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Abstract

Atomic density is the number of atoms per A3 (atoms / As). It is calculated by dividing the sum of
atomic masses of atoms inside a hypothetical sphere, with the volume of the sphere. Each sphere
comes with a certain radius in Angstrom values (A), with the atom’s position as the center. Atomic
density in a protein structure is a measure of proximity between protein’s atoms. A protein’s atomic
density distribution shows how well packed is a structure and it may include information on potentially
identifying proteins with special folding patterns. In this preliminary report we examine atomic density
distributions derived from 21.255 protein structures and show that statistically significant differences
between those distributions are present. The biounit assembly format was chosen as a representative
for these structures. Hydrogenation alongside hydration of the structures was also completed with
modeling programs, to simulate the structures in-vitro. Several protein structures deviate significantly
and systematically from the average behaviour and —not unexpectedly— include proteins with
characteristic structures. Hierarchical clustering of the atomic density distributions indicated that a far
distinct cluster occurs. It supports the existence of a protein group with uncommon atomic density
distributions. Search for persistent patterns in this cluster’s proteins might be an indication for a
structural implication of atomic density. Current efforts focus on identifying putative patterns
connecting the structure and function of those proteins with their corresponding distributions. Different
clustering methods (kmeans, hdbscan) and application of different radius cutoffs (5/5\—7,&) removes
bias from our approach and enhances validity.
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[Tepiinyn

H aropikni TTukvoTnTa opideTal w¢ 1o TTARB0G atéuwy ava As. YTrohoyileTal diaipwvTag 1o TTARB0G Twv
ATOMIKWY palwVv aTtopwy TToU BpiokovTal p€oa o€ pia UTTOBETIKN o@aipa, Ye Tov OyKo TnG o®aipag
auTAg. KaBe ogaipa opileTal Ye PIO CUYKEKPIYEVN OKTIVA O€ A ME TO KEVTPO TOU OTOUOU OTO KEVTPO
™NG. H aTopIkn TTUKVOTNTA aTToTEAE PETPO €yyUTNTAG aTOPWY. Mia KATavour QTOMIKAG TTUKVOTNTOG
PAVEPWVEI TO ETTITTEDO TTOKETAPIOPATOG TNG OOMAG KAl UTTOPEI va TTEPIEXEl TTANpoopia yia €IOIKA
poTiBa avadiTTAwong TTPWTEIVWY. Z& AQUTAV TNV TTPWIKN ava@opd, eEETACOUPE KATAVOUEG QATOMIKAG
TTUKVOTNTAG aTTd éva Oeiyua 21255 TTpwTeividv Kal OEiXVOUUE TTwWG UTTAPXOUV OTATIOTIKA ONUAVTIKEG
Ola@opég HETAEU Twv KaTavopwv. Q¢ avTITTPOCWITEUTIKA OOMN yia Tnv avaAuon €TMAEXONKE n
BioAoyikr] ovTéTATA TWV TTPWTEIVIKWY dopwv. AkoAdouBnae, udpoydvwaon Kal evudaTwon Twv douwy,
ME XPAON TTPOYPAPMKATWY, YIa va YiVeEl TTPOCOUOIWON TOUG O€ in-vitro ouvenkeg. APKETEG TTPWTEIVEG,
aTToKAIVOUV GNPAvVTIKA KAl UCTNUATIKA aTTd TNV PECT KATACTAON Kol —KaBOAOU avaTTavTEXa— €XOUV
XAPOKTNPIOTIKEG dOMEG. H 1gpapyIkr) opadoTroinon Twy KATAVORWY ATOUIKNG TTUKVOTNTAG, QAVEPWVEI
emmiong Tnv UTTOPEN MIAG QTTOMOKPUOUEVNG OUOTAdAG TTPWTEIVWYV. AUTO evioxUel TIG evOEILeIS yia
OMAdES TTPWTEIVWIV PE aoUVABIoTEG KaTavopés. H avalntnon emavalaufavopevwy SOUIKWY HOTIBwY
OTIG TTPWTEIVEG QUTAG TNG OUCTADAG, UTTOPEI VA aTTOKAAUWEI KATTOIEG OOMIKEG ETTITITWOEIG TNG ATOMIKNG
TTUKVOTNTOG. H epapuoyr diapopeTikwyv peBddwy opadoTtroinang (k-means, hdbscan) kai n epapuoyn
OIAPOPETIKWYV OKTIVWV (5,&—7,&), evioxUel TNV oglommoTia TNG avAAuong Kal MEIWVEL TNV  OTToIx
TTPOKATAANWN OTNV EPUNVEIR TWV OTTOTEAECUATWV.

NEEEIG-KAEIDIG:

1. ATOMIKA TTUKVOTNTA
2. AOPEC TTPWTEIVWIV
3. Opadotroinon
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1. Introduction

1.1 Proteins: A prologue

Proteins are complex macromolecules that participate in many biological processes such as
enzyme catalysis, transport and immune responses '. Their wide functionality contributes to
them being a major research topic.

Proteins are made up of folded chains of amino acids (polypeptide chains), whose sequence
is determined by the sequence of the gene that encodes them (DNA sequence).

10 A

Figure 1.1: Kendrew’s model of the low-resolution structure of myoglobin shown in three
different views. Reproduced without permission from Carl lvar Branden & Tooze, J.
Introduction to Protein Structure.

The linear sequence of the amino acids is what is called the first structural level of proteins
and refers to the primary protein structure. The sequence of amino acids encompasses all
required information to lead the protein to a folded state 2. Each amino acid comes with a
general structure of an amino group, a carboxyl group and a side-chain R connected to the
central alpha-carbon (Ca), as shown in Figure 1.2a. Although more than 100 amino acids
occur in nature, only 20 of them are commonly found in most proteins.

Amino acids can be linked via a type of covalent bond, called peptide bond. This bond is
formed between the carbonyl carbon of the first amino acid and the nitrogen atom of the
second amino acid (Figure 1.2b). These bonds are mainly found in trans-conformation,
which prevents neighboring side chains from coming to a non-favorable thermodynamically
contact.
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Figure 1.2: (a) amino acid composition, (b) peptide bond between 2 amino acids.
Reproduced without permission from Carl lvar Branden & Tooze, J. Introduction to Protein
Structure.

Due to the side chains of amino acids having different chemical properties, amino acids can
be classified into four different groups, based on the polarity of the side chain. These groups
include the non-polar, the polar, the negative charged and the positive charged amino acids.
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Figure 1.3: Different amino acids groups. Reproduced without permission from
https://old-ib.bioninja.com.au/standard-level/topic-2-molecular-biology/24-proteins/amino-aci
ds.html

In addition to the first structural level of proteins, the next levels are the second, which refers
to the secondary structure and the third level, which refers to the tertiary structure.
Combination of different polypeptide chains may also lead to a fourth structural level. All the
4 hierarchy structural levels can be seen in Figure 1.4.
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Figure 1.4: The 4 structural levels of proteins. Reproduced without permission from Carl Ivar
Branden & Tooze, J. Introduction to Protein Structure.

1.2 Secondary Structure Elements

Secondary structure elements are stable conformational patterns that consist of various
shapes formed via hydrogen bonding between imine (NH) and carbonyl groups (C’=0).
These shapes include alpha helices, beta-pleated sheets and beta-turns. These elements,
when present, stabilize protein structures. Alpha helix, is the most abundant pattern, which is
characterized by the presence of 3.7 residues per turn, in right-handed direction. Another
common element is the b-sheet. It consists of b-strands, which are configurations of 3 to 10
residues °.

alpha helix beta sheet

Figure 1.5: Secondary structure elements. Created with BioRender.com.
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Elements of regular secondary structure, such as helices and sheets, not only are
extensively hydrogen-bonded but also are densely packed. Disulfide bridges not only impose
connectivity constraints on conformational motions, but, by forcing backbone segments
together, also increase the local atomic density *.

1.3 Packing in proteins

A general principle in structural biology is that protein structure affects protein function. Thus,
some factors affecting protein structure, like atomic packing, radius of gyration and amino
acid composition also affect protein function. Atomic packing has been recognized as an
important metric for characterizing protein structures since it was observed in 1974 that the
average packing density for the interior of proteins is approximately the same as that for
crystals of small organic molecules °.

Atomic packing is a metric of the proximity between protein's atoms. During protein folding a
polypeptide chain takes up a three-dimensional structure that is characterized by close
packing of atoms. This helps atoms interact with other atoms, developing secondary
structure elements that stabilize the structure. Most protein atoms therefore cannot be
displaced much without also displacing some of their nonbonded neighbors. However,
proteins are not uniformly packed across their structure. Localised defects in packing show
up as cavities and when present they can reduce the stability of the structure ®. The
distribution of voids (cavities) is also highly inhomogeneous across proteins *. Another fact is
that larger proteins tend to be packed more loosely than smaller proteins ’.

Several approaches have been tested to reveal the relationship between packing, structure
and function, such as the Voronoi procedure which has been used to assign a unique
volume to individual atoms 8. In this work, we compute atomic density distributions from a
sample of 21255 proteins, obtained from the Protein Data Bank (PDB). The centers of atoms
across the structure are assigned with the same sphere, which occurs from a standard
Angstrom radius. No correction is made for the part of the atom’s volume that is inside or
outside of each sphere.

A hypothetical sphere with a certain radius can be imagined surrounding the center of an
atom. Inside this sphere, other atoms may exist. If these atoms are counted and then divided
by the sphere's volume, the atomic density for this atom is calculated. If this procedure is
recursively performed for every atom in the structure an atomic density distribution is
created. Another approach to create this distribution is to count the atomic weights of the
atoms inside spheres. Each approach will be tested with 3 different radii: 5A, 6A, 7A
(Angstrom values), to test the effect of sphere radius in atomic density distributions.

1.4 Purpose of the present thesis

Work on atomic density has already been done in terms of contact density in a small sample
of proteins #. Our aim is to extend this application to a large sample and simulate the in-vitro



conditions by adding water molecules around the surface of structures. Identification of
outliers might reveal uncommon structures with an atomic density distribution deviating
significantly from the mean distribution. In addition, identification of clusters containing a
small number of structures might reveal structures with common elements or ligands. Our
aim is to identify a functional implication in these groups of structures too.
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2. Methods

Methods for collection, filtering, modification, processing and analysis of data are presented
in this section. This analysis is based on running computational scripts and programs from
the linux command line.

2.1 Linux operating system

Linux is a family of open-source Unix-like operating systems based on the Linux kernel, an
operating system kernel first released on September 17, 1991, by Linus Torvalds. Ubuntu is a
Linux distribution based on Debian and composed mostly of free and open-source software. All
computational scripts and analysis were performed in a Ubuntu 22.04 LTS operating system °.

2.2 Python programing language

Python ' is a high-level, interpreted and general-purpose programming language. Python
was invented in the late 1980s by Guido van Rossum at Centrum Wiskunde & Informatica (CWI)
in the Netherlands. All computational procedures from downloading PDB files to processing
them, were completed using Python version 3.10.12.

A

Figure 2.1: Python logo. Reproduced without permission from https://www.python.org/

2.3 R programming language

R is a free software environment for statistical computing and graphics. It compiles and runs on a
wide variety of UNIX platforms, Windows and MacOS ". The whole statistical analysis for this
diploma thesis was performed in R. This includes scaling distributions, visualization and
clustering. To help with analysis reproducibility, a Quarto document is created in Rstudio,
that works as a notebook. It executes specific code chunks that contain specific analysis
steps "2

Figure 2.2: R logo. Reproduced without permission from https://www.r-project.ora/

11


https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Centrum_Wiskunde_%26_Informatica
https://en.wikipedia.org/wiki/Netherlands
https://www.python.org/
https://www.r-project.org/

2.4 Protein Data Bank

The Protein Data Bank (PDB) is the single worldwide archive of structural data of biological
macromolecules. It was established at Brookhaven National Laboratories (BNL) in 1971 as
an archive for biological macromolecular crystal structures .

As of the time this thesis is written (24/06/2024), 221.371 experimentally-determined
structures have been deposited in PDB while there are also 1.068.577 structures available
derived from computer models predictions.

% ~Jp):--
PROTEIN DATA BANK

Figure 2.3: Protein Data Bank logo. Reproduced without permission from
https://www.rcsb.org/

2.5 PISCES culling server

PISCES server " was used to obtain a set of proteins (PDB entries) with diverse structural
and functional characteristics. A list of 22478 PDB files was returned. Thresholds for culling
the PDB are shown in table 2.1.

Table 2.1: Thresholds for culling the PDB through PISCES server.

Resolution 0.0-22
R-factor 0.25
Sequence length 40 - 10000
Sequence percentage identity <=50.0
X-ray entries Included
EM entries Excluded
NMR entries Excluded
Chains with chain breaks Included
Chains with disorder Included

2.6 File Transfer Protocol

A script for the FTP transfer of the PDB files was created (Appendix: ftp.py). This script
enabled the download of the structures the PISCES server returned. The protocol was built

12
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inside a Python script using the corresponding FTP class from the ftplib module. This
protocol will be phased out on November 1st 2024 for the PDB. The alternative option to
download files from PDB, is through wget.

The PISCES file was given as input to the ftp script, which saved the first 4 letters from lines
containing structure identifiers to a list. These letters (PDB ids) were given as input to the
function that retrieves files. Chain identifiers starting from letter 5 were not used, as the aim
was to obtain the whole protein and not a specific polypeptide chain.

The Biological Assembly (biounit format) of proteins was selected instead of the common
PDB format, as our analysis is focused on both structural and functional implications of
atomic density. To acquire such files a “.pdb1.gz” suffix was appended at the end of the
4-letters string. After acquisition and decompression of files locally, some of them were
removed, as they did not contain structure information. These files existed in suffixes other
than the “pdb1.gz” we provided, and were identified by executing the linux commands:

wc * | sort -n -kl

2.7 Protein Sample Handling

A cutoff for removal of structures with less than 50 aminoacids was applied. This was done
by counting alpha carbons (CA's) Another cutoff was applied for structures with more than
80.000 atoms.

In the “Solvate” section, the 2 final scripts used to handle the proteins’ sample are explained.
These scripts deal with renumbering residues and mutating “ATOM” to “HETATM” entries.
These are necessary format changes in order the solvate program can work properly.

2.8 Structures hydrogenation with OpenBabel

Most hydrogen atoms from crystallographic data are missing due to their very small electron
density. OpenBabel program ' was used to add missing hydrogen atoms to PDB files.

The program’s algorithm is based on a geometric approach, it does not perform any
simulation and thus completes the hydrogenation fast. Hydrogen atoms may not be placed in
their exact structural position, but this creates small or no error at all, as the density
algorithm is counting atoms inside spheres and is not affected by the validity of the hydrogen
coordinates. Presence or absence of specific atoms inside a sphere is what we examine
based on our program's implementation. Newly added hydrogen atoms are appended at the
end of PDB files. OpenBabel was executed through bash with the command:

for file in ./* ; do obabel ''$file'' -opdb -h > '"'$file''.h 2>
"'$file’''.error ; done

13



Except for the hydrogenated structure with “.h” suffix, another file with “.error” suffix is
created for each file that contains warnings and errors. Some of these files are examined
and a systematic "Failed to kekulize aromatic bonds” warning appears. This however, does
not affect the analysis, as molecules complete protonation successfully. Counting of this
warning’s string characters with word count command (wc), helps the identification of other
warnings by sorting and accessing larger warnings. This is done with:

wc *.error | sort -n -k1 | awk '{print substr( $4, 1, 4 )}’

63 files were seen to contain other warnings, which occured from element charges
information, but the protonation was completed successfully in all of them.

2.9 Structures hydration with solvate

Solvate program written by Helmut Grubmiiller and Volker Groll was used to perform
hydration of structures and create a sphere of water molecules around them. Thus,
simulation of the in-vitro conditions and removal of low atomic density values can be
achieved. The parameter -bulk prevented solvate from adding water molecules in buried
residues inside cavities. Bulk waters around the protein's surface were appended at the end
of PDB files with a “TIP” entry, in columns 17-20. Solvate can not parse files with a residue
integer identifier starting at 0, so we renumbered the PDB files. This was done with a script
from pdb-tools’ github page. Solvate also removes hydrogens added from OpenBabel to
crystallographic waters, so a mutation of their corresponding entries from “HETATM” to
“ATOM” was performed too (Appendix: mutate_pdb_formats.py). This mutation was the final
step before running the atomic density computational script, so it does not affect the
efficiency of programs used to handle PDB files. Solvate is recursively run with bash
command:

for line in ./* ; do solvate -bulk ${file} ${file}.water 2>
"$file".error ; done

2.10 Atomic density calculation algorithm

After sample preparation was completed, files were given as an input to a python script that
calculated the atomic density distribution of a structure. This script (Appendix: Z_parser.py),
in general, saved the x-y-z coordinates of atoms and calculated the euclidean distance
between every possible atoms’ combination. For an Angstrom radius R given as a constant,
the script calculated whether the distance between 2 atoms i and j was smaller than R and if
so, it counted the presence of atom j inside the sphere of atom i. This was calculated
recursively for every atom and the atomic spheres abundance distribution occurred. Then,
after division with the spheres’ volume the atomic density distribution was created. This
approach was based on counting only the presence or absence of atoms inside spheres
centralised in the center of each atom. These atoms were equally treated independently of

14
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their element type and atomic mass. Each atom contributed 1 point to the density
calculation, when inside a sphere.

The constant radius R ranged from 5.0 to 7.0 Angstrom with a step of 1.0. Greater values
(> 7A) approach the diameter of 4-alpha helical bundle proteins.

Some limitations were applied to the script, to reduce the level of error and the
computational time. The script saved the coordinates of all the atoms from a structure except
of the coordinates of solvent’s hydrogen atoms added by solvate. An estimation was made
that if the oxygen atom from the solvent was inside a sphere, then its corresponding 2
hydrogen atoms would be inside that sphere too. This reduced computational time, as the
abundance of these hydrogen atoms was about half of the whole structure’s atom
abundance, i.e. for every non-hydrogen solvent atom in a structure, another hydrogen
solvent atom exists.

In addition, some other limitations were applied. Atomic spheres were created only for atoms
of the protein structure itself and thus water molecules and ligands did not contribute with
their own atomic sphere creation. The same limitations were applied to atoms with atomic
mass smaller than 12 (atomic mass of carbon).

This approach, however, returned a systematic artifact in histogram creation, as the
abundance of atoms inside spheres can only be an integer and histogram bins are integers
too. Thus, in specific bin widths, histogram frequencies deviated significantly from the
expected value and the histogram was discontinuous with extreme outliers. To deal with this
artifact, the algorithm was modified to count the atomic mass of atoms inside spheres.

The algorithm for atomic density calculation based on atomic weight counts the atomic mass
of each element and not just the presence of it. Unknown atoms were assigned with the
average mass across all the atoms with an atomic mass greater than 12. Thus, the density is
now counted in Dalton per Angstrom values. After checking the resulting histogram data, the
artifact disappeared as expected.

2.11 Reduce computational time with Parallel

The 21255 PDB files that have to be parsed by the atomic density script, lead to a long
computational time of about 16 days for each radius. This stimulates the need for
procedures running in parallel. GNU parallel ® is a shell tool for executing jobs in parallel
using one or more computers. The 21255 files are equally split into 8 directories using bash
and the atomic density script is running simultaneously for the files in the 8 different
directories. This reduces computational time for each radius from 16 to 2 days. The bash
command for running parallel is:

parallel -u ::: dirl.sh dir2.sh dir3.sh ... dir8.sh

15
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Figure 2.4: GNU Parallel logo. Reproduced without permission from
https://www.gnu.org/software/parallel/

2.12 Scaling distributions

The next step, after obtaining the atomic density distribution for each structure, was the
creation of the raw data table (Appendix: scaling distributions.r). Distributions were
recursively scanned and the Freedman-Diaconis (FD) rule was applied to each one of them,
to find the optimal number of histogram bins. However, the maximum value returned from
the FD rule did not work well with small proteins in terms of scaling, so a reduction of the
number to 100 was performed. After acquiring the minimum and maximum values across all
atomic densities, it was possible to scale distributions in the same density limits and number
of bins and create the raw data for analysis. In this data table, every row corresponds to a
different structure and every column to a different bin. The first column contains PDB id
information. The format of this table is shown in table 2.2.

Table 2.2: Format of raw data table, with N*M dimensions. N equals to 21255 as the length
of the protein sample and M equals the maximum of the FD values (different for each
radius).

PDB id bin 1 bin 2 bin M

id 1 value 1,1 value 1,2 value 1,M
id 2 value 2,1 value 2,2 value 2,M
id N value N,1 value N,2 value N,M

2.13 Scatter plots

Raw data were visualized with scatter plots (Appendix: scatter_plot.r), to gain insight on how
data is distributed. In the same plot, mean values for each bin plus standard deviations for
bins with a specific step were visuzalised too. Distribution of some outlier proteins was
added to the plot too.

2.14 Distance matrix

A distance matrix was created by calculating the euclidean distance between distributions
from the raw data. Algorithms for this calculation are already implemented like numpy’s
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“linalg.norm” method (Appendix: distance_matrix.py). Distance matrix was given as an input
to the hierarchical clustering algorithm (Appendix: hierarchical_clustering.r) and to the
heatmap function (Appendix: heatmap.r). By calculating the sum of each row from this
matrix, protein outliers were found too. These proteins were then removed from the distance
matrix to better distinguish color scale alterations in heat-maps. To compare cross-radius
heatmaps, the maximum of distance values across every distance matrix was applied at the
matrix 0,0 position.

2.15 Plot program for data visualization

Plot is a command line program, created for Linux and Mac operating systems by Nicholas
M. Glykos ". Plot can do simple x-y plots, overlay two x-y plots, draw histograms, create
scatter plots and much more. Plot was used to create heat maps from distance matrices and
for the comparison of 2 distance matrices with a Pearson correlation as an output. Plot’s
contribution in matrix comparison is explained in the “Clustering algorithms” section.
Heat-maps were created using plot with the “-cc” flag:

plot -cc < distance.matrix

2.16 Clustering algorithms

3 different clustering methods were used to group proteins with similar atomic density
distributions: hierarchical, kmeans and hdbscan.

Hierarchical clustering algorithms take a distance matrix as an input and create a
dendrogram that reveals hierarchical relationships between objects. After creating a
dendrogram with the “complete” hierarchical method for each radius and extracting the
clusters, a cross-radius comparison revealed the level of alteration in the composition of
clusters in different radius. A Pearson correlation coefficient, indicated whether different
distance matrices were highly correlated or not, going from one radius to another. This was
achieved using plot in combination with linux commands:

fmt -1 dis.mat.1 > t1 ; fmt -1 dis.mat.2 > t2 ; paste t1 t2 | plot

K-Means clustering was applied directly to the raw data. This algorithm supports a built-in
dimension reduction based on PCA. However because of the complexity of the data and
many outlier distributions present, kmeans did not manage to identify most of the outliers in
2 dimensions. Thus, we used PCA's first 3 Principal components as an alternative to identify
outliers. Systematic removal of them and application of PCA from scratch was performed
until all far distinct outliers were removed. This was done for plot preparation purposes
(outliers were not removed from the analysis).

HDBSCAN clustering was used to validate results from the other clustering methods and to
cluster uncommon structures with similar distributions as an alternative method too.
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2.17 Pymol for protein structure visualization

Pymol is a molecular graphics program built with the Python programming language. It
supports many features such as mutations and atom-atom distance counting. In this
analysis, Pymol was used to examine the structure of outlier proteins and gain knowledge on
why their distribution is uncommon compared to the rest sample. Figures with structures
across this document are created from this software.
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3. Results

3.1 Raw data visualization and clustering

Raw data were visualized with scatter plots and heatmaps. The scatter plots (Figure 3.1)
overlay the values of specific bins across all distributions. Bins numeric ids are converted to
atomic density values. Scatter plots show that certain distributions deviate significantly from
the mean distribution (colored in black). This arises from the fact that several data points are
significantly distant from the mean, by more than 3o (three sigmas). This can be seen even
more clearly by comparing the distributions of outlier structures (colored in cyan and salmon)
with the mean distribution.

Heatmaps show that some distributions shift to higher and some others to lower values of
atomic density (Figure 3.2a, 3.2b, 3.2c). This can also be depicted in the corresponding
clusters that appear on the left side of the heatmaps. A subset of the raw data was selected
for plotting to remove the zero frequencies that appear on the left and right side. This
subsetting of the data also affects the clustering algorithm, so a separate hierarchical
clustering was performed to the full set of the raw data.

P
-
=]

.
=3

2ne 2ne

frequency of spheres
frequency of spheres

Daltons per 104 Daltons per 10A Daltons per 10A

Figure 3.1: Scatter plots of the raw data from 3 different radii. From left to right is the 5A, the
6A and the 7A radius. Some outlier distributions are also plotted.

It can be seen that the increase of the radius from 5A to 7A narrows the edges of the
distribution (more spheres appear in the middle) and standard deviation values increase too.
In addition, a 'chi-by-eye' inspection shows that the scatter plot of 6A is closer to the shape
of the normal (gaussian) distribution.

Heatmaps are depicted in a 3-color code, with low, medium and high values (also appearing
in the legends in the top right corner). The 5A radius appears with some noise, while the 7A
radius has outliers that are difficult to distinguish. The 6A radius seems ideal for the analysis
as it balances between the previous observations. This comes in alignment to the scatter
plots visualizations too.
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Figure 3.2c¢: Heatmap of the raw data from 7A radius.
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Distance matrices were created for each different radius and visualized with heatmaps too.
These matrices were also given as an input to hierarchical clustering algorithms. Distance
matrices (only for the heatmap visualization) were scaled to the same maximum value
placed at the point 0.0 of each matrix. The plot program has a color scale code, ranging from
blue for small distances to red for big distances. The minimum distance across all different
matrices is the same, equaling 0 (occurs from self to self comparisons). The maximum
distance however is different and thus we applied the maximum value across all matrices at
the point 0.0 of each matrix. This way, the red color of the plot corresponded to this value
and a cross-radius color scaling was achieved. This enabled a cross-radius comparison of
the results (Figure 3.3), as we were able to observe comparable changes in distances
between different radii. The 7A radius heatmap reveals distributions with similar distances,
which is not the case for 5A and 6A radii.

Distance matrices were also compared by converting the matrix to a single column and then
calculating a pearson correlation for each pairwise radius combination. The 5A-6A
comparison returned a value of +0.86346943, the 6A-7A comparison returned +0.92953539
and the 5A-7A returned +0.75881490. As expected, the 5A-7A comparison is the least
correlated. However, the other comparisons indicate that distance matrices have similar
distances between distributions and may produce similar clusters too.

Figure 3.3: Heatmaps of the distance matrices.
From left to right is the 5A, the 6A and the 7A radius.

Existence of outliers did not allow the color code to better visualize the differences between
structures. The top 100 most distanced structures were removed from the raw data (only for
the plot creation, they remained in the analysis data) and a new distance matrix was created
for each radius (Figure 3.4).

21



Figure 3.4: Heatmaps of distance matrices after removal of 100 outliers.
From left to right is the 5A, the 6A and the 7A radius.

It can be seen that groups of proteins can be easily identified in the 7A radius, while the 5A
radius still contains the most outliers, preventing homogenous grouping between structures.
Hierarchical clustering (Figure 3.5) supports this, as 7A is the radius that creates 2 evenly
distributed clusters. From what has been observed until now 6A seems to be the most
appropriate radius for our analysis. However identification of outliers will be performed in all
of the 3 different radii.

|

Figure 3.5: Hierarchical clustering of the distance matrices. From left to right is the 5A, the
6A and the 7A radius. Different colors correspond to different clusters for a k=4 parameter (4
clusters in each dendrogram).

Distinct clusters with only a few structures inside them, appear in each radius and contain
the structures of interest. Extraction of structures from these clusters, followed by
cross-method and cross-radii validation, will return unbiased outlier structures.

Principal Components Analysis (PCA) was performed in the raw data of the 6A radius. A 3D
plot of the first 3 components was returned (Figure 3.6). This plot, showed that the existence
of outliers, compresses the majority of structures in a small portion of the space. Thus, 318
outliers (signal) were removed (only for the plot creation) and PCA was performed again,
until uniform noise in the 2D plots was achieved.
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Figure 3.6: Principal Components Analysis (PCA) of the raw data for 6A radius before (left)
and after (right) removal of signal from outliers.

Pairwise plots of the first 3 principal components were also created (Figure 3.7)

PC2

Figure 3.7: Pairwise plots of the first 3 principal components. (left) PC1 with PC2. (middle)
PC1 with PC3. (right) PC2 with PC3.

3.2 Structures Examination

The intersection of outliers from the sum of euclidean distances in the distance matrix,
hierarchical clustering and Principal Components Analysis returned 67 structures.
HDBSCAN results were analyzed separately as the algorithm was executed 4 times with a
different number of minimum points (2-5) to produce more clusters of interest.

6 of the 67 structures were cytochromes c in complex with heme. Heme is a ligand with 616

Da average mass. The large mass of heme contributes to higher values of atomic density
and shifts distributions to the right compared to the mean distribution, as seen in Figure 3.8.
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Figure 3.8: Distributions of outlier structures with cytochrome function, compared to the
mean distribution colored in black.

Cytochromes form a diverse group of proteins with only a few features in common. They all
contain protoheme IX or one of its derivatives and function in electron transport. They are
found in nearly all forms of life .

Cytochromes ¢ are a class of small, ubiquitously distributed heme proteins that include
eukaryotic mitochondrial cytochrome ¢, the bacterial photosynthetic cytochromes C2, and
several others of prokaryotic origin ' 2. Cytochrome c¢ is important for oxidative
phosphorylation in mitochondria, where it assists with production of life-sustaining ATP by
participating in electron transport. The three-dimensional native structure of this protein
consists of a compact core around the heme moiety 2'. The heme group in cytochrome c is
not only the redox center of the protein, but is also critical for maintaining the native
structure: its removal causes disruption of the native fold and loss of most of the secondary
structure.

Porphyrin-cytochrome ¢ appears to have a compact structure similar to native cytochrome c,
although it is less stable to heat denaturation. It appears that the coordination of the iron
atom of the heme results in an increase in the stability of this protein, but is not required for
the folding into a compact conformation .

The shift of the atomic density distributions of cytochromes to the right comes in agreement
to the fact that heme stabilizes the structure. The cytochromes examined are small proteins
and thus presence of heme increases the stability of the monomer. The corresponding
structures can be seen in Figure 3.9a. 3.9b, 3.9c.
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Figure 3.9a: Structure of a cytochrome in complex with heme (PDB id: 1j0Op)

Figure 3.9b: Structure of a cytochrome protein in complex with heme (PDB id: 1m1q)

Figure 3.9c: Structure of a cytochrome protein in complex with heme (PDB id: 1up9)
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Another group of outlier proteins with similarity in structure and function is the
light-harvesting protein group. These structures are complexes with chlorophyll.
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Figure 3.10: Distributions of outlier structures with light-harvesting function, compared to the
mean distribution colored in black.

Photosynthetic organisms contain light-harvesting antenna systems to gather light energy
required for driving photochemical reactions to initiate a series of charge separation and
electron transfer reactions 2. Many naturally occurring light-harvesting pigment-protein
complexes use chlorophyll (Chl) to collect incoming photons . The close packing in the
structures, as seen in Figure 3.10 helps the energy transfer between chlorophylls 2° %,

Figure 3.11a: Structure of a light-harvesting protein (PDB id: 1nkz)
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Figure 3.11b: Structure of a light-harvesting protein (PDB id: 3iis)

Figure 3.11c: Structure of a light-harvesting protein (PDB id: 6a2w)
Regarding the HDBSCAN algorithm, 2 clusters each containing 3 structures were returned,
one from the minimum points set to 2 and one from the minimum points set to 3 parameter.

The first cluster contains structures that function as storage for copper.
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Figure 3.12: Distributions of outlier structures with copper storage function, compared to the
mean distribution colored in black.

With these copper storage (Csps) proteins bacteria can maintain appreciable amounts of
intracellular copper to prevent toxicity 27 % 2°. Compared to previous distributions already
examined, this cluster has certain atoms in very high density values. This is due to copper’s
high atomic mass of 63 Da. This seems to be a unique characteristic of copper-storage
proteins, as the overall distribution does not shift to the right too. The corresponding
structures can be seen in Figure 3.13a, 3.13b, 3.13c.

Figure 3.13a: Structure of a copper storage protein (PDB id: 5nqo)
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Figure 3.13c: Structure of a copper storage protein (PDB id: 6zif)

The last cluster to be examined, also derived from HDBSCAN but with minimum points set to
3, is a cluster of ferritin proteins.
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Figure 3.14: Distributions of outlier structures with ferritin-like function, compared to the
mean distribution colored in black.

By examining the distributions, certain atoms with very low values of atomic density can be
observed. The distributions do not shift to any side like the distributions from the
copper-storage proteins too.

Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding
bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). Ferritin-like
molecules function by oxidizing Fe?* using O, and H,0, as electron acceptors and internalize
the resultant Fe** in the form of a mineral.

When environmental iron concentrations are low, Fe3* stored in ferritin-like molecules is

mobilized for its incorporation in metabolism, which is why ferritin-like molecules act as
dynamic regulators of cytosolic iron concentrations *°.

The corresponding structures can be seen in Figure 3.15a, 3.15b, 1.15c. Their ball-like
structures with an empty internal space is responsible for the low atomic density values.
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Figure 3.15c: Structure of a ferritin-like protein (PDB id: 3uoi)
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4. Discussion

Ouir first approach for calculating atomic density distributions, failed to generate good quality
data, as artifacts appeared in the scatter plots.

Our final approach that dealt with the atomic masses of the corresponding atoms, eliminated
these artifacts. However, even after the addition of hydrogens to structures, distributions still
had 2 peaks, one in the small and one in the big density values areas. We removed the low
density values that were produced from atoms in the surface of the structures with the
addition of water molecules around them and the creation of a solvation shell.

Comparison of different radius cutoffs (5A, 6A, 7A), showed that 6A returns quality clusters
without failing to identify outlier structures, compared to the other radii that did not manage to
maintain both attributes.

Our final approach for calculating atomic density distributions in proteins seems to reveal
some special structural patterns. In the case of copper-storage proteins, a unique type of
distribution was revealed and thus these structures were clustered in the same group. The
same thing happened for bacterioferritin proteins that had a unique distribution too.

From the final selection of 67 outliers, we managed to group some proteins manually after
examination of them with molecular graphics. Groups of interest that eventually came up
with similar distributions were created. Some of them were presented in the results section.

Regarding the algorithms used, hierarchical clustering did not provide clusters with a small
number of structures (the smallest one had 103 structures in 6A radius). Thus, we benefit
from the algorithm only with information regarding outliers.

Principal Components Analysis was sensitive to the wide range of outlier distributions, but
helped us identify extreme outliers both in 2D and in 3D space.

A promising algorithm, that provided small clusters of interest, is the HDBSCAN algorithm.
From this algorithm, we managed to identify 2 clusters of proteins with similar structure and
function. It seems a promising tool to further examine small clusters in our analysis.

Small clusters and most of the outliers returned, were protein complexes with some ligands.
Ligands, because of their excessive molecular mass, seem to play a primary role in
obtaining structural information from the atomic density distributions.

Overall, atomic density is a promising metric that might help in the prediction of missing
ligands or protein functionality. Examination of structures from non-outliers clusters and use
of Gene Ontology (GO) terms, will advance our findings and provide a quantitative
correlation between atomic density and protein functionality.
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Appendix

ftp.py
#tpython ftp module
import ftplib

import sys

#connect to : ww.pdb.org

try:

ftp = ftplib.FTP("ftp.wwpdb.org")
except:

print('Unable to connect \n")
finally:

print('Connection established \n')
#log in
try:

ftp.login("anonymous", "password")
except:

print('Unable to log in \n')
finally:

print('Logged in Successful \n')

#tchange directory

try:

ftp.cwd('/pub/pdb/data/biounit/coordinates/all")
except:

print('Cannot access : /pub/pdb/data/biounit/coordinates/all \n')
finally:

print('Current directory : /pub/pdb/data/biounit/coordinates/all \n')

pdb_code list = []
with open(sys.argv[1l], 'r') as file:
for line in file:
list = line.split()
first _column = list[9]
if len(first_column) ==
pdb_code = line[:4]
pdb_code_list.append(pdb_code.lower())

for i in range( @ , len(pdb_code_list) , 1 ):
filename = pdb_code_list[i] + '.pdbl.gz'

try:
ftp.retrbinary("RETR " + filename ,open(filename, 'wb').write)
except:
print('failed to download : ' , filename )
finally:
print('Successful download of : ' , filename )
try:
ftp.quit()
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except:

print('Unable to Disconnect from : wwpdb.org')
finally:

print('Disconnected from : wwpdb.org')

mutate pdb_formats.py

# script that converts HETATM records from crystallographic water to ATOM records
import sys

try:
with open(sys.argv[1l], 'r') as file:
for line in file:

if line.startswith('ATOM'):
if line[16] == 'A' or line[16] == " '
print(line[:-17)

elif line.startswith("HETATM"):
residue = line[17:20]
if residue == "HOH":
atom_number = line[6:13]
print("ATOM ", atom_number, line[14:-1])

else:
print(line[:-1])

except:
print("error in mutating")

Z _parser.py

import sys
import math

# define a dictionary with elements and their corresponding atomic mass
atomic_mass_dictionary = {

"H": {"mass": 1.00797},
"D": "mass": 2.014},
"HE": {"mass": 4.00260},
"LI": "mass": 6.941},

"BE": {"mass": 9.01218},
B": "mass": 10.81},

c": {"mass": 12.011},
"N": "mass": 14.0067},
0": {"mass": 15.9994},
F": "mass": 18.998403},

36



"NE":
"NA":
"MG":
"AL":
"SI":

npr.
ng .

meLT

g

"AR":
"CA":
"sc":
"TI":

e

"CR":
"MN":
"FE":
“NI":
"Co":
"cut:
"ZN":
"GA":
"GE":
"AS":
"SE":
"BR":
"KR":
"RB":
"SR":

"y

"ZR":
"NB":
"MO":
"TC":
"RU":
"RH":
"PD":
"AG":
"CD":
"IN":
"SN":
"SB":

nyve

"TE":
"XE":
"CSs":
"BA":
"LA":
"CE":
"PR":
"ND":
"PM" :
"SM":
"EU":
"GD":
"TB":

{"mass":
"mass":
{"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
{"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":
"mass":

20.
22.
24.
26.
28
30.
32.
35
39
39
40.
a4.
47
50.
51
54,
55
58.
58.
63.
65.
69
72.
74
78.
79
83
85
87.
88.
91.
92
95
98}
101
102
106

107.

112

114.
118.
121.
126.
127.
131.
132.
137.
138.
140.
140.
144.

145
150
151
157
158

179},
98977},
305},
98154},

.0855},

97376},
06},

.453},
.0983},
.948},

08},
9559},

.90},

9415},

.996},

9380},

.847},

79};
9332},
546},
38},

.72},

59},

.9216},

96},

.904},
.80},
.4678},

62},
9059},
22},

.9064},
.94},

)

.07},
.9055},
'4}J
868},
.41},
82},
69},
75},
9045},
60},
30},
9054},
33},
9055},
123,
9077},
24},
¥

.4},
.96},
.25},
.9254},

37



"DY": {"mass": 162.50},
"HO": "mass": 164.9304},
"ER": {"mass": 167.26},
"TM": "mass": 168.9342},
"YB": "mass": 173.04},
"LU": "mass": 174.967},
"HF": "mass": 178.49},
"TA": "mass": 180.9479},
"W "mass": 183.85},
"RE": "mass": 186.207},
"0S": "mass": 190.2},
"IR": "mass": 192.22},
"PT": "mass": 195.09},
"AU": "mass": 196.9665},
"HG": "mass": 200.59},
"TL": "mass": 204.37},
"PB": "mass": 207.2},
"BI": "mass": 208.9804},
"PO": {"mass": 209},
"AT": "mass": 210},
"RN": {"mass": 222},
"FR": "mass": 223},
"RA": {"mass": 226.0254},
"AC": "mass": 227.0278},
"PA": {"mass": 231.0359},
"TH": "mass": 232.0381},
"NP": {"mass": 237.0482},
"u" "mass": 238.029},
"PU": {"mass": 242},
"AM": "mass": 243},
"BK": {"mass": 247},
"CM": "mass": 247},
"NO": {"mass": 250},
"CF": "mass": 251},
"ES": {"mass": 252},
"HS": "mass": 255},
"MT": {"mass": 256},
"FM": "mass": 257},

"MD" : "mass": 258},
"LR": "mass": 260},
"RF": "mass": 261},
"BH": "mass": 262},
"DB": "mass": 262},
"SG": "mass": 263},
"UUN": {"mass": 269},
"Uuu": {"mass": 272},
"UUB": {"mass": 277},

X" "mass": 13.53277},
xR "mass": 13.53277},

"TIP": "mass": 18},

"HOH 0": "mass": 15.9994},
"HOH H": "mass": 1.00797},



"DNA P": {"mass":

"DNA 0": {"mass":
"DNA C": {"mass":
"DNA N": {"mass":

"DNA H": {"mass":

#create an empty list to
atom_type = []

#create an empty list to

x =[]
#create an empty list to
y =[]

#create an empty list to

z =[]

#create an empty list to
element_type = []

30.97376},
15.9994},
12.011},
14.0067},
1.00797}

store atom type

store x coordinates
store y coordinates

store z coordinates

store element types

#identify errors in parsing the PDB

try:

#opens a pdb file given as 1st command line parameter
with open(sys.argv[1l], 'r') as file:

#for every line

for line in file:

if( ( line.startswith("ATOM") or
line.startswith("HETATM") ) and

( 1line[13:21] != 'H1 TIP3') and

( line[13:21] != 'H2 TIP3') ):
#creates a variable from the
atom = line[0:3]

#tappends it to a list
atom_type.append(atom)

#tcreates a variable from the
coord_x = line[30:38]

X.append(float(coord x))

#tcreates a variable from the
coord_y = line[38:46]

y.append(float(coord_y))

#tcreates a variable from the
coord _z = line[46:54]

z.append(float(coord_z))
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#creates a variable from the column of the element type
element_id = 1ine[76:78]

#icreates a variable from the column of residue/solvent type
residue = line[17:20]

#if TIP water molecule defined in residue columns
if residue == "TIP":
element_type.append("TIP")

#if crystallographic oxygen from water molecule

elif residue == "HOH" and element_id == " 0":
element_type.append("HOH 0")

#if crystallohraphic/obabel hydrogen from water molecule

elif residue == "HOH" and element_id == " H":
element_type.append("HOH H")

# for DNA molecules
elif (residue == "DA "):

element_type.append("DNA " + element_id[1].upper())

elif (residue == "DT "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "DG "):

element_type.append("DNA " + element_id[1].upper())

elif (residue == "DC "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "DU "):

element_type.append("DNA " + element_id[1].upper())

elif (residue == "DI "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "I "):

element_type.append("DNA " + element_id[1].upper())

elif (residue == "A "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "U "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "C "):
element_type.append("DNA " + element_id[1].upper())

elif (residue == "G "):

element_type.append("DNA " + element_id[1].upper())
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elif (residue == "N "):
element_type.append("DNA " + element_id[1].upper())

#if non-water element defined in 1 char in element column

elif (element_id[@] == " '):
element_type.append(element_id[1].upper())

#if non-water non-DNA element defined in 2 chars

elif (element_id[@] != " "):
element_type.append(element_id[@:2].upper())

except:
print('error in parsing')

#identify errors in density calculations

try:
#creates an empty list to store all atomic weights
atomic_weight_dist = []

#radius in which we calculate weighting density
#given as 2nd command line parameter
radius = float( sys.argv[2] )

#creates a loop with range as the counted atoms
#which is the same as the counted x coordinates that we use
for i in range(len(atom_type)):

if( (atom_type[i] !'= "HET") and
(element_type[i][©:3] != "HOH") and
(element_type[i] != "TIP") and
(element_type[i][©:3] != "DNA") and

(atomic_mass_dictionary[element_type[i]]["mass"] > 12) ):

#set count variable to @ for the current atom i
count = 0

#creates a loop to compare every atom i with every other j
for j in range(len(atom_type)):

#tcounts the distance between atom i and atom j
distance = ( math.sqrt((( x[i] - x[j] ) *
( x[i] - x[3])) +
(Cy[i] - y[31 ) *
( y[il - y[31)) +
(C z[i] - z[3] ) *
( z[i] - z[31)) ) )

#call the corresponding element id from its list
element_id = element_type[j]

#if distance is smaller than given radius
if distance < radius:

#return the corresponding atomic mass
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Z_weight = atomic_mass_dictionary[element_id]["mass"]

#sum the atomic number for the current atom
count += Z_weight

#add the sum of atomic numbers of current atom to a list
atomic_weight_dist.append(count)

#calculate the volume of the sphere we want to calculate atomic density
#based on the radius we gave as parameter
volume = ((4*math.pi*radius*radius*radius)/(3))

#create an empty list to store all densities
density_dist=[]

#for every item in atomic weights list
for i in atomic_weight_dist:

#tcalculate its corresponding density by dividing with sphere volume
atom_density = ( i / volume )
#add the calculated density to a list
density_dist.append(atom_density)

#print the list

for density in density dist:

print(density)

except:
print('error in calculating distance')

scaling distributions.r

Z_5A = "~/R_pipeline/5A/5A"

Z 6A

"~/R_pipeline/6A/6A"

Z_7A = "~/R_pipeline/7A/7A"
# get a vector with all distribution file names
distributions_files = c(
list.files(path = Z_5A,
recursive = TRUE,
pattern = ".dist$",
full.names = TRUE) ,

list.files(path = Z_6A,
recursive = TRUE,
pattern = ".dist$",
full.names = TRUE) ,
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list.files(path = Z_7A,
recursive = TRUE,
pattern = ".dist$",
full.names = TRUE) )

# create empty vector to store all optimal bins
all bins = c()

min_values = c()

max_values = c()

# iterate through every distribution file
for (file in distributions_files)
{

# read distribution file

distribution = scan( file=file , quiet=T)

# find minimum distribution value
dist_min = min(distribution)

# append to vector

min_values = append(min_values, dist_min)

# find maximum distribution value
dist_max = max(distribution)

# append to vector

max_values = append(max_values, dist_max)

# hist function to gain histogram

hist = hist(distribution, breaks = "FD" , plot=FALSE )

# frequencies/bin ==> counts, so length equals the number of bins
bins = length(hist$counts)

# append to vector

all bins = append(all_bins, bins)

# find maximum value of optimal bins
max(all_bins)

hist(all_bins)

bins = 100

min_density = min(min_values)
max_density = max(max_values)

# calculate bin width

bin_width = ( (max_density - min_density ) / bins )

# calculate custom breaks

breaks = seq( min_density , max_density , by=bin_width)

# set working directory
setwd("~/R_pipeline/7A/7A™)

distributions files = list.files(path = ".",
recursive = TRUE,

pattern = ".dist$",
full.names = TRUE)
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# dataframe to store bin frequencies from all distributions
raw_data = data.frame()

# iterate every file
for (file in distributions_files)
{
# read distribution file
distribution = scan( file=file , quiet=TRUE)
# number of atoms
atoms = length(distribution)

# compute bin frequencies
bin_frequencies = as.data.frame( table( cut( distribution,
breaks=breaks,
right=TRUE,
include.lowest = TRUE,
dig.lab = min(nchar(breaks) )

) ) )

# scale bin frequencies

scaled_bin_frequencies = bin_frequencies[,2]/atoms
# bind to dataframe

raw_data = rbind(raw_data,scaled_bin_frequencies)

# Check scaling outcome by calculating area
# under every histogram (must be equal to 1)
histograms_areas = rowSums( raw_data )

# creation of a vector with pdb ids
PDBs = c()
for (i in distributions_files){
PDBs = append(PDBs, substr(i,3,6) )
¥
# we now pass this vector as first column in the dataset
raw_data = cbind( PDBs , raw_data )

# We also create column integer identifiers
# to name our columns appropriately
columns = c("PDB_id")
for (i in 1:bins){
columns = append( columns , i)

}

colnames(raw_data) = columns

setwd("~/R_pipeline/7A")
write.table(raw_data , file="raw_data_7A")
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scatter _plot.r

setwd("~/R_pipeline/5A")
raw_data = read.table("raw_data_5A")
dim(raw_data)

# subset bins for scatter plot
raw_data_subset = cbind( "PDB_id" = raw_data[,1] , raw_data[,11:51] )
dim(raw_data_subset)

# first we have to melt our dataframe
library(reshape2)
melt_raw_data = reshape2::melt( raw_data_subset , id.var = "PDB_id")

# compute mean and standard deviation of each bin and combine them to dataframe
library(dplyr)
melt _raw_data = melt_raw_data %>%

group_by(variable) %>%

mutate(mean = mean(value), sd = sd(value)) %>%

as.data.frame()

# add this loop to eliminate the values of some standard deviation
for(i in 1:(ncol(raw_data)-1) )

{
if( (1%%5) !=0)
{
melt_raw_data$sd[melt_raw_data$variable == paste("X",i,sep=""')] = NA
melt_raw_data$mean[melt_raw_data$variable == paste("X",i,sep="")] = NA
}
}
melt_raw_data$sd[melt_raw_data$variable == "X15"] = NA
melt _raw_data$mean[melt_raw_data$variable == "X15"] = NA
melt _raw_data$sd[melt raw_data$variable == "X20"] = NA
melt_raw_data$mean[melt_raw_data$variable == "X20"] = NA
melt_raw_data$sd[melt_raw_data$variable == "X40"] = NA
melt_raw_data$mean[melt_raw_data$variable == "X40"] = NA
melt _raw_data$sd[melt raw_data$variable == "X45"] = NA
melt_raw_data$mean[melt_raw_data$variable == "X45"] = NA

# for 7A only
#tmelt raw_data$sd[melt raw_data$variable == "X35"] = NA
#melt_raw_data$mean[melt_raw_datag$variable == "X35"] = NA

# scatter_bins will be replaced by scatter_breaks in the scatter plot

scatter_bins = c(1,11,21,31,41)

scatter_breaks = 10*( round( c(breaks[11], breaks[21], breaks[31],
breaks[41], breaks[51] ) ,2 ) )

# we may want to plot some protein-outliers, separately with line plots
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outliers = c("1miq","2pne")

# identify rows in which there is outliers data
outliers_int_id = which(melt_raw_data$PDB_id %in% outliers)
# store outliers data in another dataframe

outliers_data = melt_raw_data[outliers_int_id, ]

# plot
library(ggplot2)

g = ggplot(melt_raw_data, aes(x=as.numeric(variable) ) )+
geom_point( aes( y=value ), color="lightgrey", size=1.5 )+
geom_line( aes(y=value, color=PDB_id),

data=outliers_data , size=0.3)+

geom_errorbar( aes(ymin=mean-sd , ymax=mean+sd),
color="black" , size=.2)+
stat_summary(fun="mean" , geom="line" , aes(y=value) , size=0.5)+

theme(axis.text.x=element_text(size=12),axis.title.x=element_text(size=8))+
theme(axis.text.y=element_text(size=11),axis.title.y=element_text(size=12))+

theme_classic()+

scale_x_continuous( breaks=scatter_bins,
labels=scatter_breaks )+

scale_y continuous( breaks=c(0.00, 0.04,
0.08, ©.12, 0.16, 0.20, 0.24),
limits=c(0,0.24))+

labs( y="frequency of spheres" ,
x=expression(paste("Daltons per 10",

ring(A)"3 ) ) )

distance_matrix.py

import numpy as np
from contextlib import redirect_stdout

numpy_file = np.loadtxt("./7A/raw_data_7A",
usecols=sorted(set(range(2,102))),
skiprows=1 )
with open('distance.matrix', 'w') as output:
with redirect_stdout(output):
for array_a in numpy_file:
for array_b in numpy_file:
dist = np.linalg.norm( array_a - array_b )
print('%.5f" % dist , end="\t")

print('")
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heatmap.r

library(RColorBrewer)

setwd("~/R_pipeline/7A")
raw_data = read.table("raw_data_7A", header = T)

PDBs = c(raw_data[,1])

heatmap(as.matrix(raw_data[,18:46]),

Colv = NA,
labRow = NA,
labCol = NA,

keep.dendro=TRUE,
col = colorRampPalette(brewer.pal(8,"Blues"))(3))

legend(x="topright", legend = c("low", "medium", "high"),
fill=colorRampPalette(brewer.pal(8, "Blues"))(3))

hierarchical_clustering.r

library(ggplot2)
library(ggdendro)
library(dendextend)
library(dplyr)

# get the PDB names
setwd("~/R_pipeline/7A/7A")

distributions_files = list.files(path = ".",
recursive = TRUE,
pattern = ".dist$",

full.names = TRUE)
PDBs = c()

for (i in distributions_files){
PDBs = append(PDBs, substr(i,3,6) )

setwd("~/R_pipeline/5A")
# Load the distance matrix
distance_matrix = matrix(scan("./distance.matrix.5A",

n = 21255%21255), 21255, 21255, byrow = TRUE)

# Convert the data into a distance matrix format and perform clustering
hc = hclust( as.dist(distance_matrix) , method = "complete")
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# extract clusters

clusters = cutree( hc, k = 4)

clusters_df = as.data.frame(clusters)

rownames( clusters_df ) = PDBs

clusters_df %>% count(clusters)

write.table( clusters_df , file="./hierarchical_clusters_df")

dend <- as.dendrogram(hc) %>%
set("branches_k_color", k = 4)

ggdl <- as.ggdend(dend)

ggplot(ggdl$segments) +
geom_segment(aes(x = x, y =y, xend = xend, yend = yend, col=col))+
1abs( y=llll R X=llll )+

theme_classic()
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