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A method is described which attempts to simultaneously and

independently determine the positional and orientational

parameters of all molecules present in the asymmetric unit of a

target crystal structure. This is achieved through a reverse

Monte Carlo optimization of a suitable statistic (such as the R

factor or the linear correlation coef®cient between the

observed and calculated amplitudes of the structure factors)

in the 6n-dimensional space de®ned by the rotational and

translational parameters of the n search models. Results from

the application of this stochastic method ± obtained with a

space-group-general computer program which has been

developed for this purpose ± indicate that with present-day

computing capabilities the method may be applied success-

fully to molecular-replacement problems for which the target

crystal structure contains up to three molecules per asym-

metric unit. It is also shown that the method may be useful in

cases where the assumption of topological segregation of the

self- and cross-vectors in the Patterson function is violated (as

may happen, for example, in closely packed crystal structures).
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1. Introduction

The classical approach to the problem of placing n copies of a

search model in the asymmetric unit of a target crystal struc-

ture is to divide this problem into a succession of three-

dimensional searches (rotation-function followed by

translation-function searches for each of the models), as

described by Rossmann & Blow (1962), Rossmann (1972,

1990), Machin (1985), Dodson et al. (1992) and Carter &

Sweet (1997). A more recently developed class of algorithms

attempts to improve the sensitivity and accuracy of the

molecular-replacement method by increasing the dimension-

ality of the parameter space explored simultaneously. This is

achieved by performing successive six-dimensional searches

for each of the molecules present in the crystallographic

asymmetric unit. Published examples of such methods include

a genetic algorithm approach (Chang & Lewis, 1997), an

evolutionary search methodology (Kissinger et al., 1999) and a

systematic six-dimensional search using a fast translation

function (Sheriff et al., 1999).

We have recently described (Glykos & Kokkinidis, 2000a)

an alternative 6n-dimensional molecular-replacement proce-

dure which is based on the simultaneous determination of the

rotational and translational parameters of all molecules

present in the crystallographic asymmetric unit of a target

structure. In this communication, we present an overview of

the current state of the method, its practical implementation in

the form of a space-group-general computer program and the
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application of this program to molecular-replacement

problems of varying complexity.

2. Methods and algorithms: an overview

2.1. Stating the problem

If there are n copies of a search model in the asymmetric

unit of the target crystal structure then in general there are 6n

parameters whose values are to be determined by molecular

replacement (three rotational and three translational para-

meters for each of the search models). These 6n parameters in

turn de®ne a 6n-dimensional con®gurational space in which

each and every point corresponds to a possible con®guration

for the target crystal structure; therefore, for each and every of

these points it is possible to calculate the value of a suitable

statistic (such as the R factor or the linear correlation coef®-

cient) measuring the agreement between the experimentally

observed and the calculated structure-factor amplitudes. By

assuming that the correct solution corresponds to the global

optimum of this statistic, the molecular-replacement problem

is reduced to one of the unconstrained global optimization of

the chosen statistic in the 6n-dimensional space de®ned by the

rotational and translational parameters of the molecules.

Stated in simpler terms, the aim of the proposed method is to

®nd which combination of positions and orientations of the n

molecules optimizes the value of the R factor or correlation

coef®cient between the observed and calculated data. In this

respect (and by performing the search in a continuous para-

meter space), the method views molecular replacement as a

generalized rigid-body re®nement problem.

2.2. Method of solution

The volume of the con®gurational space de®ned by the

rotational and translational parameters of the molecules

present in the asymmetric unit of a target crystal structure is so

large that a systematic examination of all possible combina-

tions of their positions and orientations is beyond present-day

computing capabilities (however, see Sheriff et al., 1999 for an

example of a systematic six-dimensional search). On the other

hand, stochastic methods (such as simulated annealing or

genetic algorithms) have repeatedly been shown to be able to

deal with multidimensional combinatorial optimization

problems in near-optimal ways and in a fraction of the time

required for a systematic search (Kirkpatrick et al., 1983; Press

et al., 1992).

We have chosen to use a modi®cation of the reverse Monte

Carlo technique (McGreevy & Pusztai, 1988; Keen &

McGreevy, 1990), where instead of minimizing the quantity

�2 =
P

hkl��Fo ÿ Fc�/��Fo��2, one minimizes any of the

following (user-de®ned) target functions: (i) the conventional

crystallographic R factor, R =
P

hkl jFo ÿ Fcj/
P

hkl Fo, (ii) the

quantity 1.0 ÿ Corr(Fo, Fc) and (iii) the quantity

1.0 ÿ Corr(F2
o;F

2
c ), where Corr() is the linear correlation

coef®cient function, Fo and Fc are the observed and calculated

structure-factor amplitudes of the hkl re¯ection and �(Fo) is

the standard uncertainty of the corresponding measurement.

To avoid unnecessary repetition and to simplify the discussion

that follows, we will hereafter refer only to the R-factor

statistic, on the understanding that any of the correlation-

based targets can be substituted for it.

The minimization procedure follows closely the original

Metropolis algorithm (Metropolis et al., 1953) and its basic

steps are outlined below. Random initial orientations and

positions are assigned to all molecules present in the

crystallographic asymmetric unit of the target structure and

the R factor (= Rold) between the observed and calculated

structure-factor amplitudes is noted. In the ®rst step of the

basic iteration, a molecule is chosen randomly and its orien-

tational and translational parameters are randomly altered.

The R factor (= Rnew) corresponding to this new arrangement

is calculated and compared with Rold: if Rnew � Rold, then the

new con®guration is accepted and the procedure is iterated

with a new (randomly chosen) molecule. If Rnew > Rold (that is,

if the new con®guration results in a worse R factor), the new

con®guration is accepted with probability exp[(Rold ÿ Rnew)/

T], where T is a control parameter which plays a role analo-

gous to that of temperature in statistical mechanical simula-

tions. This probabilistic treatment again relies on the random-

number generator: if exp[(Rold ÿ Rnew)/T] > �, where � is a

random number between 0.0 and 1.0, the new con®guration is

accepted and the procedure iterated. If exp[(Rold ÿ Rnew)/T] �
�, we return to the previous con®guration (the one that

resulted in a R factor equal to Rold) and reiterate. Given

enough time, this algorithm is guaranteed to ®nd the global

optimum of the target function (Ingber, 1993).1

By trading computer memory for speed of execution, the

CPU time required per iteration of the Monte Carlo algorithm

can be made to be only linearly dependent on the number of

re¯ections of the target structure expanded to space group P1.

This is achieved by calculating (and storing in memory) the

molecular transform of the search model before the actual

minimization is started. For the rest of the simulation, to

calculate a structure-factor amplitude Fc(hkl), we only have to

add the (complex) values of the molecular transform at the

coordinates that the hkl re¯ection would take if rotated

accordingly to the orientation of each molecule in the unit cell

(a detailed account on the usage of the molecular transform to

accelerate the structure-factor calculation for this type of

problem can be found in x2.1 of Chang & Lewis, 1997).

Additionally, and in order to avoid a dependence on the

number of molecules present in the asymmetric unit of the

target structure, the contribution of each molecule to every

re¯ection is also stored in memory and so at each iteration we

only have to recalculate the contribution from the molecule

that is being tested.
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1 Strictly speaking, simulated annealing is guaranteed to ®nd the global
optimum of the target function only in the case of the so-called Boltzmann
annealing, for which the temperature T(k) at each step k of the simulation is
given by T(k) = T0/log(k), where T0 is the starting temperature (Ingber, 1993).
Only with this annealing schedule and with T0 `suf®ciently high' is the
algorithm guaranteed to ®nd the global optimum of the target function. In this
respect, the linear slow-cooling protocol discussed in x3.1 of this paper is more
accurately described by the term `simulated quenching' than the convention-
ally used term `simulated annealing'.
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2.3. Methodological limitations

Three salient features of the method proposed in the

previous sections are worth discussing in more detail. The ®rst

is that all con®gurations are treated as a priori equally prob-

able, without reference to whether their packing arrangement

is physically and chemically sensible. Although it is in prin-

ciple possible to include a van der Waals repulsion term in the

method (to take into account bad contacts between symmetry-

related molecules), this would destroy the ergodicity property

of simulated annealing; that is, it will no longer be possible to

guarantee that each and every state of the system can be

reached within a ®nite number of moves. This is a consequence

of the fact that once an arrangement is found that allows the

ef®cient packing of the search models and their symmetry

equivalents in the target unit cell, no further major rearran-

gements of the molecular con®guration will be possible

(especially in tightly packed crystal forms) and the mini-

mization would come to a halt.

A second limitation of the method is that by optimizing a

global statistic such as the correlation coef®cient or the R

factor, it tries to simultaneously match both the self vectors (of

the search models) and all of the cross vectors (between

search models and their crystallographically equivalent

molecules). The problem with this approach is that as the

search model is becoming worse and worse, the agreement for

the cross vectors (which are on the average longer) deterior-

ates much faster than for the (shorter) self vectors, thus

reducing the effective signal-to-noise ratio for the correct

solution. In contrast, the traditional rotation function

(possibly because it restricts itself to a self-vector-enriched

volume of the Patterson function) is expected to be able to

sustain a recognisable solution even for quite inaccurate

starting models, increasing in this way the probability that a

subsequent translation function will also be successful. The

implication of this analysis is that when a suf®ciently accurate

search model is not available this stochastic method may be

less sensitive (compared with the conventional Patterson-

based methods) in identifying the correct solution.

The third (and most important) limitation of this method is

that by treating the problem as 6n-dimensional, it ignores all

the information offered by the properties of the Patterson

function. This includes information about the probable

orientations of the molecules (usually presented in the form of

the cross-rotation function) and of the relationships between

them (usually in the form of the self-rotation function). The

method as described above also fails to automatically take into

account cases of pure translational non-crystallographic

symmetry (Navaza et al., 1998), although it is relatively easy to

account for such forms of non-crystallographic symmetry

through the incorporation of additional ®xed symmetry

elements. It is worth mentioning here that if the assumption of

topological segregation of the self- and cross-vectors in the

Patterson function holds, then molecular-replacement

problems are not 6n-dimensional but rather two 3n-dimen-

sional problems: the ®rst 3n-dimensional problem is a gener-

alized cross-rotation function which would attempt to

determine the orientation of all n molecules simultaneously

(by taking into account not only the agreement between the

observed Patterson function and an isolated set of self vectors

from just one of the search models, but also the interactions

between the n copies of self-vector sets that are necessarily

present in the observed Patterson function). The second 3n-

dimensional problem is a generalized translation function

which would attempt to simultaneously determine the posi-

tions of all n properly oriented (from the ®rst step) search

models. For this reason, and as long as the assumptions behind

Patterson-based methods hold, 6n-dimensional searches

`overkill' the molecular-replacement problem by unnecess-

arily doubling the dimensionality of the search space.

It should be mentioned, however, that this very property of

ignoring evidence obtained from the Patterson function makes

these methods more robust and suitable for problems where

the assumptions behind the Patterson-based methods are not

satis®ed. One such example will be presented later.

3. Implementation

A space-group-general computer program has been devel-

oped which implements the method described in the previous

sections (see x6 for information about how to obtain a copy of

the program). As is always the case with Monte Carlo algo-

rithms, the ef®ciency of the minimization depends greatly on

the optimal (or otherwise) choice of (i) an annealing schedule

which speci®es how the temperature of the system will vary

with time, (ii) the temperature (or temperature range) that

will be used during the simulations, (iii) a set of moves that

determine how the next con®guration (the one that will be

tested) can be obtained from the current con®guration (the

one that has already been tested) and (iv) a suitable (for the

problem under examination) target function whose value is to

Figure 1
Variation of the average values of the target function as a function of
temperature during an automatic temperature-limit determination for a
problem with one (pronounced) phase transition. The ®lled circles
correspond to the actual measurements made by the program; the
continuous line is the natural cubic spline interpolation of these points.
All graphs were prepared using the program Xmgr, available from http://
plasma-gate.weizmann.ac.il/Xmgr/.
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be optimized. The following sections discuss these four points

in more detail and present additional information about two

other issues that are important for the speci®c application,

namely scaling of the observed and calculated data, and bulk-

solvent correction.

3.1. Annealing schedules

The current implementation of the program supports four

annealing modes. In the ®rst mode the temperature is kept

constant throughout the minimization. The second is a slow-

cooling mode, with the temperature linearly dependent on the

simulation time. The third mode supports a logarithmic

schedule for which the temperature T(k) at each step k of the

simulation is given by T(k) = T0/log k, where T0 is the starting

temperature. In the last mode, the temperature of the system

is automatically adjusted in such a way as to keep the fraction

of moves made against the gradient of the target-function

constant and equal to a user-de®ned value. This is achieved as

follows: the program counts the number of times that a new

con®guration is accepted even though it results in a worse

value for the target function. After a prede®ned number of

iterations, the fraction of moves that have been made against

the function gradient is calculated and if it is less than a target

value (de®ned by the user) the temperature is increased,

otherwise it is decreased.

3.2. Automatic temperature-limit determination

It is possible to automatically obtain reasonable estimates

of the temperature required for a constant and logarithmic

temperature run and of a temperature range for a slow-cooling

run. This, as shown in Fig. 1, is achieved by monitoring the

variation of the average value of the target function as a

function of the temperature during a short slow-cooling

simulation which is started from a suf®ciently remote (high)

temperature (this is similar to a speci®c heat plot from

statistical mechanics, see Kirkpatrick et al., 1983). The

temperature [Tmax(�R)] at which the average of the target

function shows the greatest reduction is selected for a

constant-temperature run and is also the starting temperature

for a slow-cooling run. In the case of the logarithmic schedule,

the starting temperature is set to a value T0 such that the

temperature Tmax(�R) will be reached only after a fraction of

(1/e) of the total number of moves has already been

performed.

A PostScript ®le containing a graph (similar to the one

shown in Fig. 1) is automatically produced by the program.

The reason for this is not cosmetic: depending on the nature of

the problem, there may well be more than just one phase

transition of the system as the temperature is reduced. Fig. 2

shows one such example for a problem with at least two phase

transitions. Obviously, for such problems the default treatment

of selecting the maximum of this curve (as a starting

temperature) may well fail and user intervention would be

required.

3.3. Move size control

In this section, we discuss how the current version of the

program deals with the problem of how to generate the next

con®guration (the one that will be tested) from the current

con®guration (the one that has already been tested). Unfor-

tunately, the selection of an optimal set of possible moves and

the control of their magnitudes depends on the nature of the

individual problems, making it dif®cult to ®nd a satisfactory

solution without losing generality. Instead of arti®cially

making the optimization problem discontinuous (by

restricting the con®gurational parameters to take values from

a prede®ned ®xed grid), we have chosen to work with the

continuous case (in which any parameter can take any value

from within its de®ning limits). The program stores the

orientational parameters of the search models using the polar

angles (!, ', �) convention, with ! de®ning the latitude and '
the longitude of a rotation axis about which the molecule is

rotated by ��. The translational parameters are stored in terms

of the fractional coordinates of the geometrical centres of the

molecules in the crystallographic frame of the target structure.

The choice of polar angles simpli®es the task of updating

and controlling the orientational parameters: for the whole

length of the minimization, an orientation for the rotation axis

is chosen randomly and uniformly from the full-half sphere

(that is 0 � ! � �/2 and 0 � ' < 2�), leaving only the rota-

tional offset�� and the translational offsets �x,�y,�z to be

speci®ed before a new con®guration can be obtained from the

current one. The program supports two modes of move-size

control. In the ®rst, the maximum possible values that the

random offsets��,�x,�y and�z can take are kept constant

throughout the simulation with max(��) = 2dmin (in �) and

max(�x, �y, �z) = 2dmin/max(a, b, c), where dmin is the

minimum Bragg spacing of the input data and a, b, c are the

unit-cell translations of the target structure (in AÊ ). In the

second mode, the maximum move sizes (as de®ned above) are

linearly dependent on both time and the current R factor, with

Acta Cryst. (2001). D57, 1462±1473 Glykos & Kokkinidis � Multidimensional molecular replacement 1465
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Figure 2
Variation of the average values of the target function as a function of
temperature during an automatic temperature-limit determination for a
problem with at least two phase transitions. The ®lled circles correspond
to the actual measurements made by the program; the continuous line is
the natural cubic spline interpolation for these points.

electronic reprint



research papers

1466 Glykos & Kokkinidis � Multidimensional molecular replacement Acta Cryst. (2001). D57, 1462±1473

max(��) = �Rt/ttotal and max(�x,�y,�z) = 0.5Rt/ttotal, where

R is the current R factor, t is the current time step and ttotal is

the total number of time steps for the minimization. The

dependence on the R factor is justi®ed on the grounds that as

we approach a minimum of the target function, we should be

sampling the con®gurational space on a ®ner grid.2 The time

dependence follows from a similar argument.

3.4. Target-function selection

In other simulated-annealing problems the target function

(whose value is to be optimized) is an integral part of the

problem and is thus not a matter of choice. In crystallographic

problems, however, the issue of which function to optimize has

been (and is some cases, still is) hotly debated. The current

thinking in the ®eld clearly points the way to the theoretical

(and, nowadays, practically achievable) superiority of a

maximum-likelihood function (see, for example, Bricogne,

1988, 1992 and a whole series of papers presented in Dodson et

al., 1996). The major problems with the implementation of a

maximum-likelihood target in the context of the stochastic

multidimensional search described in this communication are

that (i) it is not clear how to estimate the �A curve (Read,

1997) based on the necessarily small number of re¯ections

(especially for the free R, C-value set; BruÈ nger, 1997) used by

this method, (ii) that the �A curve would have to be recalcu-

lated at each and every step of the algorithm and (iii) that for

most of the time these calculations would be pointless given

that the majority of the sampled con®gurations during a

minimization are completely wrong (random) structures.

Additionally, it is not clear whether the use of a maximum-

likelihood target (even if correctly implemented) would

indeed offer a signi®cant improvement in the discrimination

capabilities of the algorithm. The reason for this is that in

contrast with the situation encountered with macromolecular

re®nement, this method is blessed with an extremely high ratio

of observations to parameters (usually in the order of a few

hundred re¯ections per parameter) and that the model is (by

being the result of an independent structure determination)

totally unbiased towards the observed data.

As was mentioned in x2.2, the currently distributed version

of the program supports three user-selectable target functions:

the conventional crystallographic R factor and two

correlation-based targets, the ®rst of which is calculated over

the amplitudes and the second over the intensities of the

re¯ections. In agreement with other studies in the ®eld

(Navaza & Saludjian, 1997), we have found that the ampli-

tude-based correlation target appears to perform better than

the intensity-based target. Our practical experience has been

that when a reasonably accurate starting model is available,

there is not a great difference between the performance of the

R factor and the amplitude-based correlation target. We

suspect that the reason is that with such an overdetermined

problem there is little to chose between an accuracy indicator

(such as the correlation coef®cient; Hauptman, 1982) and a

precision indicator (such as the R factor). In an attempt to

substantiate this argument, we have performed a series of

minimizations during which a modi®ed version of the program

was calculating (and writing out) at each step both the R factor

and the linear correlation coef®cient between the observed

and calculated amplitudes. These two sets of statistics were

then compared: the linear correlation coef®cient between

25 000 pairs of (R factor, 1.0 ± Corr) values was found to be

0.682. Given that the R factor is sensitive to the application of

an accurate overall scale factor and the fact that all Monte

Carlo moves (and not just the accepted ones) were included in

Figure 3
Scatter plot of 20 000 scale and temperature-factor pairs from a
minimization performed against real 15±4 AÊ data obtained from the
PDB (see text for details).

Figure 4
Marginal distributions for the scale and temperature factor obtained from
the distribution shown in Fig. 3.

2 The word `grid' is used here metaphorically. For all practical purposes, the
values of ��, �x, �y and �z returned by the random-number generator are
continuous [if, for example, the generator returns values in the range 0±231 ÿ 1
and max(��) = �, then the `grid size' on �� is less than 9 � 10ÿ8 �].
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the calculation, the similarity between the two statistics

implies that, at least for the case considered here, they provide

more-or-less equivalent information about the minimization.

This is not to imply that we advocate a return to the R factor as

a crystallographic target function, nor that we doubt years of

accumulated experience on the relative merits of the various

functions. All that the preceding analysis suggests is that in the

case of the problem under examination and for the speci®c

method of solution, the ef®ciency of the algorithm appears to

be not critically dependent on the choice of the target function

(but we should reiterate here that if a good starting model is

not available, choosing a precision indicator like the R factor

as a target function would only exacerbate the problems

mentioned in the second paragraph of x2.3).

3.5. Scaling

As discussed in x2.2, the decision as to whether to accept (or

reject) a move is based on the difference of the values of the

target function before and after this move. Because these

differences can be quite small, this stochastic method is

sensitive to the algorithm used for scaling the observed and

calculated data. The two basic problems with scaling are (i)

whether to re®ne an overall temperature factor or not and (ii)

how to correct for the presence of bulk solvent which usually

spoils scaling at low resolution (see Fig. 1 of Tronrud, 1997 for

an analysed example). The second of these problems will be

dealt with in the next section. The question of whether to

re®ne an overall temperature factor, especially for the rela-

tively low resolution ranges used for molecular-replacement

calculations, is rather open-ended (clearly, the application of

an overall scale factor only matters when the target function

for the minimization is the R factor. The application of an

overall temperature factor affects all three target functions).

In our experience, re®ning both an overall scale and an overall

temperature factor is advantageous even at resolutions as low

as 4 AÊ . We will illustrate this with an example using real data

obtained from the PDB (Bernstein et al., 1977) (PDB entry

1tgx). Fig. 3 shows the distribution of scale and temperature-

factor pairs for the ®rst 20 000 moves of a minimization

performed against 15±4 AÊ data and Fig. 4 shows the marginal

distributions for the two parameters.

Not unexpectedly, the distribution in Fig. 3 is skewed,

indicating that the two parameters are correlated. What is

important, however, is that even though the parameters are

correlated, their individual distributions are relatively well

behaved (keeping in mind also that this distribution was

obtained by determining pairs of scale and temperature

factors from an ensemble of effectively random structures): if

the marginal distributions (shown in Fig. 4) are least-squares

®tted with a Gaussian, then for the scale factor we obtain a

mean value of 5.7 with a standard deviation of only 0.35.

Similarly, for the temperature factor we obtain a value of

48 � 5.6. If an overall temperature factor was not being

re®ned, then we would be using an effective B = 0, which is

approximately 9� away from the current mean. It can

correctly be argued, however, that a suitable value for the

overall temperature factor could have been obtained from a

Wilson plot. The problem with this approach is that the linear

part of a Wilson plot usually does not coincide with the

resolution ranges used for molecular-replacement calcula-

tions. Additional problems may occur when very low resolu-

tion data are used for the calculation and a bulk-solvent

correction is not being applied. The default behaviour for the

Acta Cryst. (2001). D57, 1462±1473 Glykos & Kokkinidis � Multidimensional molecular replacement 1467
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Figure 5
Distribution of the bulk-solvent correction parameters for 301 structures
deposited with the PDB. The small rectangular area encloses the usually
cited range of values for the two parameters.

Figure 6
Evolution of the average 1.0 ÿ Corr(Fo, Fc) values for ®ve minimizations
from a six-dimensional problem using real data. The (1 ÿ C) values refer
only to the lower curve, with the other four curves translated by +0.1, 0.2,
0.3 and 0.4 units to improve clarity. See text for details.
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currently distributed version of the program is to re®ne both

an overall scale and an overall temperature factor.

3.6. Bulk-solvent correction

The absence of a bulk-solvent correction from the type of

calculations described in the previous sections is a serious

problem. Not only does it introduce a systematic error for all

data to approximately 6 or 5 AÊ resolution, but it also neces-

sitates the application of a low-resolution cutoff (commonly at

�15 AÊ ) to compensate for the absence of a suitable correc-

tion. This low-resolution cutoff in turn introduces series-

termination errors and further complicates the target-function

landscape, making the identi®cation of the global minimum

more dif®cult.

Because at each and every step of the minimization we have

a complete model for the target crystal structure, it is (at least

in principle) possible to perform a proper correction for the

presence of bulk solvent, as described for example by Jiang &

BruÈ nger (1994) and Badger (1997). The problem, of course, is

that if at each step we had to calculate a mask for the protein

component, followed by several rounds of re®nement for the

parameters of the solvent, the resulting program would be too

slow to be practical. There is, however, a much faster (but less

accurate; Jiang & BruÈ nger, 1994; Kostrewa, 1997) bulk-solvent

correction method (known as the exponential scaling model

algorithm), which is based on Babinet's principle and is fully

described by just one equation,

F � FP�1:0 ÿ ksol expfÿBsol�sin���=��2g�;

where F is the corrected structure-factor amplitude, FP
is the amplitude of the protein component alone,

sin(�)/� is reciprocal resolution, ksol is the ratio of the

mean electron densities of the solvent and macro-

molecule and Bsol is a measure of the diffuseness (or

sharpness) of the boundary between the two compo-

nents (Moews & Kretsinger, 1975; Tronrud, 1997). This

physical interpretation of the meaning of ksol and Bsol

is only valid when the initial assumption is satis®ed;

that is, when the electron-density distribution for both

the macromolecular and solvent components is

uniform. Because this can only be true at very low

resolution, it is common practice (at least in the case of

macromolecular re®nement) not to ®x their values, but instead

to allow ksol and Bsol to enter the re®nement as two inde-

pendent (adjustable) parameters whose values determine the

contribution from the bulk solvent (see Tronrud, 1997 for a

discussion of the re®nement procedure).

Unfortunately, addition of several rounds of non-linear

least-squares re®nement of the ksol and Bsol parameters in the

proposed molecular-replacement method would make the

resulting program rather impractical. Nevertheless, given the

physical meaning of the two parameters and the fact that the

great majority of proteins crystallize under rather similar

conditions led us to believe that a reasonable trade-off

between speed and accuracy could be achieved: this we

intended to do by ®xing the values of ksol and Bsol to the

centroid of the distribution obtained from all deposited (in the

PDB) pairs of values for the two parameters (and for struc-

tures re®ned with the exponential scaling model algorithm).

By doing so, not only we could avoid continuous cycles of

parameter re®nement, but we could actually calculate the

value of the correction term {1.0 ÿ ksolexp[ÿBsol(sin(�/�)2]}

even before the minimizations begin. The result would be that

for the whole length of the calculations the computational cost

of performing a bulk-solvent correction would be just one

multiplication per re¯ection per cycle.

Our hope that this would be a viable method to correct for

the bulk solvent was reinforced by the fact that the usually

quoted range of values for the parameters is rather narrow,

0.75±0.95 for ksol and 150±350 AÊ 2 for Bsol, as given by Tronrud

(1997), Badger (1997) and Kostrewa (1997). Unfortunately, as

Figure 7
Schematic stereo diagram of the target structure for a six-dimensional problem
(1b6q). The colour coding is red and yellow for the helices of each monomer, blue
for the connective strands. The position of the intramolecular (crystallographic)
dyad axis is also noted. Figure prepared with the program BOBSCRIPT (Esnouf,
1997).

Table 1
Results from nine constant-temperature minimizations for a
12-dimensional problem.

The solution shown in bold (compared in Fig. 10 with the ®nal
structure) is the correct solution.

Minimization 1.0 ÿ Corr(Fo, Fc) Free value

1 0.2778 0.3162
2 0.2744 0.6903
3 0.2407 0.3305
4 0.2639 0.3656
5 0.2632 0.8358
6 0.2473 0.4466
7 0.2590 0.4330
8 0.2937 0.2821
9 0.2725 0.6402
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shown in Fig. 5, the distribution obtained from 301 structures

deposited with the PDB showed anything but a tight clustering

around a value in this range. Because this distribution (and

some of its possible interpretations) has already been

discussed extensively (Glykos & Kokkinidis, 2000b), it suf®ces

here to say that the currently distributed version of the

program can perform a bulk-solvent correction (given a pair

of values for the two solvent parameters), but the feature is

not turned on by default and its application has to be explicitly

requested by the user.

3.7. Implementation-specific limitations

There are several limitations of the program described in

the previous sections which arise not from the method per se,

but from its practical implementation. The most important is

that the current version of the program is limited to target

crystal structures consisting exclusively of only one molecular

species. The reason for not implementing a more general

treatment is that the physical memory requirements for

storing simultaneously two (or more) molecular transforms

would make the program impractical for most users (but this is

slowly changing). A second (not unrelated) limitation is that

the molecular structure of the search model is kept ®xed

throughout the calculation. Again, there is no practical way

for modifying the search model during the calculation without

losing the advantages offered by a pre-calculated molecular

transform. (The obvious solution would be to treat the indi-

vidual domains or other substructure as independent search

models, but this would not only be impractical owing to

physical memory limitations, but would also unnecessarily

increase the number of free parameters and the dimension-

ality of the problem).

Another limitation concerns the automatic temperature

determination algorithm presented in x3.2. The problem with

the approach presented there, is that too much faith is placed

on the behaviour of the average value of the target function as

observed in just one quickly performed slow-cooling protocol.

If the behaviour of the target function is not typical of a set of

non-productive random walks on the target function land-

scape (as the current implementation assumes), then the

algorithm presented above will be at the mercy of the idio-

syncratic peculiarities encountered during this speci®c simu-

lation.

One ®nal problem concerns the incorporation of known

non-crystallographic symmetry elements (determined, for

example, from the self-rotation or Patterson functions) in the

calculations described above. In the case of exclusively

translational non-crystallographic symmetry, this prior

knowledge can be directly incorporated in the current

implementation of the program (in the form of additional

®xed symmetry elements). Incorporation of general non-

crystallographic symmetry elements restraints is not possible

with the current implementation of the program, as this would

entail independent re®nement of the positions of all non-

crystallographic symmetry axes with a known orientation.

4. Results

In this section, we present results from the application of the

program to molecular-replacement problems of varying

complexity. In all cases, the results will be presented in the

form of graphs on which the horizontal axis is time steps

(number of iterations) of the Monte Carlo algorithm and the

vertical axis is the value of the target function for the mini-

mization.

4.1. A six-dimensional problem (1)

The ®rst example shows results from a slow-cooling six-

dimensional search performed using real data obtained from

the PDB entry for the orthorhombic form of chicken egg-
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Figure 8
Evolution of the average R-factor values for four minimizations from a
six-dimensional problem. The minimization shown in the top graph failed
to ®nd the correct solution, whereas the other three minimizations
converged to the correct solution with a R factor of about 0.42. See text
for details.
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white lysozyme (PDB entry 1aki). The space group of the

target structure is P212121, with unit-cell parameters a = 59.06,

b = 68.45, c = 30.51 AÊ and one molecule per asymmetric unit.

The search model for this calculation was Japanese quail

lysozyme (PDB entry 2ihl) which has an r.m.s. deviation from

the target structure of 1.2 AÊ and a maximum displacement of

8.7 AÊ . Fig. 6 shows the evolution of the average 1.0 ÿ
Corr(Fo, Fc) values from ®ve independent minimizations using

the 558 strongest re¯ections between 15 and 4.0 AÊ resolution

(about 50% of all data to this resolution).

As is obvious from this ®gure, four out of ®ve minimizations

converged to a deep minimum of the target function, corre-

sponding to the correct solution [with (1 ÿ C) values of about

0.39]. The total CPU time for each minimization was 118 min,

with the four solutions of the successful runs appearing after

30, 36, 59 and 64 min, respectively.3

4.2. A six-dimensional problem (2)

The example presented in the previous section could have

trivially been solved using any of the standard Patterson-based

molecular-replacement programs and in a fraction of the time

required by this six-dimensional search [AMoRe, for example

(Navaza & Saludjian, 1997; Navaza, 1994), solves this same

problem in less than 3 min of CPU time]. In this section, we

present results from a problem that defeats traditional

methods by violating the assumption of topological segrega-

tion of the self-and cross-vectors. The target structure for this

problem is 1b6q, a homodimeric 4-�-helical bundle (a sche-

matic diagram of which shown in Fig. 7) which crystallizes in

space group C2221, with unit-cell parameters a = 30.4, b= 42.1,

c = 81.4 AÊ , one monomer (half a bundle) in the asymmetric

unit and very low solvent content (approximately 30%).

As can be seen from Fig. 7, the self-vectors between, for

example, the two helices of the red-coloured monomer, are on

the average longer that the cross vectors between helices

belonging to different monomers (a red and a yellow helix in

this ®gure). Because this is also a tightly packed structure, the

result is that the cross vectors within any chosen integration

radius around the origin of the Patterson function will be

approximately as numerous as the self-vectors. The search

molecule used for the calculations was an essentially perfect

polyalanine model of the two helices (with an r.m.s. deviation

of less that 0.2 AÊ for the included atoms) and we used real data

(collected on a CAD4 diffractometer) between 15 and 4 AÊ

resolution. Although the search model is exceptionally accu-

rate and the data of high quality, conventional methods

[program MOLREP (Vagin & Teplyakov, 1997) from the

CCP4 suite of programs (Collaborative Computational

Project, Number 4, 1994)] cannot identify the correct solution

during the default run.

In contrast, a six-dimensional search which was performed

using the same search model and data successfully identi®ed

the correct solution. Fig. 8 shows the evolution of the average

R-factor values from ®ve independent minimizations using the

353 strongest re¯ections between 15 and 4.0 AÊ resolution

(about 70% of all data). As it is obvious from this ®gure, three

out of four minimizations converged to a deep minimum of the

R factor that corresponds to the correct solution (with R

values of about 0.42). The total CPU time for each these

simulations was 23 min.

4.3. A 12-dimensional problem

Although the example presented in the previous section

was suf®ciently complex to defy solution by Patterson function

based methods, it was still far from realistic: in a real

molecular-replacement problem we would hardly expect to

have such an accurate starting model, both for the individual

helices and especially with respect to their relative positions

and orientations. A far more demanding (and thus realistic)

problem would be to try to determine this structure using as a

starting model just one polyalanine helix taken from an

independently determined structure. An (unsuccessful)

attempt to ®nd a solution to this problem through an

exhaustive search performed with AMoRe has already been

described in the original structure determination of this

protein (Glykos & Kokkinidis, 1999).4 Here, we show that the

structure could have been solved (although not trivially) with

a full 12-dimensional search performed with this stochastic

method. The search model was the helical polyalanine part of

residues 4±29 of 1rpo, amounting to a total of only 130 atoms

(less than 25% of the total number of ordered atoms in the

structure). The r.m.s. deviation between the search model and

the two target helices were 0.7 and 0.9 AÊ ; we only used data

between 15 and 4 AÊ resolution.

Table 1 shows the ®nal (best) values of the target function

[in this case, 1.0 ÿ Corr(Fo, Fc)] and its corresponding free set

for the nine minimizations performed; Fig. 9 shows the

evolution of the average 1.0 ÿ Corr(Fo, Fc) values for two of

these simulations (3 and 4 in Table 1). The solution corre-

sponding to minimization number 3 is compared in Fig. 10

with the ®nal structure. As can be seen from this ®gure, for the

minimization with the best value of the target function the two

search models are approximately correctly placed and

oriented (and within the convergence radius of rigid-body

re®nement at that resolution). Furthermore, the polarity

(direction) of the helices is also correctly predicted and would

3 All references to physical time measurements of the program's speed of
execution refer to a UNIX workstation which in single-user mode gave the
following SPEC95 benchmark results: SPECint95 = 16.6, SPECint_rate95 =
149, SPECfp95 = 21.9 and SPECfp_rate95 = 197 (Standard Performance
Evaluation Corporation, 10754 Ambassador Drive, Suite 201, Manassas, VA
21109, USA; http://www.specbench.org/). UNIX is a registered trademark of
UNIX System Laboratories, Inc.

4 This search was conducted as follows: one polyalanine helix was ®xed in
orientation and position by combining the best 99 orientations from its cross-
rotation function with the top 20 peaks from each of the corresponding
translation functions, giving a total of 1980 starting models for the ®rst helix.
For each of these models, we calculated the translation functions corre-
sponding to each and every of the 99 best orientations for a second copy of the
model, giving a grand total of 1980 � 99 = 196 020 translation functions or a
list of 3 920 400 correlation coef®cients. This search resulted in a more or less
uniform distribution of the linear correlation coef®cients from the translation
functions, with the best solutions being clearly wrong as judged by packing
considerations.
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probably have allowed the structure determination of this

protein to proceed to completion.

We should not like, however, to leave an impression that

determining this structure would have been trivial with this

12-dimensional search. As Table 1 (and Fig. 9) show, the

correct solution is hardly identi®able from the set of the other

(wrong) solutions. There are several reasons for this. The ®rst

is that all nine minimizations converged to closely related

solutions, with very similar packing arrangements. Their

differences are mostly accounted for by rotations about the

helical axes combined by translations approximately equal to

the length of one helical turn. A second reason is that the

search model is rather incomplete and that relatively low-

resolution data are used. Under those circumstances, the value

of the target function for the correct solution is not signi®-

cantly lower than its value for some of the wrong (local)

minima. Furthermore, owing to the necessarily small number

of re¯ections that enter the calculation, the standard uncer-

tainty of the free R (or 1.0 ÿ C) value is so large that even

wrong solutions can give quite respectable free values (for

example, minimizations 1 and 8 in Table 1), further compli-

cating the identi®cation of the correct solution.

4.4. A three-body problem

With this last example we attempt to address the question of

what is the practical limit for the

number of search models per asym-

metric unit (of the target crystal

structure) that can be tackled with

this method. Clearly, the answer to

this question depends so much on

the speci®cs of the problem under

examination that it is impossible to

justi®ably give a single answer that

would cover all cases. To reinforce

this statement about the dependence

on the characteristics of the indivi-

dual problems, we present in Fig. 11

results from a trivial, but nonetheless

15-dimensional, three-body problem

which this program can solve in less

than 20 min of CPU time per mini-

mization. Data for this example were

calculated from the PDB entry 1a7y

containing the atomic coordinates of

the 11-residue antibiotic actino-

mycin D which crystallizes in space

group P1 with three molecules per

asymmetric unit and unit-cell para-

meters a = 15.737, b = 15.887,

c = 25.156 AÊ , � = 85.93, � = 86.19,


 = 69.86�. The three molecules in

the asymmetric unit were forced to

be identical by replacing chains B

and C with the coordinates of chain

A; we only used data between 25 and
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Figure 10
Schematic stereo diagram of the target structure (1b6q, shown as a ribbon diagram) and of the best
solution from a 12-dimensional search performed using as model one polyalanine helix (stick models).
The orientation of the molecule is identical to the one shown in Fig. 7. Figure prepared with the program
RASMOL (Collaborative Computational Project, Number 4, 1994).

Figure 9
Evolution of the average 1.0 ÿ Corr(Fo, Fc) values for two constant-
temperature minimizations (entries 3 and 4 in Table 1) from a
12-dimensional problem. The sudden drop of the target function near
the end of the simulations corresponds to the beginning of the ®nal few
thousand cycles of re®nement of the best solution encountered during the
main length of the minimization.
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2 AÊ resolution. To make the example somewhat more realistic,

the input data were modi®ed by adding an offset ranging

randomly and uniformly from ÿ20 to +20% of their modulus.

This `noisy' data set was treated as the observed data set (of

the target structure). As can be seen from Fig. 11, all three

minimizations converged to deep minima of the R factor, with

each minimization taking approximately 58 min of CPU time

and individual solutions appearing after 10, 15 and 17 min.

Two simulations (upper two graphs in Fig. 11) converged to an

R factor of �20%, whereas the last solution (lower curve)

converged to an R factor of 11%. The reason for the difference

between the values of the target function is that the search

model has an approximate internal dyad axis of symmetry,

which at the resolution used for this calculation gives rise to

two approximately equivalent orientations for each molecule,

with one orientation slightly better than the other. The

difference of the R factors re¯ects a difference in the

proportion of the search models that have been placed in one

(or the other) of the two orientations.

Although this hypothetical structure is by all accounts a

rather trivial problem to solve, it does make the point that the

high dimensionality of the search space is not in itself suf®-

cient for invalidating the application of this method. We

should stress, however, that our practical experience with the

application of this program is that when there are more than

three molecules per asymmetric unit, the so called `curse of

dimensionality', combined with less-than-ideal search model

and data, makes the application of this 6n-dimensional

procedure unjusti®ably expensive in terms of computational

requirements [and as a last cautionary tale, we should add here

that this program has never (at least to our knowledge) been

able to solve a problem with more than three molecules per

asymmetric unit].

5. Discussion

We showed that a stochastic molecular-replacement method

which is able to determine the rotational and translational

parameters of all search models simultaneously is not only

feasible but also practical for molecular-replacement problems

ranging in complexity from relatively straightforward six-

dimensional optimizations, to quite complex 12- and even

15-dimensional problems. In this ®nal section, we discuss the

status of the method from the viewpoint of the practising

crystallographer and present what we think are the future

perspectives for this class of algorithms.

We do not believe that this method could (or should)

compete with the well established Patterson-based molecular-

replacement programs. These methods (and the corre-

sponding programs), when combined with careful thinking

and examination of all available evidence, have repeatedly

been shown to be able to solve problems far more dif®cult and

demanding than the examples presented in this communica-

tion and at a fraction of the computational cost required by

this method. Nevertheless, as the examples in xx4.2 and 4.3

illustrated, there do exist classes of problems which are

tractable through this multidimensional approach but defeat

most other methods. For this reason, we view our method as a

last-ditch effort to solve by pure computational means

molecular-replacement problems that resisted solution by

other automated methods (but we feel that we should add that

substituting computing for thinking has repeatedly been

shown to fail even for problems much simpler that those

presented in the previous sections).

As was discussed in xx2.3 and 3.7, there is a signi®cant

number of limitations of this approach, both methodological

and implementation-speci®c. However, what we think that is

really missing from the method is the ability to integrate and

take into account all the evidence and information available

for any given problem. To give just one example: instead of

treating all orientations of the search model as a priori equally

probable, it should be possible to treat the cross-rotation

function (calculated for the given search model and data) as a

probability-distribution function and then force the search

model(s) to sample the orientational space in such a way as to

keep the fraction of time spent at each orientation propor-

tional to the value of the cross-rotation function for this

orientation. In this way, and by reducing the amount of time

spent on exploring combinations of parameters which are

deemed improbable by the evidence in hand (in this case, the

cross-rotation function), we would be performing an `impor-

tance sampling' on the orientational parameters of the search

model(s). Additional information which may enter this type of

calculations can come, for example, from the self-rotation

function (which could relatively easily be used to enforce non-

crystallographic symmetry in the orientational probability-

distribution function mentioned above) or from the presence

of purely translational non-crystallographic symmetry

Figure 11
Evolution of the average R factors for three slow-cooling simulations
from a 15-dimensional problem. The R-factor values refer only to the
lower curve, with the other two curves translated by +0.05 and +0.10 units
to improve clarity. See text for details.
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detectable from the native Patterson function.5 Clearly,

keeping track of all these disparate sources of information and

combining them in a meaningful and computationally robust

algorithm is not a trivial task, but we believe that such a

method would open the way to structure determinations which

are outside the reach of the currently implemented molecular-

replacement techniques.

6. Program availability

The program (Queen of Spades) described in this paper is

open-source software which is distributed free of charge to

both academic and non-academic users and is immediately

available for download from http://origin.imbb.forth.gr/

~glykos/. The distribution contains source code, documenta-

tion (manual page, PostScript and html), example scripts, test

®les and stand-alone executable images suitable for the

majority of the most commonly used workstation archi-

tectures.
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5 It should be mentioned, however, that even this simple proposition, i.e. to use
the cross-rotation function as an orientational probability distribution, is still
an oversimpli®cation for problems with more than one molecule per
asymmetric unit. The reason is that for such problems the probability
distribution for the orientation of one molecule ought to be treated as
conditional on the orientation of the other search models. One way that this
could be achieved is through the active use of the self-rotation function as a
means to calculate, based on the probability distribution for the orientation of
one of the search models, the orientational probability distributions for the
rest of the molecules (which is a generalization of the principle behind the
locked rotation function; Tong & Rossmann, 1990). It goes without saying that
the computational cost for performing such a calculation (which would involve
updating the orientational probability distributions at each and every step)
would be prohibitive with present-day computing capabilities.
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