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The classical approach to the problem of placing n copies of a

search model in the asymmetric unit of a target crystal

structure is to divide this 6n-dimensional optimization

problem into a succession of three-dimensional searches

(rotation-function followed by translation-function searches

for each of the models). Here, it is shown that a structure-

determination method based on a reverse Monte Carlo

minimization of a suitably chosen statistic in the 6n-

dimensional space de®ned by the rotational and translational

parameters of the n molecules is both feasible and practical, at

least for small n. Because all parameters of all molecules are

determined simultaneously, this algorithm is expected to

improve the signal-to-noise ratio in dif®cult cases involving

high crystallographic/non-crystallographic symmetry in tightly

packed crystal forms. Preliminary results from the application

of this method (obtained with a space-group general computer

program which has been developed for this purpose) are

presented.
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1. Introduction

As the number of macromolecules with known three-dimen-

sional structures continues to increase, so does the importance

of molecular replacement as a tool for the determination of

new crystal structures. Although the number of contributions

and enhancements to the method since its original derivation

by Rossmann & Blow (1962) is very large (see, for example,

Rossmann, 1972, 1990; Machin, 1985; Dodson et al., 1992;

Carter & Sweet, 1997), it can be argued that in current practice

there are two major approaches for solving molecular-repla-

cement problems. The ®rst is based on the calculation (and

subsequent examination) of a large number of both rotation-

function and translation-function solutions in a fast and more

or less automatic manner [typi®ed by the program AMoRe

(Navaza & Saludjian, 1997) from the CCP4 suite of programs

(Collaborative Computational Project, Number 4, 1994)]. The

second approach uses a Patterson correlation re®nement

procedure to simultaneously identify putatively correct solu-

tions from the rotation function and to improve the search

model before continuing with a translation-function calcula-

tion (BruÈ nger, 1992, 1997). In both cases, however, the rota-

tional and translational parameters of the search model(s) are

treated separately and an independent determination of their

values is attempted. This may result in a reduction of the

signal-to-noise ratio in problems involving a large number of

molecules per unit cell and/or crystal forms with low solvent

content.
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A third more recently developed class of algorithms

attempts to improve the sensitivity and accuracy of the

method by increasing the dimensionality of the parameter

space explored. This is achieved by performing successive six-

dimensional searches for each of the molecules present in the

crystallographic asymmetric unit. Published examples of such

methods include a genetic algorithm approach (Chang &

Lewis, 1997), an evolutionary search methodology (Kissinger

et al., 1999) and a systematic six-dimensional search using a

fast translation function (Sheriff et al., 1999).

Here, we describe an alternative 6n-dimensional molecular-

replacement procedure which is based on the simultaneous

determination of the rotational and translational parameters

of all molecules present in the crystallographic asymmetric

unit of a target structure.

2. Algorithms and implementation

2.1. Algorithms

The volume of the con®gurational space de®ned by the

rotational and translational parameters of the molecules

present in the asymmetric unit of a target crystal structure is so

large that a systematic examination of all possible combina-

tions of their positions and orientations is beyond present-day

computing capabilities. On the other hand, simulated-

annealing methods have repeatedly been shown to be able to

deal with multidimensional combinatorial optimization

problems in near-optimal ways and in a fraction of the time

required for a systematic search (Kirkpatrick et al., 1983; Press

et al., 1992). The two most popular simulated-annealing

techniques are molecular dynamics and Monte Carlo simula-

tions. In the case of macromolecular re®nement (where the

atoms are covalently linked), molecular dynamics is the

method of choice (BruÈ nger & Rice, 1997, and references

therein). For the problem under examination, in which the

search model is ®xed and no interatomic potential is used,1 a

Monte Carlo minimization method appears to be a natural

solution.

We have chosen to use a modi®cation of the reverse Monte

Carlo technique (McGreevy & Pusztai, 1988; Keen &

McGreevy, 1990) where, instead of minimizing the quantity

�2 �Phkl��Fo ÿ Fc�=��Fo��2, one minimizes any of the

following (user-de®ned) target functions: (i) the conventional

crystallographic R factor, R =
P

hkl jFo ÿ Fcj=Fo, (ii) the

quantity 1:0 ÿ Corr�Fo;Fc� and (iii) the quantity

1:0 ÿ Corr�F2
o;F

2
c �, where Corr is the linear correlation co-

ef®cient function, Fo and Fc are the observed and calculated

structure-factor amplitudes, respectively, of the hkl re¯ection

and ��Fo� is the standard uncertainty of the corresponding

measurement. To avoid unnecessary repetition and to simplify

the discussion that follows, we will hereafter refer only to the

R-factor statistic, on the understanding that any of the

correlation-based targets can be substituted for it.

The minimization procedure follows closely the original

Metropolis algorithm (Metropolis et al., 1953) and its basic

steps are outlined below. Random initial orientations and

positions are assigned to all molecules present in the crystal-

lographic asymmetric unit of the target structure and the R

factor (Rold) between the observed and calculated structure-

factor amplitudes is noted. In the ®rst step of the basic itera-

tion, a molecule is chosen randomly and its orientational and

translational parameters are randomly altered. The R factor

(Rnew) corresponding to this new arrangement is calculated

and compared with Rold: if Rnew � Rold, then the new con®g-

uration is accepted and the procedure is iterated with a new

(randomly chosen) molecule. If Rnew > Rold (that is, if the new

con®guration results in a worse R factor), the new con®gura-

tion is accepted with a probability exp��Rold ÿ Rnew�=T�, where

T is a control parameter which plays the role of temperature in

statistical mechanical simulations. This probabilistic treatment

again relies on the random number generator: if

exp��Rold ÿ Rnew�=T� > �, where � is a random number

between 0.0 and 1.0, the new con®guration is accepted and the

procedure iterated. If exp��Rold ÿ Rnew�=T� � �, we return to

the previous con®guration (the one that resulted in an R factor

equal to Rold) and reiterate.

It would appear at ®rst sight that this is not a practical

algorithm: for every iteration, the atomic coordinates of the

search model must be rotated and translated, a new electron-

density map calculated and, more importantly, a fast Fourier

transform (FFT) step must be performed. Assuming that the

limiting step is the FFT of N grid points, then this procedure

would require (Nlog2N) operations per cycle (Press et al.,

1992) and would not be practical for simulations longer than a

few tens of thousands of cycles. These appearances are

deceiving. By trading computer memory for speed of execu-

tion, this algorithm can be converted to a linear O(K)

procedure, where K is the number of re¯ections (of the target

structure) expanded to the space group P1. This is achieved by

calculating (and storing in memory) the molecular transform

of the search model before the actual minimization is started.

For the rest of the simulation, in order to calculate a structure-

factor amplitude Fc�hkl� we only have to add the (complex)

values of the molecular transform at the coordinates that the

hkl re¯ection would take if rotated accordingly to the orien-

tation of each molecule in the unit cell2 (a detailed account on

the usage of the molecular transform to accelerate the struc-

ture-factor calculation for this type of problem can be found in

x2.1 of Chang & Lewis, 1997). A reader may object that if at

every step we calculate the contribution of each molecule to

1 The inclusion of a van der Waals repulsion term would convert the
simulated-annealing algorithm to an inef®cient packing-function optimizer:
once an arrangement is found that allows the ef®cient packing of the search
models and their symmetry equivalent in the target unit cell, no further major
rearrangements of the molecular con®guration will be possible (especially in
tightly packed crystal forms) and the minimization would come to a halt. A
more thoughtful procedure based on a time-dependent weighting scheme that
would slowly increase the contribution from the interatomic potential during
the length of the minimization would greatly increase the computational
requirements of the algorithm.

2 In other words, instead of rotating the search models, we keep the model
(actually, its molecular transform) ®xed and rotate the reciprocal lattice of the
target structure. The translational parameters of the search models (and
crystallographically related molecules) enter the calculation as phase shifts
applied to the complex transform values.
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every re¯ection, then the computer time per step of the

minimization would depend not only on the number of unique

re¯ections and crystallographic symmetry operators, but also

on the number of the search models in the asymmetric unit.

The dependence on the number of molecules in the asym-

metric unit of the target structure can be removed if we recall

that at each step of the minimization we only modify the

parameters of one of the search models. If the contribution of

each molecule to every re¯ection is stored in memory, then at

each step we only have to recalculate the contribution from

the molecule that is being tested.

2.2. Implementation

A space-group general computer program has been devel-

oped which implements the algorithms described in the

previous section. As is always the case with the Monte Carlo

method, the ef®ciency of the minimization depends greatly on

the optimal (or otherwise) choice of (i) an annealing schedule

which speci®es how the temperature of the system will vary

with time and (ii) of a set of moves that determine how the

next con®guration (the one that will be tested) can be

obtained from the current con®guration (the one that has

already been tested).

The current implementation of the program supports three

annealing modes. In the ®rst mode, the temperature is kept

constant throughout the minimization. The second is a slow-

cooling mode, with the temperature linearly dependent on the

simulation time. In the third mode, the temperature of the

system is automatically adjusted in such a way as to keep the

fraction of moves made against the gradient of the R factor

constant and equal to a user-de®ned value.3 It is possible to

obtain reasonable estimates of the temperature range

required for a slow-cooling run automatically: this is achieved

by monitoring a quantity analogous to the speci®c heat (from

statistical mechanics) during a short slow-cooling simulation

which is started from a suf®ciently remote (high) temperature

(Kirkpatrick et al., 1983).

The selection of an optimal set of possible moves and the

control of their magnitudes depends on the nature of the

individual problems, making it dif®cult to ®nd a satisfactory

solution without losing generality. Instead of arti®cially

making the optimization problem discontinuous (by

restricting the con®gurational parameters to take values from

a pre-de®ned ®xed grid), we have chosen to work with the

continuous case (in which any parameter can take any value

from within its de®ning limits). The program stores the

orientational parameters of the search models using the polar

angle (!, ', �) convention, with ! de®ning the latitude and '
the longitude of a rotation axis about which the molecule is

rotated by � degrees. The translational parameters are stored

in terms of the fractional coordinates of the geometrical

centres of the molecules in the crystallographic frame of the

target structure. The choice of polar angles simpli®es the task

of updating and controlling the orientational parameters: for

the whole length of the minimization, an orientation for the

rotation axis is chosen randomly and uniformly from the full-

half sphere (that is, 0 � ! � �/2 and 0 � ' < 2�), leaving only

the rotational offset �� and the translational offsets �x, �y,

�z to be speci®ed before a new con®guration can be obtained

from the current one. The program supports two modes of

move-size control. In the ®rst, the maximum possible values

that the random offsets ��, �x, �y and �z can take are kept

constant throughout the simulation with max(��) = dmin (in

degrees) and max(�x,�y,�z) = dmin/max(a, b, c), where dmin

is the minimum Bragg spacing of the input data and a, b, c are

the unit-cell translations of the target structure (in AÊ ). In the

second mode, the maximum move sizes (as de®ned above) are

linearly dependent on both time and the current R factor, with

max(��) = �Rt/ttotal and max(�x,�y,�z) = 0.5Rt/ttotal, where

R is the current R factor, t is the current time step and ttotal is

the total number of time steps for the minimization. The

dependence on the R factor is justi®ed on the grounds that as

we approach a minimum of the target function, we should be

sampling the con®gurational space on a ®ner grid.4 The time

dependence follows from a similar argument.

3. Results

Although the ®nal proof of the utility of any new structure-

determination method is its ability to determine previously

unknown structures, we think that it is useful to illustrate the

applicability of the algorithms presented above with model

calculations based on known structures deposited in the

Protein Data Bank.

The ®rst example has been chosen to show that for simple

problems this stochastic approach can be approximately as

fast as the traditional methods. The example was constructed

as follows: structure-factor amplitudes were calculated from

PDB entry 2ihl containing the atomic coordinates of a

monoclinic form (space group C2) of the Japanese quail

lysozyme with unit-cell parameters a = 103.90, b = 38.70,

c = 34.00 AÊ , � = 100.60�. The resulting amplitudes were

modi®ed by adding an offset ranging randomly and uniformly

from ÿ20 to +20% of their modulus. This `noisy' data set was

treated as the observed data set of the target structure. The

search model for the calculation was turkey egg-white lyso-

zyme (PDB entry 2lz2), which has an r.m.s. deviation from the

Japanese quail lysozyme of 1.42 AÊ . Fig. 1 shows the evolution

of the average R factors from ®ve independent minimizations

using the 281 strongest re¯ections to 4 AÊ resolution (about

24% of all data to this resolution). All ®ve simulations

converged to the correct solution (giving R and free R values

of about 0.27). The important thing to note, however, is that

Acta Cryst. (2000). D56, 169±174 Glykos & Kokkinidis � Stochastic molecular replacement 171

research papers

3 The program counts the number of times that a new con®guration is accepted
even though it results in a higher R-factor value. After a prede®ned number of
iterations, the fraction of moves that have been made against the R-factor
gradient is calculated: if it is less than a target value (de®ned by the user) the
temperature is increased; otherwise it is decreased.

4 The word `grid' is used here metaphorically. For all practical purposes, the
values of ��, �x, �y and �z returned by the random number generator are
continuous (if, for example, the generator returns values in the range 0 to
231 ÿ 1 and max(��) = �, then the `grid size' on �� is less than 9 � 10ÿ8

degrees).
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on a modern workstation each minimization took less than

2 min of Central Processing Unit (CPU) time.5 Given that in

all cases the solution was found in less than 40 000 steps, this is

equivalent to about 40 s of CPU time per solution (and

because the parameter space is continuous, this includes the

equivalent of a rigid-body re®nement step).

The second example shows results from a six-dimensional

search using real data obtained from the PDB entry for the

orthorhombic form of chicken egg-white lysozyme (PDB entry

1aki, data set code r1akisf.ent). The space group of the target

structure is P212121, with unit-cell parameters a = 59.062,

b = 68.451, c = 30.517 AÊ and one molecule per asymmetric

unit. The search model for this calculation was Japanese quail

lysozyme (PDB entry 2ihl), which has an r.m.s. deviation from

the target structure of 1.20 AÊ and a maximum displacement of

8.72 AÊ . Fig. 2 shows the evolution of the average

1.0 ÿ Corr�Fo;Fc� values from ®ve independent minimizations

using the 558 strongest re¯ections in the resolution range

15±4.0 AÊ (about 50% of all data to this resolution). As it is

obvious from this ®gure, four out of ®ve minimizations

converged to the correct solution [with (1 ÿ C) values of about

0.39]. The total CPU time for each minimization was 118 min,

with the four solutions of the successful runs appearing after

30, 36, 59 and 64 min, respectively. Clearly, longer simulation

times would improve the success rate of the algorithm even

further.6

The third example is based on a target structure containing

two molecules in the crystallographic asymmetric unit and has

an added dif®culty arising from the presence of a pseudo-B-

centred lattice. Data for this example were calculated from

PDB entry 1lys containing the atomic coordinates of a

monoclinic form (space group P21) of hen egg-white lysozyme

with unit-cell parameters a = 27.23, b = 63.66, c = 59.12 AÊ ,

� = 92.9�. The two molecules in the asymmetric unit have

approximately the same orientation and are related by a

translation vector (in fractional coordinates) of (0.51, 0.02,

0.53). The closeness of the translation vector to �1
2 ; 0; 1

2�,
generates a super-lattice corresponding to a pseudo-P21 cell

with unit-cell parameters a = 31.9, b = 63.6, c = 33.2 AÊ , � =

130.6� and only one molecule in the asymmetric unit. To make

the example more realistic, noise with a maximum amplitude

of �20% was added to the calculated Fs and we used a search

model (Japanese quail lysozyme, PDB entry 2ihl) which has

r.m.s. deviations from the two target molecules of 1.52 and

1.56 AÊ , respectively. Fig. 3 shows the evolution of the average

R factors from three independent minimizations using the

1066 strongest re¯ections to 4 AÊ resolution (about 60% of all

data to this resolution). All three simulations converged to the

correct solution giving R and free R values of about 0.34, with

each minimization taking approximately 5.5 h of CPU time on

the reference workstation. As can be seen from the diagrams,

Figure 2
Evolution of the average 1:0 ÿ Corr�Fo;Fc� values for ®ve minimizations
from a six-dimensional problem using real data. The �1 ÿ C� values refer
only to the lower curve, with the other four curves translated by +0.1, 0.2,
0.3 and 0.4 units in order to improve clarity. See text for details.

Figure 1
Evolution of the average R factors for ®ve minimizations from a ®ve-
dimensional problem. See text for details. The R-factor values refer only
to the lower curve, with the other four curves translated by +0.1, 0.2, 0.3
and 0.4 R-factor units in order to improve clarity. All graphs were
prepared using the program Xmgr (http://plasma-gate.weizmann.ac.il/
Xmgr/).

5 All references to physical time measurements of the program's speed of
execution refer to a UNIX workstation which in single-user mode gave the
following SPEC95 benchmark results: SPECint95 = 16.6, SPECint_rate95 =
149, SPECfp95 = 21.9 and SPECfp_rate95 = 197 (Standard Performance
Evaluation Corporation, 10754 Ambassador Drive, Suite 201, Manassas, VA
21109, USA; http://www.specbench.org/). UNIX is a registered trademark of
UNIX System Laboratories, Inc.
6 The reduced success rate for this example (when compared with the previous
one, shown in Fig. 1) can be attributed to a combination of two factors. The
®rst is the higher dimensionality of the problem (combined with the relatively
short simulation time). The second is the absence of a bulk-solvent correction
from the current implementation of the program. This introduces a systematic
error for the low-resolution data and makes a low-resolution cut-off necessary.
This, in turn, generates series-termination errors which complicate the target-
function landscape, making the identi®cation of the global minimum more
dif®cult.
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although all three simulations found the (correct) global

minimum after about 3.5 million moves (corresponding to

about 3.8 h of CPU time), none of them remained there until

the end of the minimization. The reason is that for this

example we used an annealing protocol which automatically

increases the temperature when the system is trapped inside a

minimum.7

It is instructive to note here that when an attempt was made

to reduce the CPU time requirements by performing the

simulation using only the 279 strongest re¯ections to 5 AÊ , the

program converged to two distinct types of solutions: the ®rst

was the correct solution as described above. The second was a

solution corresponding to the structure of the pseudo-P21 cell,

with the two search models having approximately the same

orientational and translational parameters, resulting in a

complete overlap of the two molecules. The reason for this

behaviour is that the information about the real cell is mostly

contained in the weaker re¯ections. If these are systematically

excluded from the calculation, the program will converge with

similar frequencies to the two solutions that are consistent

with the given (strong) re¯ections.

4. Discussion

We have shown that a stochastic molecular-replacement

method which is able to determine the rotational and trans-

lational parameters of all search models simultaneously is not

only feasible but is also practical for the majority of everyday

crystallographic problems.

The model calculations presented above showed that for

relatively simple problems this method can perform as ef®-

ciently as the traditional algorithms. For more complex

problems, the cost of the signi®cantly higher CPU time

requirements may be balanced by the improved signal-to-

noise ratio offered by this approach.

This is not to imply that the method as it stands does not

suffer from serious limitations. The ®rst and most important is

that in its current implementation it is assumed that the target

crystal structure consists exclusively of only one molecular

species. Although there is no a priori reason for limiting the

algorithm to only one type of search model, the amount of

physical memory required for storing two (or more) molecular

transforms simultaneously would make the implementation

impractical. The second (not unrelated) limitation is that the

molecular structure of the search model is kept ®xed

throughout the calculation. Again, there is no practical way

for modifying the search model during the calculation without

losing the advantages offered by a pre-calculated molecular

transform.8 One ®nal problem concerns the incorporation of

known non-crystallographic symmetry elements (determined,

for example, from the self-rotation or Patterson functions) in

the calculations described above. In the case of exclusively

translational non-crystallographic symmetry (as was the case

in the third example of x3), this prior knowledge can be

directly incorporated in the current implementation of the

program (in the form of additional ®xed symmetry elements).

Incorporation of general non-crystallographic symmetry

elements restraints is not possible with the current imple-

mentation of the program, as this would entail independent

re®nement of the positions of all non-crystallographic

symmetry axes with a known orientation. If, however, both the

orientation and position of the non-crystallographic symmetry

axes is known, then this prior knowledge can be directly used

with the current version of the program.
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Figure 3
Evolution of the average R factors for three minimizations from an
11-dimensional problem. See text for details.

7 This annealing protocol (which can escape even from the global minimum) is
functional only because the program saves the con®guration that gave the
lowest R factor during the minimization. When the simulation is ®nished, the
con®guration that resulted to the lowest R factor is restored and a few extra
cycles of re®nement at a low temperature are performed before writing out the
®nal coordinates of all search models.

8 An obvious solution would be to treat the individual domains (or other
substructure) as independent search models, but this would not only be
impractical owing to physical memory limitations but would also unnecessarily
increase the number of free parameters (and the dimensionality of the
problem).
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5. Program availability

The program (Queen of Spades), together with its docu-

mentation and some example scripts, is distributed free of

charge to both academic and non-academic users. It is avail-

able for download from the WWW at http://origin.imbb.

forth.gr:8888/~glykos/.9 The distribution contains executable

images suitable for the majority of the most commonly used

workstation architectures.

We should like to thank the referees for their useful

comments and suggestions.
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