimentally in octapeptides.54 Complex, non-two-
state length-dependent folding has also been reported for
polyalanine peptides, both theoretically97 and experimentally.98

Recently, a model of the conformational dynamics was
presented, suggesting a lower length limit for a two-state folder
of nine residues.99

The small number of tetrapeptides and pentapeptides with
strong foldability prognosis were studied further during the
third simulation round (third pass in Table 1). Figure 3 and
Figures S4 and S5, Supporting Information, show the rmsd
matrices obtained from the folding trajectories of the 36
tetrapeptides (Figure S4, Supporting Information) and 32
pentapeptides (Figure 3 and Figure S5, Supporting Informa-
tion). These results are in agreement with the conclusions
discussed above and show that only a small number of peptides
adopt a well-defined and stable structure. A secondary
characteristic is that in the pentapeptide set the stabilized
structure comprises both the backbone and the side chains
(compare the two halves of the rmsd matrices in Figure 3 and
Figure S5, Supporting Information). On the other hand, in the
tetrapeptide set, there are more profound differences in the
stability of the backbone compared with the behavior of the
side chains, with the latter being considerably more flexible

Figure 2. The rmsd matrices of the 480 pentapeptides (second pass) calculated from 100 ns trajectories. The order from left to right and top to
bottom follows the increase in the score received by the scoring function TF2. Each image corresponds to an individual peptide and is a color
representation of the square matrix of the rmsds among all possible structures from successive frames of the trajectory (see also Figure S1,
Supporting Information). For each matrix, the origin (t = 0) is at the top left-hand corner. All matrices were calculated using all heavy atoms (∼40
atoms), and the linear color scale is kept the same, ranging from dark blue (0 Å) through yellow (∼3.5 Å) to dark red (7.3 Å).
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(compare the two halves of the rmsd matrices in Figure S4,
Supporting Information).
3.2. Inconsistency between the Force Fields. Figure 3

and Figure S5, Supporting Information, show a color
representation of the rmsd matrices for the total of 32
pentapeptides from the third round of simulations (third pass
in Table 1). Each rmsd matrix is calculated for the concatenated
artificial trajectory of all four force fields under study at this
stage (Table 1). As can been seen from those two figures, there
is great variance in the predictions among the various force field
versions. The systematic preference of the various force fields

toward certain regions of the Ramachandran plot is well
documented in the literature.11,13,63,100−109 However, for the
short and almost random sequences that we study, there is
significant variance in the force fields’ predictions regarding
their foldability.
From peptide sequences for which there is a consensus

among the force fields (NEWRD, RDKWP, and RELWK in
Figure 3) to peptide sequences for which there is complete
disagreement (REWID and RMWED in Figure 3 and RWEDA
in Figure S5, Supporting Information), we observe almost every
possible combination in their predictions even within the small

Figure 3. Inter-rmsd matrices for 16 pentapeptides (from the third pass) calculated among four independent trajectories with four different force
fields. Each image corresponds to an individual peptide and is a color representation of the square matrix of the (inter) rmsd’s among all possible
structures from successive frames of an artificial trajectory (480 ns total simulation time for each peptide) produced by concatenating four
independent trajectories produced by four force fields (third pass in Table 1). Each matrix was calculated using only backbone atoms (above the
diagonal) and all heavy atoms (below the diagonal). The limits of each trajectory are indicated with square black boxes, with the corresponding force
field, CHARMM-CMAP, OPLS-AA, AMBER99SB, and AMBER99SB-ildn, noted on the top. The linear color scale is kept the same, ranging from
dark blue (0 Å) through yellow (∼3.9 Å) to dark red (7.8 Å).
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set of 32 pentapeptides. For most cases, a peptide is folded by
only one force field or force fields of the same family (RDHWK
and ECKRW by the AMBER99SB-ildn, DPWRE by the two
AMBER force fields, RDMWK, RIDKW by the CHARMM
force field and KDWTR, REWDV, RWHED by the OPLS force
field). There are also peptides that are completely disordered
according to all four force fields (EKIRW, HEDKW, KDEVW,
KREGW, KWLED, RDEIW, REKWM, RLEWD, RWDKI, and
WEHKR) even though they were designated as stable folders
by the CHARMM22 force field during the previous simulation
rounds (Table 1). Peptides with two distinct conformations are
observed here more clearly (DKWEP, HDKWE, HDWKE, and
RDYWE), a behavior that is predicted by all force fields,
regardless of the extent to which they agree in the predicted

structures. In some cases the AMBER force fields agree better
with the OPLS, whereas in other cases there is better
agreement between the AMBER and the CHARMM force field.
The great variance that we observe in the predictions of the

force fields is reason for skepticism, especially in the absence of
experimental evidence. This diversity of the results is rather
force field dependent and not an artifact of the limited
simulation time as shown in Figure S6 (Supporting
Information) for which 1 μs simulations were used. The 1 μs
simulations of the eight pentapeptides with the AMBER99SB-
ildn force field (fourth pass in Table 1) give the same results
(compare Figure 3 and Figure S5, Supporting Information, with
Figure S6, Supporting Information), regarding the foldability of
the peptides with the 0.12 μs simulations with the same force

Figure 4. The pentapeptide RDKWP. In panel A, we show the rmsd matrix of the concatenated trajectory corresponding to the simulations in the
four temperatures (fourth and fifth pass in Table 1), using the AMBER99SB-ildn force field (7 μs total simulation time). The independent
trajectories are indicated with the horizontal and vertical bars, where blue stands for 298 K, cyan for 320 K, red for 340 K, and yellow for 360 K.
Above the diagonal, the rmsd calculation is performed only for the backbone atoms and below the diagonal for all-heavy atoms. The linear color scale
is kept the same, ranging from dark blue (0 Å) through yellow (∼3.5 Å) to dark red (7.1 Å). In panel B, we show the three-dimensional folding
landscape from the trajectory obtained at 298 K with the AMBER99SB-ildn force field. The middle is a wall-eyed stereodiagram of the projection of
the trajectory on the space defined by the top three principal components as obtained from a principal component analysis in Cartesian space using
all-heavy atoms. Three isosurfaces are drawn at the mean density (orange transparent isosurface), 1σ above mean (yellow wireframe), and 3σ above
mean (red solid surface) of the map distribution. The arrows point to the two clusters of structures (with 30% and 25% occupancy of the total
simulation time) observed during the trajectory. For each cluster, we show (in wall-eyed stereodiagram) 500 snapshot structures, obtained directly
from the trajectory. The structures are colored according to their atomic rms fluctuation from the calculated (for the cluster) average structure using
a color gradient from blue to red (maximum rmsf, 3.43 Å). In panel C, we show in stereodiagram the representative structures (the trajectory’s
structure with the smallest rms deviation from the cluster’s average one) for the two distinct clusters. All atoms are depicted in ball-and-stick, and the
backbone direction is indicated with cyan tube. The hydrogen bond is shown with blue dotted line and the packing between tryptophan−lysine and
tryptophan−arginine is represented with transparent surface.
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field (third pass in Table 1). This is also supported by
experimental measurements in such short peptides, which give
a folding rate in the 10−100 ns regime.77 This behavior is
persistent in the 1 μs simulations of the two tetrapeptides as
well (fifth pass in Table 1). In Figure S7, Supporting
Information, we see representative results obtained from the
folding trajectories of a tetrapeptide, RWPD, using various
force fields as well as simulation temperatures. In the case of
this tetrapeptide, the force fields predict similar backbone
conformations and vary on the conformation of the side chains.
Further analysis showed that the ensemble of conformations
visited during the various force field trajectories is the same, but
their relative occupancy differs, at least for the observed
simulation time (Figure 4 and Figure S7, Supporting
Information).
3.3. Two Putatively Foldable Peptides. Even a cursory

examination of all the rmsd matrices calculated for the folding
trajectories presented here (a representative small sample from
the approximately 800 calculated matrices overall) allows us to
conclude that such small peptides are characterized by multiple
folding−unfolding events and remain folded for no more than
20−30% of the observed simulation time even in the prolonged
1 μs trajectories (Figure 4 and Figures S6 and S7 in the
Supporting Information). However, a tiny percentage (<1%) of
the peptides studied appear to be stably folded. In Figure 4 and
Figures S7 and S8 (Supporting Information), we present results
for the two best peptides, a pentapeptide (RDKWP) and a
tetrapeptide (RWPD).
According to our simulations, the pentapeptide RDKWP

remains folded for 50−60% of the trajectory, and that is
supported by all force fields and for all temperatures examined
here (Figures 2, 3, and 4 and Figure S6, Supporting
Information). In Figure 4A,B, we see that two distinct clusters
of structures are formed at low temperatures, with the second
one being progressively more populated as temperature
increases. This cluster of structures (the one shown above
the energy landscape in panel B) persists for almost 38% of the
simulation time even at the elevated temperature of 360 K. The
predicted structures from the trajectories at the various
temperatures are closely related with a Cα rmsd of 0.4−0.7 Å
and an all-heavy rmsd of 1.1−1.6 Å for the most populated one
(the top one in panel C) and a Cα rmsd of 0.1−0.2 Å and an
all-heavy rmsd of 0.6−1.2 Å for the less populated structure
(bottom one in panel C). This is also evident by the rmsd
matrix of the concatenated trajectories of the various
temperatures in panel A. Panel C shows the interactions that
stabilize each set of structures. In the less populated structure
(top one in panel C), we observe the hydrophobic packing of
tryptophan’s side chain against the lysine’s aliphatic chain and a
hydrogen bond between arginine’s NH group and the free C-
terminus of the peptide. In the more populated structure
(bottom one in panel C), we observe the hydrophobic packing
of tryptophan’s side chain against arginine, a hydrogen bond
between arginine’s NE group and the backbone O of lysine, and
a salt bridge between the lysine and the aspartic acid. The well-
defined folds adopted by RDKWP are also evident in the
Ramachandran plot (Figure S8, Supporting Information)
calculated for one of the folding trajectories (2 μs with the
AMBER99SB-ildn). Each residue shows a clear preference
toward a certain Ramachandran region and mainly in the β and
PPII (polyproline) regions.
The shorter tetrapeptides seem to have stable backbone

structures and more flexible side chains. This is clearly seen in

their representative, RWPD, in Figure S7 (Supporting
Information). RWPD remains folded for approximately 40−
50% of the simulation time, depending the temperature of the
simulation (Figure S7, Supporting Information, panel A). The
observed structures are rather similar, with unique backbone
conformation and alternating conformations of the tryptophan
and arginine side chains. This behavior persists with the other
force fields as well (Figure S7, Supporting Information, panel
B). The structures are stabilized mainly by electrostatic
interactions between the free terminal ends, resulting in loop
backbone structures, and occasionally we see the packing of the
tryptophan side chain against the side chain of arginine or
proline (Figure S7, Supporting Information, panel C). In most
peptides in the tetrapeptide set, the stabilizing interaction
comprises mainly the backbone atoms (Figure S4, Supporting
Information), which fold into turn-like structures (data not
shown). This is also supported by the Ramachandran plots
(Figure S8, Supporting Information), wherein the φ/ψ angles
remain in the β/PPII region.

4. DISCUSSION
In this work, we presented an attempt to computationally
identify foldable peptide sequences. Development of new and
efficient bioactive molecules and peptides of pharmacological
interest remains, mainly, a matter of serendipity. The present
work could be further exploited as a novel method toward the
rational design and engineering of small bioactive peptides with
stable structures and desired molecular properties. Through an
exhaustive set of more than 15 000 independent simulations,
putatively foldable peptides were designated by a scoring
function based on frame-to-frame rmsd matrices calculated for
the folding trajectories. The scoring function was extensively
tested and proved successful by revealing stable folders even
with the sequence restrictions imposed by us. This scoring
function (TF2), because it is solely based on a widely accepted
metric measure, could function properly in larger peptide
sequences and regardless of the amino acid content.
Our major finding is in full agreement with the literature:

most peptides appear to be disordered. The extensive
computational work presented here involves only a fraction
of sequences from the vast sequence space. Within the
perspective of this particular set of 8640 sequences, we
conclude that such short peptides are mostly disordered: they
are characterized by multiple folding/unfolding events, and
their folded population does not exceed 20−30% of the
observed simulation time. However, even with the imposition
for the presence of bulky residues like tryptophan, arginine, and
lysine, some sequences were designated as putatively foldable.
A second conclusion from this work concerns the

discrepancies in the force fields’ predictions regarding the
foldability of such sort sequences. Even within such limited
amino acid variance and small number of peptide sequences we
see almost every possible scheme from full consistency to full
disagreement even among the same family of force fields. For
putatively foldable peptides (like RDKWP and RWPD), the
various force fields converge on their prediction of a well-
defined and stable structure. It is the disordered peptides for
which they disagree the most. Even in the absence of actual
experimental data, the divergence in the predictions of the force
fields regarding the foldability of such short sequences shows
the difficulty in the description of the disordered state by
current empirical nonpolarizable force fields, at least for small
nonpolymer peptides.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp401239v | J. Phys. Chem. B 2013, 117, 5522−55325529



■ ASSOCIATED CONTENT

*S Supporting Information
An example of an rmsd matrix, the evolution of interatomic
distances and snapshot structures of a representative tetrapep-
tide, a graphical representation of the TF2 function, the rmsd
matrices of 130 tetrapeptides (second pass in Table 1)
calculated from 30 ns trajectories, the rmsd matrices of 36
tetrapeptides (third pass in Table 1) calculated from 100 ns
trajectories, the inter-rmsd matrices for 16 pentapeptides and
four different force fields (complementary to Figure 3), the
rmsd matrices for eight pentapeptides (fourth pass in Table 1)
and the AMBER99SB-ildn force field, and results from the
simulations of the RWPD tetrapeptide using four temperatures
and three force fields. This material is available free of charge
via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*Tel +30-25510-30620, fax +30-25510-30620, http://utopia.
duth.gr/∼glykos/, e-mail glykos@mbg.duth.gr.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren,
W. F.; Mark, A. E. Peptide Folding: When Simulation Meets
Experiment. Angew. Chem., Int. Ed. 1999, 38, 236−240.
(2) Ferrara, P.; Apostolakis, J.; Caflisch, A. Thermodynamics and
Kinetics of Folding of Two Model Peptides Investigated by Molecular
Dynamics Simulations. J. Phys. Chem. B. 2000, 104, 5000−5010.
(3) Wu, X.; Wang, S. Folding Studies of a Linear Pentamer Peptide
Adopting a Reverse Turn Conformation in Aqueous Solution through
Molecular Dynamics Simulation. J. Phys. Chem. B 2000, 104, 8023−
8034.
(4) Yeh, I.-C.; Hummer, G. Peptide Loop-Closure Kinetics from a
Microsecond Molecular Dynamics Simulation in Explicit Solvent. J.
Am. Chem. Soc. 2002, 124, 6563−6568.
(5) Gnanakaran, S.; Nymeyer, H.; Portman, J.; Sanbonmatsu, K. Y.;
García, A. E. Peptide Folding Simulations. Curr. Opin. Struct. Biol.
2003, 13, 168−174.
(6) Wei, C.-C.; Ho, M.-H.; Wang, W.-H.; Sun, Y.-C. Molecular
Dynamics Simulation of Folding of a Short Helical Peptide with Many
Charged Residues. J. Phys. Chem. B 2005, 109, 19980−19986.
(7) Ho, B. K.; Dill, K. A. Folding Very Short Peptides Using
Molecular Dynamics. PLOS Comput. Biol. 2006, 2, No. e27.
(8) Kaur, H.; Sasidhar, Y. U. For the Sequence YKGQ, the Turn and
Extended Conformational Forms Are Separated by Small Barriers and
the Turn Propensity Persists Even at High Temperatures: Implications
for Protein Folding. J. Phys. Chem. B 2012, 116, 3850−3860.
(9) Snow, C. D.; Nguyen, N.; Pande, V. S.; Gruebele, M. Absolute
Comparison of Simulated and Experimental Protein-Folding Dynam-
ics. Nature 2002, 42, 102−106.
(10) Gnanakaran, S.; Garcia, A. E. Validation of an All-Atom Protein
Force Field: From Dipeptides to Larger Peptides. J. Phys. Chem. B
2003, 107, 12555−12557.
(11) Matthes, D.; de Groot, B. L. Secondary Structure Propensities
in Peptide Folding Simulations: A Systematic Comparison of
Molecular Mechanics Interaction Schemes. Biophys. J. 2009, 97,
599−608.
(12) Aliev, A. E.; Courtier-Murias, D. Experimental Verification of
Force Fields for Molecular Dynamics Simulations Using Gly-Pro-Gly-
Gly. J. Phys. Chem. B 2010, 114, 12358−12375.
(13) Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M. P.;
Dror, R. O.; Shaw, D. E. Systematic Validation of Protein Force Fields
against Experimental Data. PloS One 2012, 7, No. e32131.

(14) Best, R. B. Atomistic Molecular Simulations of Protein Folding.
Curr. Opin. Struct. Biol. 2012, 22, 52−61.
(15) Bowman, G. R.; Voelz, V. A.; Pande, V. S. Taming the
Complexity of Protein Folding. Curr. Opin. Struct. Biol. 2011, 21, 4−
11.
(16) Caflisch, A. Complexity in Protein Folding: Simulation Meets
Experiment. Curr. Phys. Chem. 2012, 2, 4−11.
(17) Edwards, C. M. B.; Cohen, M. A.; Bloom, S. R. Peptides as
Drugs. QJM 1999, 92, 1−4.
(18) Keller, T. H.; Pichota, A.; Yin, Z. A Practical View of
‘Druggability’. Curr. Opin. Chem. Biol. 2006, 10, 357−361.
(19) Kliger, Y. Computational Approaches to Therapeutic Peptide
Discovery. Biopolymers 2010, 94, 701−710.
(20) Borhani, D. W.; Shaw, D. E. The Future of Molecular Dynamics
Simulations in Drug Discovery. J. Comput.-Aided Mol. Des. 2012, 26,
15−26.
(21) Duan, Y.; Kollman, P. A. Pathways to a Protein Folding
Intermediate Observed in a 1-Microsecond Simulation in Aqueous
Solution. Science 1998, 282, 740−744.
(22) Shirts, M.; Pande, V. S. Computing: Screen Savers of the World
Unite! Science 2000, 290, 1903−1904.
(23) Zagrovic, B.; Snow, C. D.; Shirts, M. R.; Pande, V. S. Simulation
of Folding of a Small Alpha-Helical Protein in Atomistic Detail Using
Worldwide-Distributed Computing. J. Mol. Biol. 2002, 323, 927−937.
(24) Simmerling, C.; Strockbine, B.; Roitberg, A. E. All-Atom
Structure Prediction and Folding Simulations of a Stable Protein. J.
Am. Chem. Soc. 2002, 124, 11258−11259.
(25) Pitera, J. W.; Swope, W. Understanding Folding and Design:
Replica-Exchange Simulations of “Trp-Cage” Miniproteins. Proc. Natl.
Acad. Sci. U. S. A. 2003, 100, 7587−7592.
(26) Chowdhury, S.; Lee, M. C.; Xiong, G.; Duan, Y. Ab Initio
Folding Simulation of the Trp-Cage Mini-protein Approaches NMR
Resolution. J. Mol. Biol. 2003, 327, 711−717.
(27) Yang, W. Y.; Gruebele, M. Folding at the Speed Limit. Nature
2003, 423, 193−197.
(28) Ensign, D. L.; Kasson, P. M.; Pande, V. S. Heterogeneity even at
the Speed Limit of Folding: Large-Scale Molecular Dynamics Study of
a Fast-Folding Variant of the Villin Headpiece. J. Mol. Biol. 2007, 374,
806−816.
(29) Freddolino, P. L.; Liu, F.; Gruebele, M.; Schulten, K. Ten-
Microsecond MD Simulation of a Fast-Folding WW Domain. Biophys.
J. 2008, 94, L75−L77.
(30) Kubelka, J.; Henry, E. R.; Cellmer, T.; Hofrichter, J.; Eaton, W.
A. Chemical, Physical and Theoretical Kinetics of an Ultrafast Folding
Protein. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18655−18662.
(31) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,
R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan,
Y.; Wriggers, W. Atomic-Level Characterization of the Structural
Dynamics of Proteins. Science 2010, 330, 341−346.
(32) Cellmer, T.; Buscaglia, M.; Henry, E. R.; Hofrichter, J.; Eaton,
W. A. Making Connections between Ultrafast Protein Folding Kinetics
and Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A.
2010, 108, 6103−6108.
(33) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, E. How Fast-
Folding Proteins Fold. Science 2011, 334, 517−520.
(34) Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H. 10 Residue
Folded Peptide Designed by Segment Statistics. Structure 2004, 12,
1507−1518.
(35) Hatfield, M. P. D.; Murphy, R. S.; Lovas, S. VCD Spectroscopic
Properties of the β-Hairpin Forming Miniprotein CLN025 in Various
Solvents. Biopolymers 2010, 93, 442−450.
(36) Kier, B. L.; Andersen, N. H. Probing the Lower Size-Limit for
Protein-Like Fold Stability: Ten-Residue Microproteins with Specific,
Rigid Structures in Water. J. Am. Chem. Soc. 2008, 130, 14675−14683.
(37) Simmerling, C. L.; Elber, R. Computer Determination of
Peptide Conformations in Water: Different Roads to Structure. Proc.
Natl. Acad. Sci. U. S. A. 1995, 92, 3190−3193.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp401239v | J. Phys. Chem. B 2013, 117, 5522−55325530

http://pubs.acs.org
http://utopia.duth.gr/<glykos/
http://utopia.duth.gr/<glykos/
mailto:glykos@mbg.duth.gr


(38) Demchuck, E.; Bashford, D.; Case, D. A. Dynamics of a Type VI
Reverse Turn in a Linear Peptide in Aqueous Solution. Folding Des.
1997, 2, 35−46.
(39) Fuchs, P. F. J.; Bonvin, A. M. J. J.; Bochicchio, B.; Pepe, A.; Alix,
A. J. P.; Tamburro, A. M. Kinetics and Thermodynamics of Type VIII
β-Turn Formation: A CD, NMR, and Microsecond Explicit Molecular
Dynamics Study of the GDNP Tetrapeptide. Biophys. J. 2006, 90,
2745−2759.
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