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Abstract

In the presence of L-Arginine, AhrC —the Arginine-dependent Repressor/Ac-

tivator from Bacillus subtilis— represses the transcription of the genes encod-

ing the anabolic and activates those encoding the catabolic enzymes of arginine

metabolism. AhrC is a homohexamer of total molecular mass 105 kDa. It shows

no homology to any of the characterised DNA-binding motifs or DNA-binding

proteins with the exception of ArgR, the Arginine Repressor from Escherichia

coli. ArgR does not act as a transcription activator but it has been shown

to be a necessary accessory protein for the resolution —through site-specific

recombination— of multimers of the ColE1 plasmid. Although the two proteins

share only 29% identity and are from such taxonomically distinct prokaryotes,

AhrC can complement E. coli ArgR− strains both in the regulation of Arginine

metabolism and the resolution of the ColE1 plasmid.

This thesis describes our attempts to determine the crystal structure of AhrC.

Three different crystal forms have been produced and characterised. Useful

derivatives have been prepared for two of these forms but the determination

of their heavy atom structures proved impossible. An attempt to determine the

low resolution structure of AhrC using Electron Microscopy has been unsuccess-

ful. Molecular Replacement using as a search model the crystal structure of the

hexameric core fragment of ArgR also failed to give a convincing solution.
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166



Page xv

Figure 6.6 CCD image of the [001] projection recorded at ∆f ≈

640 nm.

166

Figure 6.7 (A) Modulus of the Fourier transform of an image of

the [001] projection, and, (B) The phases (in degrees)

and amplitudes (arbitrary units) of all observed reflec-

tions.

167

Figure 6.8 Results from the origin search using the 11 strongest

hk0 reflections. Contours every 0.5σ with first contour

at 0.5σ above the mean (45◦).

168

Figure 6.9 (A) and (B) : The [001] projection at 25Å resolution us-
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Chapter 1

Introduction

Life is evolution and evolution is heritable changes of information. There are two

sources of information in biological systems : information encoded in their ge-

netic material and information contained in pre-existing structures. It is the study

of this former source that has led to the explosive growth of Biology in recent

years. Nucleic acids —at least as we know them today— are chemically rather

inert molecules (catalytic RNA excluded). Each and every step in their life cy-

cle involves interactions with other macromolecules : replication, recombination,

transcription, translation, regulation, packaging, repair, all require recognition

by and interaction with proteins or other macromolecular assemblies (such as

ribosomes or snRNPs). Clearly, understanding protein-nucleic acid interactions

is understanding some of the most important events in the life of a cell.

Regulation of gene expression is of prime importance not only for its role in

determining the pattern of cellular processes, but also, for its role in cell growth

and differentiation. Gene activity in both prokaryotes and eukaryotes is regu-

lated primarily at the level of transcription. The most common mechanism for

this is through binding of proteins (transcription factors in eukaryotes, repressors

and activators in prokaryotes) to specific DNA sequences. These proteins exert

their regulatory effect either by causing (or stabilising) local changes in the struc-
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ture of DNA, or by interacting with proteins involved in transcription, or by a

combination of both.

The last five years have witnessed a significant increase in the amount of

structural detail available for these systems : well over 30 crystal or NMR struc-

tures are currently available for transcription factors and their complexes. The

majority of these proteins can be classified in six relatively well defined families

[ Helix-Turn-Helix, Homeodomain, Zinc-binding domains (3 classes), Basic Re-

gion Leucine Zipper, Basic Region / Helix-Loop-Helix / Leucine Zipper and the

β-Ribbon-Helix-Helix family ]. A number of transcription factors (such as the

TATA-box binding protein or the papillomavirus E2 protein) show no similarity

to any of these families. Figures 1.1 and 1.2 show schematic diagrams of the

crystal structures of some complexes for which coordinates were available from

the Protein Data Bank at the time of writing. Their beauty and diversity (two

unifying themes in protein-DNA complexes) are immediately obvious.

Although a detailed description of these DNA-binding motifs will not be given

here (excellent reviews can be found in Steitz, T.A., , Harrison, S.C. & Aggar-

wal, A.K., , Harrison, S.C., , Freemont, P.S., Lane, A.N. & Sanderson,

M.R., , Pabo, C.O. & Sauer, R.T., , Berg, J.M., , Burley, S.K.,

, Ellenberg, T., , Wright, P.E., , Phillips, S.E.V., ), some of the

most interesting results to emerge from these studies will be discussed in some

detail.

The most frequently observed mode of interaction between DNA and tran-

scription factors involves insertion of a secondary structure element (such as an

α-helix or a pair of β-strands) into the major groove of DNA and formation of

(i) DNA-sequence-specific hydrogen bonds between protein side or main chain

atoms and the exposed edges of the DNA base pairs, and, (ii) DNA-structure-

dependent hydrogen bonds or salt bridges between side or main chain atoms (not

necessarily from the recognition element) and the non-esterified phosphodiester
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MetJ
-Ribbon-Helix-Helixβ

CAP
Helix-Turn-Helix

Zif268
Zn-binding domain, Class 1

Figure 1.1: Schematic diagrams of the crystal structures of some transcription

factor-DNA complexes.
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GAL4
Zn-binding domain, Class 3

Papillomavirus-1 E2

Engrailed Homeodomain

Figure 1.2: Schematic diagrams of the crystal structures of some transcription

factor-DNA complexes.
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oxygens of DNA. This second set of contacts can help ‘align’ the protein on the

DNA and may also account for the ability of transcription factors to find their

targets by a one-dimensional random walk on the DNA. In addition, when the

structure of a given target sequence deviates from that of the canonical B-form

(by being bent or kinked or inherently flexible), the sequence-specificity of a

protein that can ‘sense’ these deviations will be enhanced. Other types of in-

teractions (such as hydrophobic interactions with the -CH3 group of thymine or

the deoxyribose rings in the DNA backbone, hydrogen bonds mediated by water

molecules, contacts in the minor groove, etc.) have also been observed, but are

less frequent.

The formation of hydrogen bonds between protein side chains and the edges of

the DNA base pairs is probably the most important source of sequence specificity.

One interesting result that emerged from the structural studies of transcription

factor-DNA complexes is the absence of a “recognition code” : the same side

chain can form hydrogen bonds with different DNA bases, and the same base can

be recognised by different side chains. This is not to say that all protein side

chains or DNA bases are used with similar frequencies. The side chains of argi-

nine, asparagine, glutamine and lysine account for the majority of the observed

contacts. Similarly, most of the hydrogen bonds are directed towards purines and

especially guanine. It is worth noting that the most frequently observed contacts

(arginine-guanine, asparagine-adenine and glutamine-adenine) all involve a pair

of hydrogen bonds between the side-chain and the base and their existence had

been predicted theoretically (Seeman, N.C., Rosenberg, J.M. & Rich, A., ).

In retrospect, the absence of a “universal recognition code” is not surprising : the

evolutionary pressure on these relatively small regulatory circuits is not as high

as in the case of, say, the translational apparatus or other systems with a more

general and immediate effect on the cell.

One last point concerns the conservation of symmetry in the known transcrip-
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tion factor-DNA complexes : if a regulatory protein has intramolecular symmetry,

then, in general, its DNA target will also have 2-fold or pseudo 2-fold symme-

try (depending on whether the DNA sequence is an exact palindrome or not),

and in their complex the intramolecular symmetry axes will coincide. Given the

number of transcription factors that are dimers or tetramers, symmetry conser-

vation appears to be an evolutionarily successful mechanism for increasing the

thermodynamic stability (and hence, specificity) of protein-DNA complexes.

This thesis describes our attempts to determine the crystal structure of AhrC,

the arginine repressor/activator from Bacillus subtilis. There are several reasons

which make AhrC a very interesting target for a structure determination. The

first, and probably the most important, is its functional multiplicity : in the

presence of L-Arginine, AhrC represses the genes encoding for the biosynthetic

and activates those encoding for the catabolic enzymes of arginine metabolism.

Furthermore, when AhrC is expressed in Escherichia coli cells it acts not only

as a regulator of the arginine metabolism but also as a necessary accessory pro-

tein for the resolution (through site-specific recombination) of multimers of the

ColE1 plasmid. Understanding the structural basis of the observed functional

multiplicity is clearly an exciting prospect.

Other unique features of AhrC include (i) its hexameric organisation [ AhrC

and its E. coli homologue (ArgR), are at the time of writing the only known

examples of hexameric regulatory proteins ], (ii) its unusual (inherently bent)

operator sequence, and, (iii) the absence of significant homology to any of the

characterised DNA-binding motifs or DNA-binding proteins.

What follows is a more detailed discussion of the biochemical, genetical and

biophysical data available for AhrC and closely related proteins.
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1.1 Biochemical and Genetical Data.

The pathways of arginine metabolism in Bacillus spp. and the enzymes involved

are shown in Figure 1.3 and Table 1.1 respectively. Starting from glutamate

(which is synthesised from NH+
4 and α-ketoglutarate, a citric acid cycle inter-

mediate), arginine can be obtained in either seven (ArgBCDJFGH) or eight

(ArgABCDEFGH) steps depending on whether the product of the argJ gene

[which simultaneously removes the acetyl group from N-acetylornithine (to give

ornithine) and transfers it to glutamate (to form N-acetylglutamate)] is active.

It is not clear which of these two anabolic pathways is active in Bacillus subtilis,

although recent evidence suggests that it is the ArgJ pathway which is used for

ornithine synthesis (Baumberg, S. & Klingel, U.,  and references therein).

There are two major catabolic pathways for arginine : the first goes through

Arginase and Ornithine aminotransferase to glutamate γ-semialdehyde and gluta-

mate (1, 2, 3 in Figure 1.3). The second pathway is the reverse of the biosynthetic

reactions and goes via citrulline (through the action of Arginine deiminase) to or-

nithine and carbamoyl phosphate [catalyzed by Ornithine carbamoyltransferase,

(4, 5, 6 in Figure 1.3)].

The B. subtilis genes encoding for the enzymes involved in the anabolic path-

way of arginine metabolism have been mapped and cloned (Harwood, C.R. &

Baumberg, S., , Baumberg, S. & Harwood, C.R., , Mountain, A. &

Baumberg, S., , Baumberg, S. & Mountain, A., , Mountain, A., Mann,

N.H., Munton, R.N. & Baumberg, S., , Mountain, A., McChesney, J., Smith,

M.C.M. & Baumberg, S., , Smith, M.C.M., Mountain, A. & Baumberg, S.,

a). They are organised in two clusters : the first (argCJBD-cpa-argF) com-

prises the genes involved in the synthesis of up to and including citrulline, whereas

the second (argGH) encodes for the enzymes that catalyse the last two steps in the

pathway. Analysis of arginine hydroxamate-resistant (Ahr) mutants allowed the
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Figure 1.3: Pathways of arginine metabolism in Bacillus spp. Dashed boxes

enclose intermediates of the catabolic pathways. Names or symbols for the genes

encoding the corresponding enzymes are shown in bold type.
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Gene Enzyme

argA N-Acetylglutamate synthetase

argB N-Acetylglutamokinase

argC N-Acetylglutamylphosphate reductase

argD N-Acetylornithine δ-transaminase

argE N-Acetylornithinase

argF Ornithine carbamoyltransferase (anabolic)

argG Argininosuccinate synthetase

argH Argininosuccinase

argJ Ornithine acetyltransferase

1 Arginase

2 Ornithine aminotransferase

3 ∆1-Pyrroline 5-carboxylate dehydrogenase

4 Arginine deiminase

5 Ornithine carbamoyltransferase (catabolic)

6 Carbamate kinase

Table 1.1: Enzymes involved in arginine metabolism

identification and (serendipitous) cloning of the ahrC gene whose product (AhrC)

has since been shown to be the arginine repressor/activator (Smith, M.C.M.,

Mountain, A. & Baumberg, S., a, North, A.K., Smith, M.C.M. & Baum-

berg, S., , Smith, M.C.M., Czaplewski, L., North, A.K., Baumberg, S. &

Stockley, P.G., , Czaplewski, L.G., North, A.K., Smith, M.C.M., Baumberg,

S. & Stockley, P.G., ).

AhrC, as shown by analytical ultracentrifugation (Czaplewski, L.G., North,

A.K., Smith, M.C.M., Baumberg, S. & Stockley, P.G., , hereafter referred

to as CNSBS), is a stable homohexamer of total molecular mass 105kDa. Each
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subunit consists of 149 amino acids whose sequence shows significant homology

only to ArgR, the arginine repressor from E. coli (Figure 1.4). ArgR does not

act as a transcription activator but it has been shown to be a necessary accessory

protein for the resolution —through site-specific recombination— of multimers of

the ColE1 plasmid (Lim, D., Oppenheim, J.D., Eckhardt, T. & Maas, W.K., ,

Stirling, C.J., Szatmari, G., Stewart, G., Smith, M.C.M. & Sherratt, D.J., ).

ArgR is not a resolvase, but may be implicated in synapse formation. Although

the two proteins share only 29% identity and are from such taxonomically distinct

prokaryotes, AhrC can complement E. coli ArgR− strains both in the regulation

of arginine metabolism and the resolution of the ColE1 plasmid (it is worth noting

that the reverse is not true : ArgR can not complement B. subtilis AhrC− strains

in the regulation of arginine metabolism).

ArgR MRSSAKQEELVKAFKALLKEEKFSSQGEIVAALQEQGFDNINQSKVSRMLTKFGAVRTRN

AhrC MNKGQRHIKI----REIITSNEIETQDELVDMLKQDGY-KVTQATVSRDIKELHLVKVPT

* . .. . . .. . . .*.*.* *...*. .. *. *** . . *.

ArgR AKMEMVYCLPAEL---GVPTTSSPLKNLVLDIDYNDAVVVIHTSPGAAQLIARLLDSLGK

AhrC NNGSYKYSLPADQRFNPLSKLKRALMDAFVKIDSASHMIVLKTMPGNAQAIGALMDNLDW

. * ***. .. .* . . ** ..*. * ** ** *. *.*.*.

ArgR AEGILGTIAGDDTIFTTPANGFTVKDLYEAILELFDQEL -156

AhrC DE-MMGTICGDDTILIICRTPEDTEGVKNRLLELL -149

* ..*** *****. .. . .***.

Figure 1.4: Sequence alignment of AhrC and ArgR (CLUSTAL-V, Higgins,

D.G., Bleasby, A.J. & Fuchs, R., ). Identities (*) and similarities (.) are

indicated.
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Mutational analysis of ArgR (Tian, G. & Maas, W.K., , Burke, M.,

Merican, A.F. & Sherratt, D.J., ) suggested that the C-terminal region is

implicated in arginine binding and oligomerisation whereas the N-terminal region

is involved in DNA recognition and binding. The implied organisation of AhrC

and ArgR in two functionally and/or structurally distinct domains is consistent

with the the non-uniform distribution of homology between them (19% identity

for residues 1-80, 34% identity for residues 81-152) and the sensitivity of AhrC

to proteolytic cleavage.

Sequence analysis of the region 5′ to the argCJBD-cpa-argF cluster revealed

the presence of three putative operator sites similar to the E. coli arginine opera-

tor sequences (Figure 1.5, Smith, M.C.M., Mountain, A. & Baumberg, S., b).

ARG box consensus sequence : AATGAATAA TNATNCANT

AhrC operator sequence R1 : AATGTTAAA T AATTTCACA

R2 : ATTGAATTA ATTT TTATTCATG

R3 : AATGAATAA AA ATATTAAAT

Figure 1.5: Sequence alignment of the E. coli ARG box consensus sequence

and three putative AhrC operator sequences located at the 5′ region of the

argCJBD-cpa-argF cluster.

DNase I and hydroxyl radical footprinting experiments (CNSBS, ) showed

that AhrC protects (in an arginine-dependent manner) two of these regions (R1

and R2 in Figure 1.5) and a further site that lies within the coding sequence of

the argC gene (hereafter referred to as argCO2). The same experiments suggested

that (i) AhrC interacts with one face of the DNA over a length approximately

equal to five helical turns, and, (ii) three groups of nucleotides that are hyper-
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1.2 Biophysical Data.

Figure 1.7 is a graphical representation of the secondary structure prediction for

AhrC (based on eight different methods, programme PREDICT, Eliopoulos, E.,

Geddes, A.J., Brett, M., Pappin, D.J.C. & Findlay, J.B.C., , and references

therein).

Figure 1.7: Secondary structure prediction for AhrC.

This prediction suggests that AhrC is an α/β or an antiparallel β structure

with a high α-helical content. Although some very common secondary struc-

ture motifs are immediately obvious (such as the β-strand prediction centered at

residue 38 which is followed by a turn or coil prediction, an α-helix and another
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(blue line) Amide I region. The wavenumbers corresponding to the peaks of the

five bands are 1607 cm−1 (black line II), 1637 cm−1 (green), 1650 cm−1 (cyan),

1662.4 cm−1 (magenta) and 1679 cm−1 (red) (also shown in Table 1.2). The bands

at 1637 and 1679 cm−1 are indicative of the presence of antiparallel β-sheet struc-

ture, whereas the 1650 cm−1 band is characteristic of α-helical structure. The

1662.4 cm−1 band is characteristic of turns and the 1607 cm−1 band probably

arises from side-chain vibrations. A summary of these assignments is given in

Table 1.2.

These results, together with the indications from the secondary structure pre-

diction algorithms, suggest that AhrC has an antiparallel β structure. It is worth

noting that the intensities of the 1637–1679 and 1650 cm−1 bands suggest that

the dominant secondary structure elements are β-strands organised in antiparal-

lel β-sheets and not α-helices (as indicated by the secondary structure prediction

methods).
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Chapter 2

Protein Preparation,

Crystallisation,

and Preliminary Characterisation

of AhrC Crystals

2.1 Protein Preparation.

2.1.1 Protein Purification.

AhrC was purified as described by Czaplewski, L.G., et al, & Stockley, P.G.,

. Differential precipitation from low ionic strength solutions is used twice

during the purification, allowing an efficient initial separation before the final

chromatographic step.

Escherichia coli strain DS903(pUL2202) was grown at 37◦C in rich medium.

At an optical density at 600 nm of 1.5 the cells were induced by the addition of

IPTG and the incubation continued for 3 hrs. Cells were harvested by centrifu-

gation and were thawed and resuspended in Arg buffer (20 mM Tris-HCl, 10 mM

MgCl2, 10 mM 2-mercaptoethanol, 1 mM PMSF, 25 µM TPCK, pH 7.5).
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The cell suspension was sonicated on ice to prepare a cell extract and the

insoluble material (which included AhrC) was harvested by centrifugation. The

pellet was resuspended in Arg buffer and treated with DNase I. AhrC was solu-

bilised by the addition of solid NaCl to a final concentration of 0.5 M, and the

suspension incubated at 37◦C for 15 min.

The supernatant after DNase I and NaCl treatments was obtained by cen-

trifugation and extensively dialysed against Arg buffer containing 75 mM NaCl

at 4◦C. The precipitate which formed consisted mainly of AhrC. It was harvested

by centrifugation and resuspended in 250 mM NaCl Arg buffer. The protein

was loaded onto a S-Sepharose cation-exchange column with 250 mM NaCl Arg

buffer, and the column developed using a 250-600 mM NaCl linear gradient in

Arg buffer.

A typical elution profile of the S-Sepharose column is shown in Figure 2.1.

Peak I is the flow through of proteins that do not bind to the column and peak II

corresponds to proteolytically cleaved AhrC (Figure 2.2). The main peak (III),

is —as shown by high resolution SDS-PAGE (Schägger, H. & Jagow, G., ),

Figure 2.2— a mixture of intact AhrC and a faster migrating band which was

thought to represent AhrC with one or two amino acids missing (Stockley, P.G.,

personal communication). Attempts to separate those two bands using prepara-

tive isoelectric focusing have been unsuccessful (Walsh, A.P., personal communi-

cation). It is worth noting, that a SDS-PAGE of washed and subsequently dis-

solved AhrC crystals (orthorhombic form, Section 2.2) showed that these crystals

consist of only one protein species.

Later in this study, the plasmid carrying the ahrC gene was reconstructed.

This resulted in the apparent loss of the faster migrating band. Crystallisation

trials with this protein preparation showed that the conditions for optimum crys-

tal growth of the orthorhombic form had changed slightly. Furthermore, the

crystals produced from the new protein preparation were non-isomorphous with
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those grown in the past (the mean fractional isomorphous difference for all data

to 4Å was 20%). It is worth noting that the unit cell dimensions of these two

types of the orthorhombic form are virtually identical.

The protein concentration was determined by measuring the absorbance at

280 nm, assuming that an OD280 of 1.0 corresponds to a protein concentration

of 1 mg ml−1 (Czaplewski, L.G., et al, & Stockley, P.G., ). Typically, 7 lt of

culture would give approximately 20 mg of protein. AhrC was precipitated with

23% (w/v) PEG 6000 and stored at 4◦C for further use.

2.1.2 Stability of AhrC During Storage.

Due to problems encountered with the reproducibility of the crystallisation exper-

iments (Section 2.2), it was decided to monitor the the behaviour of the purified

protein over the course of few months using SDS-PAGE. The main conclusions

from these experiments are presented below.

AhrC is very sensitive to proteolytic cleavage. Although protease inhibitors

such as PMSF or TPCK are present at all stages of protein purification and

also during storage, approximately 5 months after the protein preparation, low

molecular weight bands appear on SDS-PAGE (Figure 2.2, Lane 2). Futhermore,

after 2 months of storage higher molecular weight species start appearing on SDS-

PAGE of the purified protein (Figure 2.3). The molecular weights of these species

(as judged from their electrophoretic mobility, Figure 2.3) suggest that they may

correspond to covalently linked dimers and trimers of AhrC. The dominance of the

32 kDa band is consistent with chemical cross-linking experiments with bismido

esters (Czaplewski, L.G., et al, & Stockley, P.G., ). Although it is not clear

what the nature of the bonds that stabilise these multimers is, the formation of

disulphide bridges can probably be excluded since the protein is heated to 100◦C

in the presence of 2% (v/v) 2-mercaptoethanol during sample preparation.

It was not surprising to find that crystallised AhrC is more stable than the
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precipitated protein. Figure 2.4 shows that AhrC crystals which have been stored

for 4 months show little material outside the expected 16 kDa band, whereas a

sample from the same protein preparation which was stored as a precipitate

contains a significant amount of the covalently linked dimer.

An attempt to re-purify —using cation-exchange chromatography— the na-

tive AhrC hexamer from a protein preparation that had been stored for 4 months,

showed that all species present in the sample eluted as a single peak (data not

shown). This suggests that neither the molecular weight nor the charge of the

hexameric molecule changes during storage.

2.2 Crystallisation, and

Preliminary Characterisation

of AhrC Crystals.

The crystallisation of AhrC in a form suitable for a complete three-dimensional

X-ray structure determination has been reported (Boys, C.W.G., et al, & Stock-

ley, P.G., ). Unfortunately, crystallisation under the conditions described

therein was not reproducible (Boys, C.W.G., personal communication).

When this project started, it was decided that an attempt to crystallise AhrC

based on its very low solubility in low ionic strength solutions was a worthwhile

exercise. This approach proved very successful : all three crystal forms of AhrC

described in this thesis are grown from low ionic strength solutions.

Although conditions that produced crystalline material were found soon after

this project started, the production of crystals of a quality suitable for crystallo-

graphic studies was rather more difficult. In retrospect, the major problem was

the instability of AhrC upon storage (Section 2.1.2) : the quality of the crystals

and the reproducibility of the crystallisation experiments was inversely related to
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the length of time that the protein had been stored. Most of these problems dis-

appeared when it was realised that the protein should be used as soon as possible,

and in no case later than three weeks after its preparation.

All the crystallisation experiments were performed by hanging drop vapour

diffusion (McPherson, A., , Ducruix, A. & Giegé, R., , Blundell, T.L. &

Johnson, L.N., ). The effects of some crystallisation parameters which were

found to be important for the three crystal forms grown from low ionic strength

are discussed below.

Temperature Crystallisation trials have been set up at 4◦C, 20◦C and 28◦C. The

solubility of AhrC increases with decreasing temperature but crystals of sim-

ilar quality can be grown at all these temperatures under slightly different

conditions. For technical reasons, most of the crystallisation experiments

were performed at 20◦C.

Ionic strength The ionic strength of the well solution was adjusted with ammo-

nium sulphate. Concentrations in the range 0 to 150 mM have given useful

results, with different crystal forms growing at different concentrations.

Buffer and pH range The pH of the protein solution was adjusted to 7.5 using

30 mM phosphate buffer. The pH of the well solution was varied in the range

4.5–8.5 in steps of 0.2 units using phosphate, citrate or cacodylate buffer.

Best results have been obtained from phosphate buffer at pH 4.9 (which is

very close to the isoelectric point of AhrC).

PEG concentration Although PEG is not required for crystallisation, it was

found that the addition of a small amount of a medium molecular weight

PEG improved the morphology and size of the crystals. Crystallisation tri-

als have been set up using 0.4, 1, 2, 4, 6, and 8 kDa PEG at concentrations

varying from 0 to 15% (w/v) for both the well and protein solution. Un-

fortunately, the variation in the composition of the commercially available
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PEGs led to a proportional variation of the optimum conditions for crystal

growth. Best results for the orthorhombic form have been obtained from

PEG 4000 at concentrations close to 5% (w/v).

Concentration of isopropanol Due to the sensitivity of AhrC to proteolytic

cleavage, small amounts of the protease inhibitors PMSF and TPCK were

included in all crystallisation trials. Because of their instability in aqueous

solutions, both inhibitors were prepared in isopropanol. It was later found

that isopropanol was affecting the crystal growth rate. Best results have

been obtained from 1% (v/v) isopropanol.

2.2.1 Orthorhombic Form.

Details of the crystallisation conditions are given in Table 2.1. It should be noted

that the conditions for optimal crystal growth may vary for different protein

batches and will almost certainly be different for different brands of PEG. It was

found necessary to optimise the concentration of ammonium sulphate and PEG

in the well solution for each protein batch individually.

These crystals grow as rectangular blocks elongated along [010] and bounded

on the (001) and (100) faces (Figure 2.5). Their typical size is 0.50×0.15×0.20

mm3 but crystals with dimensions up to 1.50×0.30×0.35 mm3 have been obtained.

The ratio of the dimensions of the crystals is inversely proportional to the ratio of

the unit cell dimensions with the longest crystal axis being parallel to the shortest

unit cell translation.

The space group was determined from precession photographs and found to

be C2221 with a=231.3Å, b=74.4Å and c=138.0Å (Figure 2.61).

This crystal form is identical to the one reported by Boys, C.W.G., et al, &

Stockley, P.G., . Assuming that the equivalent of one hexamer is present in

1All zero level precession photographs were recorded with a crystal to film distance of 100 mm
and are reproduced in this thesis on a scale of 1:1.



Page 25

Protein solution 50 µM TPCK

1.25 mM DTT

1.2 mM PMSF

30 mM Phosphate buffer, pH 7.5

150 mM Ammonium sulphate

1 % (v/v) isopropanol

10 mg ml−1 AhrC

Well solution 50 µM TPCK

1.25 mM DTT

1.2 mM PMSF

100 mM Phosphate buffer, pH 4.9

4% PEG 4000

60 mM Ammonium sulphate

1 % (v/v) isopropanol

Drops 4 µl protein plus 4 µl well solution

Table 2.1: Crystallisation conditions for the orthorhombic form.
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the asymmetric unit, the estimated solvent content is 55% (Matthews, ).

These crystals diffract X-rays to 3Å resolution using laboratory sources and

to 2.7Å using synchrotron radiation (Chapter 3). They are sensitive to radia-

tion damage : after 12 hours of exposure to 2.7 kW, monochromatised (CuKᾱ)

X-rays at room temperature, only low (dmin ≥4.5Å) resolution reflections could

be observed. An attempt was made to increase their useful life-time by soaking

them in solutions containing free-radical scavengers, such as styrene or methyl

methacrylate (Zaloga, G., & Sarma, R., ). Unfortunately, no improvement

was found. This was not the case when the crystals were cooled to 4◦C using

a device originally described by Marsh, D.J. & Petsko, G.A., . The useful

crystal life-time was almost doubled. Most of the data sets described in this thesis

were collected at this temperature. Alignment of the cold stream of air with the

axis of the X-ray capillary proved to be more difficult than expected resulting in

several crystals being lost due to water condensation. Most of these problems dis-

appeared when it was decided to mount the crystals in a solution containing low

gelling temperature agarose which set on cooling to maintain constant hydration

during data collection (Richmond, T.J., et al, & Klug, A., ).

An artificial mother liquor consisting of 10% MPD and 100 mM acetate buffer

at pH 4.9 has been developed. This was necessary for several reasons : Firstly,

under the crystallisation conditions described above the crystals are not stable.

Approximately 6 weeks after their appearance, they start dissolving, possibly due

to the presence of a higher concentration of PEG in the well solution which leads

to a gradual increase of the ionic strength in the hanging drops. Secondly, the

presence of ammonium sulphate and phosphate ions can cause serious problems

in heavy atom screening experiments (Blundell, T.L. & Johnson, L.N., ,

McPherson, A., ). A stabilising solution consisting of MPD and acetate

ions presents fewer problems. Finally, MPD at high concentrations can act as a

cryo-protective mother liquor (Petsko, G.A., ). It proved possible to transfer
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AhrC crystals to solutions containing up to 45% (v/v) MPD without any obvious

problems. Such high concentrations of MPD should allow cooling of these crystals

to at least −40◦C which can help to reduce their sensitivity to radiation damage

(Hope, H., , Singh, T.P., et al, & Huber, R., , Young, A.C.M. & Dewan,

J.C., ). All orthorhombic crystals used in this study were transferred to the

stabilising solution at least three days before experimentation.

2.2.2 Monoclinic Form.

The crystallisation conditions for this form are given in Table 2.2. These crystals

could be grown reproducibly from only one protein batch. It is not clear why

this is so, but, a possible explanation is that both bands seen on a SDS-PAGE

of protein purified at the beginning of this project are needed for crystallisation

(Section 2.1.1, Figure 2.2). The crystals grow as rhombic prisms elongated along

[010] with well developed (100) and (011) faces (Figure 2.7).

The space group, as determined from precession photographs, is P21 with unit

cell dimensions a=202.7Å, b=72.6Å, c=73.0Å and β=97.8◦. They diffract X-rays

to better than 4Å using laboratory sources and to 3.2Å using synchrotron radia-

tion. Assuming that the crystallographic asymmetric unit contains two hexamers,

the estimated solvent content is 45%.

The pattern of strong, low resolution reflections in the hk0 zone (Figure 2.8)

is worth noting : strong reflections are present if 2h + k = 4n, which suggests

the presence (in the [001] projection) of a centered superlattice with a=202.7Å

and b′=36.3Å(=b/2).

Although the crystallisation conditions are very similar to those used for the

orthorhombic form, the monoclinic crystals are not stable in the artificial mother

liquor described in the previous section and most of these crystals are also un-

stable in their well solution. These problems made the heavy atom screening

experiments for this form rather adventurous (Chapter 3).
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Protein solution 50 µM TPCK

1.25 mM DTT

0.7 mM PMSF

30 mM Phosphate buffer, pH 7.5

150 mM Ammonium sulphate

1 % (v/v) isopropanol

10 mg ml−1 AhrC

Mixing solution 50 µM TPCK

1.25 mM DTT

0.7 mM PMSF

30 mM Phosphate buffer, pH 7.5

150 mM Ammonium sulphate

1 % (v/v) isopropanol

8 % PEG 6000

Well solution 50 µM TPCK

1.25 mM DTT

0.7 mM PMSF

100 mM Phosphate buffer, pH 5.2

4.4% PEG 6000

16 mM Ammonium sulphate

1 % (v/v) isopropanol

Drops 4 µl protein plus 4 µl mixing solution

Table 2.2: Crystallisation conditions for the monoclinic form.
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2.2.3 Trigonal Form.

Boys, C.W.G., et al, & Stockley, P.G.,  reported the growth of AhrC crystals

with a habit of “small, triangular rods” from 15% MPD, 100 mM phosphate

buffer, pH 7.5 and an 80-fold molar excess of L-arginine hydrochloride. These

crystals were too small for a space group determination (Boys, C.W.G., personal

communication).

In this study, crystals with a similar morphology have been obtained from low

ionic strength solutions (Figure 2.9). Refinement of the crystallisation conditions

(Table 2.3), allowed us to grow crystals of a size suitable for a preliminary char-

acterisation, but, due to the inherent disorder of this form, we have been unable

to collect a complete three-dimensional data set.

Figure 2.10(A) shows a “still” photograph taken with the long axis of the crys-

tal 8◦ away from the direct beam. The absence of well defined reflections and the

presence of almost continuous intensity in the various levels (most clearly seen in

the −1 level), suggests that these crystals are disordered. It was a surprise to find

that a zero level precession photograph from the same crystal (Figure 2.10(B))

showed well defined reflections out to 8Å. The broadening of the higher resolution

reflections seen in this photograph indicates the presence of rotational disorder

about the morphological 3-fold.

An upper level (hk1) precession photograph (Figure 2.11) established that

the crystal system is trigonal. The order is preserved to a much lower resolution

with individual reflections merging to form arcs.

The space group determination was complicated by the crystal disorder and

will be discussed in detail. The hk0 zero level photograph has symmetry p6mm.

This means that the plane group of the projection of the electron density along

the [001] direction is either p3m1 or p31m. The only enantiomorphic, trigonal,

non-rhombohedral space groups consistent with either of these two plane groups

(for the projection along the 3-fold) are P312, P3112, P3212, P321, P3121 and
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P3221 (International Tables for X-ray Crystallography, Vol.I, ). The unit

cell dimensions as determined from the X-ray photographs are a=b=66.6Å and

c=160Å. This small unit cell suggests the presence of only two hexamers per unit

cell (with an estimated solvent content of 50%). The requirement for a space

group with a set of two equivalent positions further reduces the possible choices

to only two space groups : P312 (Wyckoff notation of possible sets : g, h, i) or

P321 (c, d). In the absence of any information in directions perpendicular to the

3-fold, these two space groups can not be differentiated. In both space groups the

point symmetry of the positions of these sets is 3 and the asymmetric unit contains

two protomers. The crystal packing is fixed by the space group symmetry : the

equivalent positions are 0, 0, z and 0, 0, z̄ with the crystallographic and molecular

3-fold coinciding and the molecules forming columns parallel to the [001] direction.

A low resolution native Patterson projection along the [001] direction is shown

in Figure 2.12. The calculation of the Patterson projection involves no assump-

tions about the space group of the crystals and its consistency with the packing

arrangement derived from symmetry considerations is an independent confirma-

tion of the space group assignment2.

The crystal packing as described above suggests a model for the observed

disorder phenomena : the crystals suffer from translational disorder parallel to the

3-fold and to a lesser extent from rotational disorder about it. The translational

component arises from the different relative positions of the protein columns in

a direction parallel to the column axis (which coincides with the crystallographic

3-fold axis).

An important question is whether —based on the analysis above— the possi-

bility of the protein having a molecular 6-fold axis of symmetry can be excluded.

We believe that it can : due to the “special” position of the molecules, the order of

2The amplitudes of the hk0 reflections were estimated visually from the precession photograph
shown in Figure 2.10(B). The 18 observed reflections were classified as “very strong”, “strong” and
“weak”, and amplitudes were assigned to these as follows : “very strong” → F=6 (1 reflection),
“strong” → F=2 (7 reflections) and “weak” → F=0.5 (10 reflections).
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the crystallographic [001] axis depends (for the given crystal packing) on the or-

der of the molecular axis. If the molecular axis was a 6-fold then the space group

would be P622, but again, with two molecules per unit cell at 0, 0, z and 0, 0, z̄.

We can reach the same conclusion based on a purely geometrical argument : if the

order of the molecular axis was 6, then the individual protomers would have to

be ≈80Å long and with a diameter less than ≈20Å. Such dimensions are possible

but highly unlikely.

It is unfortunate that the crystal form most suitable for a crystal structure

determination is the most problematic of those described. Nevertheless, two

important conclusions can be drawn from this preliminary analysis : (i) AhrC

has maximal dimensions 66Å by 66Å by 80Å and (ii) It possess an intramolecular

axis of symmetry of order 3.

0.0 u 2.0

v

2.0

Figure 2.12: Trigonal form, 66-8Å native Patterson projection along [001]. Four

unit cells are shown. Contours every 5% of the origin peak; negative contours

broken.
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Chapter 3

Preparation and

Preliminary Analysis

of Heavy Atom Derivatives

3.1 Data Collection Strategy.

All data sets described in this thesis (with the exception of a medium (2.9Å)

resolution data set collected using synchrotron radiation) have been collected us-

ing a X-100A Xentronics/Siemens multiwire, position sensitive, two-dimensional

area detector. The X-ray source was graphite-monochromatised CuKα radiation

from a Rigaku RU200 rotating anode operating at 2.7 kW with a 200 µm focus.

Each data set was collected from one crystal. The rotation method (Arndt, W. &

Wonacott, A.J., ) was used for all data collections with an oscillation angle

typically in the range 0.2 to 0.3◦.

Care was taken to keep the geometry of the data collections as much as pos-

sible the same for the native and derivative data sets : most data sets from

orthorhombic crystals have been collected with a crystal to detector distance of

17.5 cm and the detector set at an angle 2θ=6.5◦. With this setting all data
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between 138 and 5.0Å (with some reflections to 3.9Å) can be recorded. The

crystals were aligned (at ω=0◦) with their [001] direction parallel to the X-ray

beam and the [010] direction approximately 15◦ away from the rotation axis. The

15◦ tilt of the [010] axis has two consequences : (i) the Bijvoet pairs can not

be measured simultaneously and (ii) a ≈95% complete data set can be collected

through a single 90◦ rotation without the need for an additional data collection

with a different crystal orientation. The choice not to measure the hkl and hk̄l

terms under as similar conditions as possible is justified on the grounds that the

anomalous differences could not be measured accurately anyway : the crystals

are sensitive to radiation damage and the data sets had to be collected as fast as

possible, resulting in anomalous differences well below the noise level.

In the case of the monoclinic form, the crystal to detector distance was 25.5 cm

and the detector swing angle was 10◦. Due to the morphology of crystals, the [010]

axis was parallel to the rotation axis necessitating the collection of 180◦ of data.

The data frames were processed using the programme XDS (Kabsch, W.,

, ) and the intensities (corrected for Lorentz and polarisation factors)

were converted to a .LCF (and later to a .MTZ) file for further processing using

the CCP4 suite of programmes (Collaborative Computational Project, Number

4, ) : The programmes ROTAVATA and AGROVATA applied scales and

isotropic temperature factors to continuous batches of data each corresponding

to a 5◦ rotation. This step should compensate for (a) differences in the illuminated

crystal volume, (b) radiation damage and (c) absorption, although differences in

absorption are not expected to be significant since the crystals were embedded in

an agarose gel with a linear absorption coefficient very similar to that of the crys-

tals. Observations which differed by more that 3σ from the mean were rejected

(usually less than 0.06% of the total number of measurements for data sets with

an average multiplicity of 2). Data sets collected from crystals soaked in heavy

atom solutions were brought to the same relative scale as the native data through
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the application of an overall scale and temperature factor (programme ANSC).

Several data sets from native orthorhombic AhrC crystals have been collected

(Table 3.1). At least one native data set was collected after each protein prepara-

tion and was compared with those from previous preparations. Data sets collected

from different native AhrC crystals were not merged.

Two non-isomorphous types of the orthorhombic form have been used for data

collections (Section 2.1.1). The Type I crystals had been obtained from protein

preparations which showed two bands on a SDS-PAGE of the purified protein.

Type II crystals have been obtained from more recent protein preparations. Data

sets collected from native crystals of the same type are isomorphous (the average

mean fractional isomorphous difference between data sets collected from native

type II crystals is ≈5.0 % for all reflections between 30 and 4.0Å).

Form and Type Resolution Rsymm Completeness Multiplicity

Orthorhombic, I 4.9 5.6 73 2.1

Orthorhombic, I 4.9 4.9 85 2.2

Orthorhombic, I 4.0 7.0 75 1.8

Orthorhombic, II 6.0 4.6 92 2.3

Orthorhombic, II 3.6 10.6 62 2.8

Orthorhombic, II 4.6 4.6 92 1.6

Orthorhombic, II 3.4 5.0 100 1.9 ‡

Orthorhombic, II 3.7 9.6 100 1.8 ‡

Orthorhombic, II 3.5 7.3 80 1.2

Orthorhombic, II 2.9 6.6 88 1.6 †

Monoclinic 4.5 4.9 78 1.7

Table 3.1: Native data sets.

‡ : Data collection of hk0 or h0l terms only.

† : Data set collected using synchrotron radiation.
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3.2 Preparation of Heavy Atom Derivatives.

The preparation of useful heavy atom derivatives of AhrC crystals proved to be

both time consuming and frustrating. Most of the compounds tried damaged the

crystals even at very low concentrations (Tables 3.2 and 3.3). This is especially

true for compounds containing heavy metals such as mercury or platinum which

can form covalent bonds with polarisable protein groups such as those found in

the side-chains of methionine, cysteine or histidine. This is rather unfortunate,

since the ability of those heavy atoms to form covalent complexes makes them

highly specific and, thus, more useful for the preparation of well substituted

and isomorphous heavy atom derivatives, with (hopefully) a small number of

substitution sites.

The great majority of the heavy atom soaking experiments have been per-

formed using orthorhombic AhrC crystals. This is due to (i) the presence of only

one hexamer in their asymmetric unit and (ii) the availability of only a limited

number of monoclinic AhrC crystals (Section 2.2.2).

The procedure followed for the heavy atom derivative search in the case of

the orthorhombic AhrC crystals is outlined below.

A concentrated heavy atom solution was prepared in 10% MPD, 100 mM

Acetate buffer, pH 4.9 (Section 2.2.1). A portion of this concentrated solution

was diluted with a volume of the same artificial mother liquor to give 500 µl of

a heavy atom solution at the required concentration. A small crystal was soaked

in this solution and its well being (or otherwise) was monitored every 2 to 4

hours. If the crystal survived the initial treatment without any obvious problems

(appearance of cracks, loss of birefringence, etc), an attempt was made to take a

precession photograph of the hk0 zone1. Depending on the presence or otherwise

1The h0l zone would have been a better choice, but, due to the morphology of crystals (Section
2.2.1) mounting with the [010] direction parallel to the X-ray beam requires manual re-orientation
of the crystal and was therefore avoided.
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of significant differences between this precession photograph and the native hk0

pattern, either a crystal was soaked using the same or higher concentration of the

heavy atom solution and a data set was collected from it, or the procedure was

repeated, but this time with a lower concentration of the heavy atom containing

compound.

In some experiments, concentrations as low as 0.2 µM have been used. In

others (marked as “m/p” in Table 3.2) stoichiometric amounts of the heavy atom

containing compounds were used to give a specific number of heavy atoms per

protein protomer2. At such low concentrations, the signal from specific heavy

atom binding can be very weak and might not be detected through comparison

of precession photographs. In these cases a data set was collected immediately.

The instability of the monoclinic crystals in both the previously described

artificial mother liquor and in their well solution, made the heavy atom soaking

experiments with this crystal form rather inaccurate : the coverslips with their

hanging drops were removed from the crystallisation plate, solid grains of the

heavy atom containing compounds were added directly to the drops and the

coverslips were replaced back on the crystallisation plate.

Attempts to crystallise AhrC in the presence of KHgI4, Ethylmercury phos-

phate or p-chloromercuribenzenesulphonic acid have also been unsuccessful. The

protein precipitated even in the presence of very low concentrations of these com-

pounds.

Tables 3.4 and 3.5 give details of the data sets collected from AhrC crystals

soaked in solutions containing heavy atoms. The methods used and the collection

strategy adopted have already been described. Data sets marked with (†) in

Table 3.4 have been collected from Type I crystals.

2Due to the relatively simple morphology of the orthorhombic crystals, fairly accurate mea-
surements of their volumes are possible, allowing an equally good estimate of the number of
molecules per crystal to be obtained.
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Compound Conditions Result

Baker’s dimercurial 1 mM 12 hrs Cracked

0.1 mM 5.5 hrs Cracked

30 µM 20 hrs Cracked

4 µM 20 hrs Cracked

2 µM 20 hrs Cracked

HgCl2 0.3 mM 5.5 hrs Cracked

60 µM 20 hrs Cracked

4 µM 21 hrs Disordered

2 µM 24 hrs Disordered

HgI2 0.4 % sat. 15 hrs Disordered

0.1 % sat. 23 hrs Data Collected

pCMB 1 % sat. 20 hrs Disordered

0.2 % sat. 69 hrs Disordered

Mersalyl acid 0.4 % sat. 15 hrs Cracked

0.1 % sat. 20 hrs Cracked

KAuCl4 1 mM 3 hrs Disordered

0.6 mM 1.5 hrs Disordered

0.5 mM 16 hrs Cracked

0.1 mM 18 hrs Disordered

2 µM 46 hrs Disordered

H2IrCl6 0.03 µM 78 hrs No Differences

0.75 mM 12 hrs Differences

0.6 mM 4 hrs Data Collected

1.2 mM 3 hrs Data Collected

(CH3COO)2Hg 5 mM 16 hrs Cracked

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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Mercurochrome 0.2 % sat. 20 hrs No Differences

5 % sat. 3 hrs No Differences

2.5 % sat. 16 hrs Disordered

3 % sat. 12 hrs Disordered

100 % sat. 3 hrs Data Collected

100 % sat. 5 hrs Data Collected

Sm(NO3)3 1 mM 160 hrs Differences

2 mM 18 hrs Disordered

0.4 mM 21 hrs Data Collected

K2PtCl6 2 mM 2 hrs Disordered

1 mM 2 hrs Disordered

0.2 mM 17 hrs Disordered

Pb(NO3)2 0.3 mM 19 hrs No Differences

3 mM 15 hrs Disordered

Pr(NO3)3 0.6 mM 17 hrs Differences

0.6 mM 17 hrs Data Collected

NdCl3 2 mM 16 hrs Differences

2 mM 18 hrs Data Collected

(NH4)2OsCl6 0.2 mM 6 hrs Cracked

0.04 mM 17 hrs Cracked

Ta2O5 10 % sat. 16 hrs No Differences

100 % sat. 16 hrs Data Collected

DCMNP 4 % sat. 15 hrs Disordered

4 % sat. 2 hrs Disordered

K3UO2F5 0.2 mM 25 hrs Differences

0.2 mM 20 hrs Data Collected

Table 3.2: Heavy atom soaking experiments : Orthorhombic form



Page 43

VOSO4 2 mM 16 hrs Cracked

CH3COOTl 0.8 mM 25 hrs No Differences

0.8 mM 17 hrs Data Collected

Ce(NO3)3 1 mM 16 hrs Cracked

1 mM 2 hrs Cracked

1 mM 60 min Disordered

TAMM 0.05 mM 15 hrs Disordered

0.01 mM 15 hrs Disordered

0.05 mM 30 min Data Collected

0.1 mM 25 min Data Collected

Thimerosal 0.2 mM 25 hrs Disordered

H3PO4·12WO3 0.2 mM 25 hrs Disordered

0.2 mM 6 hrs Data Collected

1 m/p 20 hrs Data Collected

Co[Hg(SCN)4] 100 % sat. 20 hrs Cracked

Erythrosin B 0.1 mM 40 hrs Disordered

0.05 mM 24 hrs Disordered

KReO4 0.4 mM 20 hrs No Differences

0.8 mM 40 hrs No Differences

0.8 mM 40 hrs Data Collected

AgNO3 2 µM 18 hrs Cracked

Gd2O3 0.5 mM 20 hrs Disordered

(CH3COO)2Pb 0.2 mM 6 hrs No Differences

0.2 mM 29 hrs Disordered

0.2 mM 18 hrs Data Collected

Hg(NO3)2 2 % sat. 6 hrs Cracked

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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KAu(CN)4 0.02 mM 20 hrs Data Collected

0.05 mM 14 hrs Data Collected

0.1 mM 16 hrs Data Collected

0.2 mM 14 hrs Data Collected

0.4 mM 16 hrs Data Collected

1 mM 16 hrs Data Collected

4 mM 2 hrs Data Collected

4 mM 16 hrs Data Collected

10 mM 1.5 hrs Data Collected

Ag2SO4 2 % sat. 6.5 hrs Cracked

K2HgI4 0.4 mM 6.5 hrs Cracked

pCMBS 0.2 mM 20 hrs Cracked

0.2 mM 6.5 hrs Cracked

0.2 mM 2 hrs Disordered

1 m/p 18 hrs Data Collected

3 m/p 18 hrs Data Collected

6 m/p 18 hrs Data Collected

12 m/p 3 hrs Data Collected

16 m/p 3 hrs Cracked

9 m/p 16 hrs Data Collected

EMP 0.1 mM 6.5 hrs Disordered

CMPN 100 % sat. 6.5 hrs No Differences

100 % sat. 29 hrs No Differences

100 % sat. 48 hrs No Differences

AgI 100 % sat. 48 hrs Disordered

2 % sat. 24 hrs Disordered

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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CH3COOAg 0.4 mM 6.5 hrs Disordered

Nb6Cl14 0.03 mM 24 hrs Differences

1.5 mM 21 hrs Data Collected

0.7 mM 48 hrs Data Collected

0.7 mM 20 min Data Collected

UO2(NO3)2 0.4 mM 24 hrs Differences

0.8 mM 11 hrs Data Collected

0.4 mM 3 hrs Data Collected

0.04 mM 16 hrs Data Collected

Eu2O3 0.6 mM 3 hrs Disordered

0.2 mM 20 hrs Disordered

(CH3)3PbCH2COOH 5 mM 6 hrs Differences

3 mM 2 hrs Data Collected

3 mM 16 hrs Data Collected

5 mM 16 hrs Data Collected

10 mM 2 hrs Data Collected

14 mM 16 hrs Data Collected

20 mM 18 hrs Data Collected

TaCl5 100 % sat. 6 hrs Cracked

pHMBA 100 % sat. 48 hrs Differences

100 % sat. 20 hrs Data Collected

PdCl2 100 % sat. 2 hrs Cracked

Tl2CO3 1 mM 20 hrs No Differences

AgCN 100 % sat. 2 hrs No Differences

100 % sat. 20 hrs Cracked

Hg(NO3)2 100 % sat. 2 hrs Cracked

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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HgBr2 100 % sat. 2 hrs Cracked

HgO 100 % sat. 2 hrs Cracked

Ce2(SO4)3 100 % sat. 20 hrs Cracked

Cl-Hg-(C6H4)-I 2 % sat. 25 hrs Data Collected

TlNO3 1 mM 20 hrs No Differences

2 mM 18 hrs No Differences

3.8 mM 20 hrs No Differences

2 mM 3 hrs Data Collected

Tl2SO4 1 mM 44 hrs No Differences

TlCl 100 % sat. 72 hrs No Differences

K2WO4 1 mM 20 hrs Cracked

K2PtBr6 0.2 mM 20 hrs Disordered

2 m/p 20 hrs Data Collected

3 m/p 20 hrs Data Collected

50 µM 35 min Disordered

Y(NO3)3 2 mM 20 hrs Cracked

La(NO3)3 1 mM 2 hrs Cracked

K2PdCl4 0.2 mM 2 hrs Cracked

Nd2(SO4)3 0.4 mM 20 hrs No differences

0.8 mM 20 hrs Disordered

[(CH3Hg)3O]OH 1 mM 2 hrs Disordered

CdSO4 0.4 mM 2 hrs No Differences

0.6 mM 48 hrs No Differences

SiO2·12WO3 1 mM 6 hrs Cracked

0.1 mM 6 hrs Cracked

0.5 m/p 20 hrs Data Collected

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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Er2O3 100 % sat. 42 hrs No Differences

Dy2O3 100 % sat. 70 hrs No Differences

UO2(CH3COO)2 0.2 mM 16 hrs Differences

0.1 mM 1.5 hrs Data Collected

0.2 mM 16 hrs Data Collected

Na2WO4 1 mM 4 hrs Cracked

(C6H5)Hg-Ac 100 % sat. 4 hrs Cracked

K2Pt(NO3)4 0.4 mM 4 hrs Disordered

K2Pt(CN)4 0.4 mM 15 hrs Differences

0.4 mM 20 hrs Data Collected

Pt(H2NCH2CH2NH2)Cl2 100 % sat. 2 hrs Cracked

Ag3C6H5O7 0.8 mM 2 hrs Cracked

PbCO3 100 % sat. 20 hrs No Differences

100 % sat. 72 hrs No Differences

W12H48N12O41 100 % sat. 20 hrs Disordered

Hg-dUTP 0.2 mM 14 hrs Cracked

0.2 mM 60 min No Differences

(NH4)6[Mo7O24] 0.6 mM 20 hrs Cracked

Mo12H3O40P 1 mM 2 hrs Cracked

Arg-Cys-Hg 4 mM 20 hrs No Differences

4 mM 76 hrs No Differences

Acetamide & 2 mM 2 hrs

(CH3COO)2Hg 0.4 mM 2 hrs Cracked

Acetamide & 4 mM 2 hrs

pCMBS 0.4 mM 20 hrs Disordered

Table 3.2: Heavy atom soaking experiments : Orthorhombic form
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HgSO4 100 % sat. 2 hrs Cracked

Nb6Cl14 & 2 mM 20 hrs

UO2(NO3)2 0.4 mM 4 hrs Data Collected

Nb6Cl14 & 2 mM 20 hrs

H2IrCl6 0.5 mM 20 hrs Data Collected

Table 3.2: Heavy atom soaking experiments : Orthorhombic form

Compound Conditions Result

Nb6Cl14 ≈1 mM 3 hrs Differences

≈1 mM 6 hrs Data Collected

TAMM 100 % sat. 3 hrs Cracked

H2IrCl6 ≈0.5 mM 5 hrs Cracked

pCMBS ≈0.5 mM 20 hrs Disordered

K2Pt(CN)4 ≈1 mM 20 hrs Disordered

Table 3.3: Heavy atom soaking experiments : Monoclinic form

m/p : Molecules of the heavy atom

containing compound per protein protomer.

Baker’s : 1,4-diacetoxymercuri-2,3-dimethoxybutane.

pCMB : p-chloromercuribenzoic acid.

pCMBS : p-chloromercuribenzenesulphonic acid.

pHMBA : p-hydroxymercuribenzoic acid.

EMP : Ethylmercury phosphate.

CMPN : 1-(4-Chloromercuriphenylato)-2-napthol.

TAMM : Tetrakis-(acetoxymercuri)methane.
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Compound Conditions Res Rsymm Comp Diff Kemp

(Å) (%) (%) (%)

HgI2 0.1 % sat., 23 hrs 4.9 6.4 82 13.0 2.2 †

H2IrCl6 0.7 mM, 10 hrs 4.9 5.7 69 23.0 2.5 †

0.3 mM, 4 hrs 5.0 3.3 95 5.6 2.0

0.6 mM, 4 hrs 5.0 3.5 99 8.0 2.6

1.2 mM, 3 hrs 5.0 3.5 77 10.0 1.8

0.8 mM, 18 hrs 3.6 3.9 100 18.0 2.1 ‡

Mercurochrome 100 % sat., 3 hrs 5.0 4.2 55 7.0 1.7

100 % sat., 20 hrs 4.9 5.5 73 9.0 1.9 †

100 % sat., 5 hrs 5.0 4.4 94 12.0 1.8

Sm(NO3)3 0.4 mM, 21 hrs 6.0 4.0 99 6.0 1.2 †

Pr(NO3)3 0.6 mM, 17 hrs 4.9 3.5 89 12.0 1.7 †

NdCl3 2 mM, 18 hrs 4.9 5.6 37 15.0 2.0 †

Ta2O5 100 % sat., 16 hrs 4.9 6.4 80 16.0 1.4 †

K3UO2F5 0.2 mM, 20 hrs 6.0 5.5 90 10.0 2.4 †

0.4 mM, 20 hrs 6.5 5.5 76 19.0 3.7 †

CH3COOTl 0.8 mM, 17 hrs 4.9 5.5 87 15 1.4 †

TAMM 0.05 mM, 30 min 5.0 4.2 99 8.0 2.0

0.1 mM,25 min 5.0 2.9 98 4.5 1.5

H3PO4·12WO3 0.2 mM, 6 hrs 7.0 8.0 60 14.0 2.0 †

1 m/p, 20 hrs 4.4 3.7 97 4.5 1.2

KReO4 0.8 mM, 40 hrs 4.9 5.4 82 10.0 1.7 †

(CH3COO)2Pb 0.2 mM, 18 hrs 4.9 5.6 60 9.0 1.4 †

Cl-Hg-(C6H4)-I 5 % sat., 25 hrs 4.9 4.3 70 17.0 1.6 †

2 % sat., 18 hrs 4.5 4.0 91 14.0 3.6

Table 3.4: Data collections : Orthorhombic form.
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Compound Conditions Res Rsymm Comp Diff Kemp

(Å) (%) (%) (%)

pCMBS 1 m/p, 18 hrs 4.5 3.8 98 4.0 1.5

3 m/p, 18 hrs 5.0 3.4 94 5.4 1.6

6 m/p, 18 hrs 5.0 3.9 80 7.3 1.9

12 m/p, 3 hrs 4.8 3.5 97 7.5 1.4

9 m/p, 30 µM, 16 hrs 5.0 4.0 90 7.9 1.7

9 m/p, 50 µM, 16 hrs 4.9 3.6 94 8.0 1.6

Nb6Cl14 1.5 mM, 21 hrs 4.2 5.4 70 16.0 3.2 †

1.0 mM, 48 hrs 6.0 4.0 96 24.9 7.0

0.7 mM, 20 min 6.5 4.4 90 8.9 2.9 †

0.6 mM, 24 hrs 5.0 3.9 5.4 15.0 2.3 †

0.9 mM, 24 hrs 5.0 3.6 96 20.0 6.0

1.2 mM, 20 hrs 4.0 6.4 100 23.0 3.3 ‡

0.8 mM, 18 hrs 6.0 6.5 100 13.0 2.1 ‡

1.2 mM, 26 hrs 4.5 7.6 100 20.0 3.3 ‡

0.7 mM, 19 hrs 3.5 4.0 100 18.0 2.7 ‡

0.7 mM, 23 hrs 5.0 4.1 95 21.0 4.5

TlNO3 1 mM, 18 hrs 5.5 4.9 87 14.8 1.2 †

2 mM, 3 hrs 5.0 3.0 46 4.5 1.5

TMLAc 3 mM, 2 hrs 5.0 3.8 99 11.0 1.2

3 mM, 16 hrs 5.0 4.2 44 12.0 1.5

5 mM, 16 hrs 5.5 5.0 87 15.1 1.4 †

10 mM, 2 hrs 5.0 4.1 38 9.0 1.6

14 mM, 16 hrs 5.0 4.4 98 10.2 1.6

20 mM, 18 hrs 5.0 3.5 97 8.8 1.5

Table 3.4: Data collections : Orthorhombic form.
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Compound Conditions Res Rsymm Comp Diff Kemp

(Å) (%) (%) (%)

KAu(CN)4 0.02 mM, 20 hrs 4.5 3.9 84 6.4 1.6

0.05 mM, 14 hrs 4.5 4.4 97 7.5 1.4

0.1 mM, 16 hrs 5.0 3.9 77 6.5 1.9

0.2 mM, 14 hrs 4.5 3.6 95 8.3 1.6

0.4 mM, 16 hrs 4.5 4.8 95 8.5 2.0

1 mM, 16 hrs 5.0 5.2 99 11.0 1.5

4 mM, 2 hrs 5.0 4.8 93 15.0 1.7

4 mM, 16 hrs 5.0 4.5 90 19.0 2.8

10 mM, 1.5 hrs 5.0 5.0 96 12.3 1.8

4 mM, 18 hrs 7.0 8.6 70 15.0 1.4 †

UO2(NO3)2 0.8 mM, 11 hrs 6.0 5.4 85 32.0 6.2 †

0.4 mM, 3 hrs 5.0 3.5 90 15.0 1.4 †

0.04 mM, 16 hrs 5.0 4.0 95 6.0 1.9

K2PtBr6 1 m/p, 20 hrs 5.0 3.9 97 7.0 2.2

2 m/p, 20 hrs 5.0 3.7 90 9.5 2.7

3 m/p, 20 hrs 5.0 2.9 95 10.3 2.6

SiO2·12WO3 0.5 m/p, 20 hrs 5.0 3.5 45 7.0 1.5

UO2(CH3COO)2 0.1 mM, 1.5 hrs 5.0 5.0 81 15.0 2.0

K2Pt(CN)4 0.4 mM, 20 hrs 4.8 5.1 82 10.0 1.8 †

Nb6Cl14 & 2 mM, 20 hrs

UO2(NO3)2 0.4 mM, 4 hrs 5.0 3.7 92 26.5 5.0

Nb6Cl14 & 2 mM, 20 hrs

H2IrCl6 0.5 mM, 20 hrs 5.0 3.7 96 33.0 4.2

pHMBA 100 % sat., 20 hrs 5.0 3.7 85 13.0 1.4 †

Table 3.4: Data collections : Orthorhombic form.
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Compound Conditions Res Rsymm Comp Diff Kemp

(Å) (%) (%) (%)

Nb6Cl14 1 mM, 6 hrs 7.0 5.0 99 23.0 10.0

Table 3.5: Data collection : Monoclinic form.

† : Type I orthorhombic crystals.

‡ : Data collection of hk0 or h0l terms only.

Res : Resolution cutoff for data set (Å).

Rsymm : R-factor between symmetry related reflections (%).

Comp : Completeness of data set (%).

Diff : Mean fractional isomorphous difference (%).

Kemp : Overall Kemp(= 2
∑

∆Fiso/
∑

∆Fano).

TMLAc : (CH3)3PbCH2COOH.

pCMBS : p-chloromercuribenzenesulphonic acid.

pHMBA : p-hydroxymercuribenzoic acid.

TAMM : Tetrakis-(acetoxymercuri)methane.

3.3 Preliminary Analysis.

Good derivatives are those which give interpretable protein electron density maps,

but, when interpretation of the observed isomorphous differences in terms of the

correct heavy atom structure is complicated in itself, other criteria are needed if

time and effort is to be saved.

Several such criteria have been proposed (see for example Leslie, A.G.W.,

, Jones, Y. & Stuart, D., ). Most of these try to address the two most

important questions about the quality of a derivative : isomorphism and degree
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of substitution. For a good derivative the unit cell dimensions should remain

unchanged, the mean fractional isomorphous difference —assuming a random

distribution of the heavy atom sites— should decrease monotonically with reso-

lution and in a manner very similar to the form factor of the replacement groups,

the isomorphous difference Patterson maps calculated using data from different

resolution shells should be very similar, the isomorphous and anomalous differ-

ence Patterson map should be closely related, and finally, both the isomorphous

and the anomalous signal should be significantly above the noise level. When the

heavy atom structure is known other statistics such as the phasing power or the

figure of merit can give more reliable estimates of the “goodness” of a derivative

( Ito, N., ).

The list of possibly useful derivatives of AhrC crystals is disappointingly short.

Only five compounds gave any signs of specific binding and from those only

one (the Niobium cluster, Nb6Cl14) has the characteristics of a well substituted

and isomorphous (to at least 6Å) derivative. A short analysis of the possibly

useful data sets collected from orthorhombic AhrC crystals soaked in solutions

containing heavy atoms is given below.

3.3.1 The Niobium Cluster, Nb6Cl14.

The lower halide complexes of Niobium and Tantalum (Nb6X14 and Ta6X14, X : Cl

or Br) have a long history. They were first synthesised at 1907 and their exact

chemical formulas caused considerable discussion in the early literature (espe-

cially about the oxidation number of the metals). Vaughan, P.A, Sturdivant,

J.H. and Pauling, L., , determined the structures of the Nb6Cl++
12 , Ta6Cl++

12

and Ta6Br++
12 groups through X-ray diffraction studies of their concentrated so-

lutions in ethanol (two of the fourteen chlorine atoms are easily removed as was

shown by Harned, H.S, ). The six Niobium atoms are at the corners of

a regular octahedron whose edges are 2.98Å long. The twelve chlorine atoms
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are located on the radial perpendicular bisectors of the octahedron edges with a

shortest Nb-Cl distance of approximately 2.36Å. The dimensions of the tantalum

complex are very similar. It was later proposed that the similarity both in charge

and dimensions of these two complexes could be used to form a pair of precisely

isomorphous protein crystals, the only difference being the presence of one or the

other of these clusters. Preliminary experiments with lysozyme crystals showed

the feasibility of the method, but, due to the non-isomorphism between the mod-

ified and the native crystals, no further progress was made (Corey, R.B., et al,

& Kay, L.M., , Stanford, R.H., et al, & Corey, R.B., ). More recently,

the Ta6Br14 cluster was used to prepare useful derivatives of two large proteins,

transketolase and ribulose-1,5-bisphosphate carboxylase/oxygenase (Schneider,

G. & Lindqvist, Y., ). The Nb6Cl14 cluster has been used in the structure

determination of glutamine synthetase (Almassy, R.J., et al, & Eisenberg, D.,

).

Comparison of a 8◦precession photograph of the hk0 zone from an orthorhom-

bic crystal soaked for 20 hours in 2 mM Nb6Cl14 with the native pattern (Fig-

ure 3.1) shows significant differences, especially at low angles (as would be ex-

pected from a cluster). The unit cell dimensions are similar to those of the native

crystals with an average fractional change of less than 0.3%. Although changes

of this magnitude make the derivative not very useful for spacings less than 4Å

(Crick, F.H.C. & Magdoff, B.S., ), the difference for the resolution range

used in subsequent studies should be very small.

Several data sets have been collected from orthorhombic AhrC crystals soaked

in solutions containing Nb6Cl14 with concentrations ranging from 0.5 to 2 mM

(Table 3.4 and 3.5). In all cases the mean fractional isomorphous difference was

significantly above the noise level (5%, equal to the mean fractional isomorphous

difference between native crystals) and the same is true for the overall Kemp, al-

though for most of the data sets no attempt was made to measure the anomalous
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differences accurately (Section 3.1). A plot of the mean fractional isomorphous

difference versus resolution and of the Kemp versus resolution is shown in Fig-

ure 3.2 for an orthorhombic crystal soaked for 19 hrs in 0.7 mM Nb6Cl14.

The isomorphous difference Patterson maps are very similar for different data

collections. The linear (Pearson) correlation coefficients between isomorphous

difference Patterson functions calculated using different data sets or different res-

olution ranges from the same data set (usually 13-9Å and 9-6Å) were in the range

0.60 to 0.77. Also, when a data set collected from a crystal soaked for 24 hrs in

0.6 mM Nb6Cl14 was treated as native and was compared with a data set col-

lected from a crystal soaked for 21 hrs in 1.5 mM Nb6Cl14, the sets were found to

be significantly different and the isomorphous difference Patterson functions were

very similar to those obtained when the true native data set was used (suggesting

again that the observed differences arise not from some sort of non-isomorphism,

for example a rotation of the molecules, but from specific heavy atom binding).

The agreement between the isomorphous and anomalous difference Patterson

maps was poor for the majority of the data sets. This was expected since (i) the

anomalous signal was well below the noise level and (ii) no attempt was made to

measure the hkl and hk̄l terms under the same conditions (Section 3.1).

Figure 3.3 shows a sharpened difference Patterson function for Nb6Cl14 calcu-

lated using coefficients [E∆Fisom
∆Fisom]2 where E∆Fisom

are the normalised struc-

ture factors corresponding to the observed isomorphous differences ∆Fisom =

|| FPH | − | FP ||. The normalised structure factors have not been calculated in

the usual way, E∆Fh
= ∆Fh/(ε

N∑
j=1

f 2
j )1/2, because the number N of heavy atoms

with an atomic scattering factor f is not known in advance. Instead, their calcu-

lation (programme ECALC) is based on their second most important property,

namely that their distribution is independent of the complexity of the struc-

ture with < E2
h >= 1 (Woolfson, M.M., ). The use of sharpened Patterson

functions was first suggested and their advantages demonstrated (using the [001]
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Figure 3.3: 13–6Å [E∆Fisom
∆Fisom]2 synthesis for a type II crystal soaked in

0.9 mM Nb6Cl14 for 24 hrs. Contours every 2% of the origin peak.
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Patterson projection of copper sulphate) by Patterson himself (Patterson, A.L.,

). Although the calculation of sharpened Patterson functions is a standard

procedure in small molecule crystallography (Hodgkin, D.C., , Robinson, W.

& Sheldrick, G.M., , Sheldrick, G., ), their use in macromolecular crys-

tallography is rather limited. With one or two hexamers per asymmetric unit

in the case of AhrC, the interpretation of the isomorphous difference Patterson

functions was expected to be difficult and the use of sharpened syntheses was

thought to offer considerable advantages mainly due to their effectively higher

resolution. This is more so for the Nb6Cl14 derivative since the scattering power

of the Niobium cluster falls rapidly with resolution and a ∆F 2
isom synthesis would

be dominated by the large, low resolution terms, making the interpretation more

difficult and less accurate. Figure 3.4 shows the v=0.0 section from (A) a ∆F 2
isom

and (B) a [E∆Fisom
∆Fisom]2 synthesis for a type I orthorhombic crystal soaked in

1.5 mM Nb6Cl14 for 21 hrs. The approximate mirror plane at w=0.25 (arising

from the presence of non-crystallographic symmetry) is obvious in the sharpened

map but not in the ∆F 2
isom synthesis. Other sharpened Patterson functions such

as [(E 3
∆Fisom

∆F 2
isom)1/2]2 have also been examined but it was found that in some

cases too much weight was given at relatively high resolution reflections with

rather inaccurate measurements.

The space group of the Patterson function is Cmmm with 16 equivalent posi-

tions and the conventional asymmetric unit is u : 0.0 to 0.50, v : 0.0 to 0.25 and

w : 0.0 to 0.50. The peaks marked as A, B, and C in Figure 3.3 are located on

the Harker sections u=0.0, v=0.0 and w=0.5 and they form a self consistent set

of Harker vectors corresponding to a site with coordinates x=0.13, y=0.09 and

z=0.225 or equivalent by Patterson symmetry. Their heights relative to the origin

peak are 27.5% 26% and 20% correspondingly. It was initially thought —mainly

due to the appearance of the unsharpened Patterson function, Figure 3.4— that

a derivative with one major substitution site had been obtained. Least squares
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0.0                             w                             0.5

u

0.5

(A) (B)

Figure 3.4: v=0.0 sections from (A) a ∆F 2
isom and (B) a [E∆Fisom

∆Fisom]2 syn-

thesis for a type I crystal soaked in 1.5 mM Nb6Cl14 for 21 hrs. Contours every

2% of the origin peak.

refinement of this site against the observed isomorphous differences for all cen-

tric reflections between 35 and 5Å resolution gave statistics of acceptable quality

(programme REFINE from the CCP4 suite) :

The Cullis R-factor (Cullis, A.F., et al, & North, A.C.T., ), defined as

Rc =
∑ |FH(obs) − FH(calc) |∑

FH(obs)

where FH(obs) and FH(calc) are the observed and calculated amplitudes of the heavy

atom structure factors and the sums are taken over centric terms only , was

0.59. The weighted Cullis R-factor (wRc) was 0.57 (the weights used were 1/σ2,

where σ is the standard deviation of the observation based on counting statistics).

The linear (Pearson) correlation coefficient between the observed and calculated
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amplitudes of the heavy atom structure factors, defined as

C =
∑

(FH(obs)− <FH(obs) >)(FH(calc)− <FH(calc) >)√∑
(FH(obs)− <FH(obs) >)2

∑
(FH(calc)− <FH(calc) >)2

was 0.48. Finally, the gradient (slope) of the least squares line for a FH(obs) versus

FH(calc) scatter plot was 0.43 (ideally it should be 1.0 corresponding to angle of

45◦).

It should be noted that the heavy atom site was modelled using a single Nb3+

ion, with a form factor as given in International Tables for X-ray Crystallography,

Vol. IV, . Due to the high correlation between occupancy and temperature

factor, they were refined independently in alternating cycles of least squares re-

finement. The temperature factor converged to a value B=157Å2 for a site with

occupancy 14.5 (arbitrary units). This large temperature factor accounts for the

increase of the scattered intensity at low angles due to the “in phase” scattering

from the individual atoms of the cluster (the value B=157Å2 is in very good

agreement with the temperature factor of 150Å2 for a Nb6Cl14 derivative used

in the structure determination of Glutamine Synthetase (Almassy, R.J., et al, &

Eisenberg, D., )).

Single isomorphous replacement with anomalous scattering (SIRAS) phases

were calculated from the refined atomic parameters using the programme PHASE

from the CCP4 suite of programmes. The overall phasing power
√

<(FH(obs)/ε)2 >,

where ε is the residual lack of closure, ε = FPH(obs)−FPH(calc), was 2.1 for all data

between 35 and 6Å. The mean figure of merit was <m>=0.42 with

m =
∫ 2π
α=0 P (α) exp(iα)dα∫ 2π

α=0 P (α)dα
and P (α) = exp(−

∑
ε(α)2/2E2)

where P (α) is the normalised probability of the phase α being correct and E is

the total error which was estimated from centrosymmetric projections : <E2 > =

<(| FPH −FP | − FH(calc))2 > (Blow, D.M. & Crick, F.H.C, , Ramachandran,

G.N. & Srinivasan, R., , Blundell, T.L. & Johnson, L.N., ).
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Several attempts have been made to determine the heavy atom structure of

other possibly useful derivatives using cross difference Fourier syntheses, m(FPH−

FP )eiαP , followed by comparison of the observed isomorphous difference Patterson

functions with those calculated from the heavy atom structures suggested by the

difference Fourier syntheses. In all cases the agreement between the observed and

the calculated Patterson functions was poor. Double difference Fourier syntheses,

m(| FPH(obs) − FPH(calc) |)eiαP , allowed the identification of five possible minor

sites for the Nb6Cl14 derivative. Inclusion of these sites improved the quality of

the statistics both in least squares refinement and phase calculation but not the

quality of the phases themselves.

These problems suggested that the heavy atom structure of the Nb6Cl14

derivative was more complex than initially thought. Further attempts to de-

termine the heavy atom structure of this derivative are described in Chapter 5.

3.3.2 The H2IrCl6 Derivative.

Orthorhombic AhrC crystals soaked in solutions containing H2IrCl6 with concen-

trations ranging from 0.6 to 1.2 mM were found to be significantly different from

the native crystals. A 8◦ precession photograph of the hk0 zone from a crystal

soaked for 12 hours in 0.75 mM H2IrCl6 is shown in Figure 3.5. A plot of the

mean fractional isomorphous difference versus resolution and of the Kemp versus

resolution for an orthorhombic crystal soaked for 18 hrs in 0.8 mM H2IrCl6 is

shown in Figure 3.6. It is obvious that Iridium is also behaving like a cluster

with very large isomorphous differences at low angles and a rapid fall off with

increasing resolution. Although H2IrCl6 is not expected to be a cluster, Ito, N.,

, has also found that this compound binds as a cluster with three Iridium

atoms in the major substitution site of Galactose Oxidase. It is worth noting

that H2IrCl6 has a rather complicated photochemistry and that no precautions

had been taken to keep the compound in the dark.
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The [E∆Fisom
∆Fisom]2 Patterson map (Section 3.3.1) for H2IrCl6 is shown in

Figure 3.7. It is obvious that this Patterson function can not be immediately

interpreted in terms of the heavy atom structure. Attempts to determine the

heavy atom structure of this derivative are described in Chapter 5.

3.3.3 Other Derivatives.

As well as the Niobium and Iridium clusters, Uranyl nitrate, Uranyl acetate,

KAu(CN)4 and p-iodochloromercuribenzoic acid (pICMB) showed signs of spe-

cific heavy atom binding. The isomorphism for all these derivatives is not well

preserved (Figure 3.8). The isomorphous difference Patterson maps for most of

these data sets and especially for the uranyl derivatives were featureless. This was

not surpising as the low specificity of Uranyl is well documented (Blundell, T.L.

& Johnson, L.N., ). The KAu(CN)4 and pICMB derivatives were expected

to be more useful but, again, the isomorphous difference Patterson functions

consisted of a more or less uniform distribution of peaks. Some of the methods

described in Chapter 5 have also been applied to these two derivatives.
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Figure 3.7: 13–7Å [E∆Fisom
∆Fisom]2 Patterson synthesis for a type II crystal

soaked in 1.2 mM H2IrCl6 for 3 hrs. Contours every 2% of the origin peak.
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Chapter 4

Self Rotation Function Studies

and a Model of the Crystal

Packing

4.1 Introduction.

Our attempts to prepare derivatives of the orthorhombic AhrC crystals useful

for a medium to high resolution three-dimensional structure determination using

multiple isomorphous replacement have been rather unsuccessful (Chapter 3).

The most useful derivative is the Niobium cluster Nb6Cl14 whose phasing power

at resolution higher than about 5Å is very low. If high non-crystallographic

symmetry were not present, a low resolution study of AhrC would probably be the

only option available. But the presence of a six-fold redundancy in the observed

data together with the relatively high solvent content of the orthorhombic form,

makes possible the refinement and subsequent extension of a low resolution phase

set to the limit of the observed diffraction of the native crystals (2.9Å). The theory

and practice of phase refinement and extension using real space averaging and

solvent flattening (or its reciprocal space equivalent in the form of the Molecular
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Replacement equations) is very well documented and will not be discussed in

detail (Theory and Reviews : Rossmann, M.G. & Blow, D.M., , Rossmann,

M.G. & Blow, D.M., , Main, P. & Rossmann, G.M., , Crowther, R.A.,

, Main, P., , Crowther, R.A., , Bricogne, G., , Bricogne, G.,

, Rossmann, M.G., , Lawrence, M.C., , Rossmann, M.G. et al, &

Choi, H.-K. & Lynch, R.E., , Brünger, A.T. & Nilges, M., ,

Applications : Jack, A., , Argos, P., Ford, G.C. & Rossmann, M.G., ,

Champness, J.N., Bloomer, A.C., Bricogne, G., Butler, P.J.G. & Klug, A., ,

Winkler, F.K., Schutt, C.E. & Harrison, S.C., , Bloomer, A.C., Champness,

J.N., Bricogne, G., Staden, R. & Klug, A., , Harrison, S.C., Olson, A.J.,

Schutt, C.E. & Winkler, F.K., , Rayment, I., et al, & Johnson, J.E., ,

Nordman, C.E., , Rayment, I., Baker, T.S., Caspar, D.L.D. & Murakami,

W.T., , Rayment, I., , Rayment, I., Baker, T.S. & Caspar, D.L.D.,

, Gaykema, W.P.J. et al, & Beintema, J.J., , Rossmann, M.G., et al, &

Vriend, G., , Almassy, R.J., et al, & Eisenberg, D., , Arnold, E., at al,

& Rossmann, M.G., , Luo, M., et al, & Palmenberg, A.C., , Luo, M.,

Vriend, G., Kamer, G. & Rossmann, M.G., , Acharya, R., et al, & Brown,

F., , Jones, E.Y., Walker, N.P.C. & Stuart, D.I., , Wu, H., Keller, W.,

Rossmann, M.G., , Fry, E., Acharya, R. & Stuart, D.I., , Tête-Favier,

F., Rondeau, J.-M., Podjarny, A. & Moras, D., ).

For the method to be applicable it is required that, (i) both the position

and the orientation of the non-crystallographic symmetry axes (with respect to

the crystallographic frame) are known, (ii) a sufficiently detailed envelope of the

repeating unit (or the whole assembly if the local axes form a point group) is

available and (iii) a starting phase set has been determined by other methods.

The orientation of the local symmetry axes is usually determined through a

study of the self rotation function of the native crystals or from the heavy atom

positions of a derivative (if these can be determined independently). The posi-
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tions of the local axes in the crystallographic frame can be determined from the

heavy atom positions or ‘packing considerations’ or from the special positions of

the molecules. An initial envelope is obtained from the starting phase set or from

a low resolution model determined for example from three-dimensional recon-

struction using electron microscopy. The starting phase set is usually determined

from multiple isomorphous replacement or from a model, although in cases of

very high non-crystallographic symmetry convergence can be achieved even from

random initial phase sets (Jack, A., ).

The strategy for the structure determination of AhrC can now be formulated

as follows : (A) Identification of the non-crystallographic symmetry axes and

determination of their orientation, (B) Determination of the heavy atom posi-

tions either independently or based on the knowledge of the orientation of the

local symmetry axes (and assuming that the heavy atom structure exhibits the

point group symmetry of the macromolecular assembly), (C) Determination of

the position of the molecular centre from the heavy atom positions (assuming

that the local symmetry axes form a point group), (D) Calculation of the initial

isomorphous replacement protein map to as high resolution as possible (depend-

ing on the quality of the phases available), (E) Determination of an approximate

envelope from the averaged isomorphous replacement map, (F) Refinement of

phases at constant resolution through real space averaging and solvent flattening

with optional redetermination of the envelope and refinement of the position of

the molecular centre and of the orientation of the local axes, (G) Gradual phase

extension and refinement to as high resolution as possible.

The power of the above procedure can be further increased, if needed, through

simultaneous averaging using both the orthorhombic and monoclinic forms giving

a total of an eighteen-fold redundancy in the observed data1.

1A major limitation here is the availability of only low, 4Å resolution data for the monoclinic
form. This is due to the non-reproducibility of the crystallisation trials which resulted in only a
small number of crystals being available for further analysis, Section 2.2.2.
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In the presence of high non-crystallographic symmetry, the interpretation of

isomorphous difference Patterson functions in the traditional way (identification

of possible heavy atom sites from the Harker sections, elimination of spurious

sites and reference of the correct sites to a common origin through examination

of cross vectors) can become very complicated or impossible. In the case of

the orthorhombic form of AhrC, a derivative with two sites per protomer would

give 9120 non-origin vectors. Accidental (or systematic) overlap of those vectors

can only make things worse. The standard method for the interpretation of the

Patterson function in such cases has been described by Argos & Rossmann in two

papers (Argos, P. & Rossmann, M.G., , Argos, P. & Rossmann, M.G., ,

but see also Tong, L. & Rossmann, M.G., ). A full description of the method

is given in Section 5.3.6. In short, the procedure is based on using the known

orientation of the local axes (possibly from a study of the self rotation function),

to reduce the size of the problem to that of determining the position of the heavy

atom sites in the non-crystallographic asymmetric unit. In the example given

above with two sites per protomer of AhrC, the problem would be reduced to

that of determining the positions of only two instead of twelve sites.

The preceding discussion makes clear that the determination of the non-

crystallographic symmetry is of utmost importance not only for the process of

phase refinement and phase extension but also for obtaining a phase set in the

first place. Unfortunately, the identification and determination of the orientation

of the local axes in the case of the orthorhombic form of AhrC proved difficult.

For most of this study, and mainly due to the problems encountered with the

interpretation of the self rotation functions, the non-crystallographic symmetry

present in these crystals was considered to be unknown. Section 4.2 describes our

attempts to determine the orientation of the local symmetry axes. Section 4.3

describes a model of the crystal packing of the orthorhombic form. Chapter 5 is

an account of our attempts to determine the heavy atom structures of some of
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the most promising heavy atom derivatives of orthorhombic AhrC crystals.

4.2 Self Rotation Function Studies.

A homohexamer like AhrC is expected to self-assemble in a regular (symmetrical)

manner. The most common point group for homohexamers is 32 although the

possibility of a point group 6 can not be excluded2. The analysis of the trigonal

form (Section 2.2.3) suggested that an intramolecular 3-fold is present, but these

crystals are disordered and it is not improbable that the molecular symmetry

and the disorder phenomena have a cause-effect relationship, in which case, no

conclusions can (safely) be drawn about the symmetry of the molecule.

The self-rotation function (Rossmann, M.G. & Blow, D.M., , Rossmann,

M.G., ),

R(C) =
+∞∫

−∞
P (u)P (Cu)U(u)dV

where P (u) is the value of the Patterson function at the end of the vector u, C is a

3×3 rotation matrix and U(u) is a ‘shape’ function defining the volume of the in-

tegration around the origin of the Patterson function, will have a large value when

C corresponds to a symmetry operator (crystallographic or non-crystallographic)

of the Patterson function. A systematic search of the asymmetric unit of the ro-

tation function (that is, the calculation of R(C) for all unique (for a given Laue

group) rotation matrices C) should give a map of the orientation of all symmetry

axes present in the Patterson function (within the chosen integration volume).

In practice, interpretation of the self rotation function can be anything from

straightforward, to very difficult (eg. Jones, E.Y., Walker, N.P.C & Stuart, D.I.,

) or even misleadingly straightforward (eg. Åkervall, K., et al, & Moring,

2Strictly speaking, it is incorrect to use the crystallographic point group symbols to refer to
molecular point group symmetry. On the understanding that the meaning of the symbol “32” is
more obvious —both for the writer and the prospective readers— than that of the corresponding
Schoenflies symbol, “D3”, we will continue using this incorrect symbolism throughout this thesis.
The Schoenflies symbols corresponding to the 32 crystallographic point groups can be found in
Table 3.9.1 (page 44) in the International Tables for X-ray Crystallography, Vol. I, .
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 but see also Klug, A.,  in the same volume). “Special” orientations

of the non-crystallographic axes with respect to the crystallographic, “special”

packing of the molecules in the cell, etc., can result in an uninterpretable, or

(worse), a misleading self-rotation function. It is worth noting in this respect,

that a recent survey of 129 protein crystal structures with more than one molecule

per asymmetric unit, showed that in 83% of the structures examined, the orien-

tation of the non-crystallographic symmetry axes was “special”, that is, parallel

or orthogonal to face diagonals, body diagonals or unit cell edges (Wang, X. &

Janin, J., ).

All self-rotation functions have been calculated using the ‘fast’ rotation func-

tion (Crowther, R.A., ) as implemented in the programme POLARRFN

(written by Kabsch, W., and distributed with the CCP4 suite). The results will

be presented in the form of a polar stereographic projection with ω defining the

latitude and φ the longitude of a rotation axis of order (360◦/κ) where κ is the

angle of rotation (in degrees) about this axis. The orientation of the crystallo-

graphic frame is such that the x axis is horizontal (ω=90◦, φ=0◦), the y axis is

vertical (ω=90◦, φ=90◦) and the z axis is normal to the plane of the paper (ω=0◦,

φ=0◦). In all diagrams, contours are plotted every 5% of the origin peak with first

contour at 5% (the origin peak corresponds to no rotation or a rotation which is

equivalent to a crystallographic symmetry operator). The self rotation function

has symmetry mmm, but four asymmetric units will always be shown.

4.2.1 Native Crystals.

Figure 4.1 is a collection of sections κ=120◦ (search for 3-folds) and κ=180◦ (search

for 2-folds) from self rotation functions calculated using different resolution ranges

or integration radii. All functions shown have been calculated using a native data

set collected from one orthorhombic, type II, AhrC crystal. Very similar results

have been obtained from all native data sets examined.
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(A)

(B)

(C)

Figure 4.1: Self Rotation Functions for native AhrC crystals.
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(D)

(E)

(F)

Figure 4.1: Self Rotation Functions for native AhrC crystals.
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It is obvious that the appearance of the self-rotation function changes con-

siderably when different resolution ranges or integration radii are used : in the

various κ=120◦ sections shown there are indications of a non-crystallographic 3-

fold along x or y or z or at ω=60◦, φ=90◦ or at ω=15◦, φ=0◦ etc. Although

such a variability precludes a confident assignment of the orientation of the

non-crystallographic symmetry axes, the consistency of the function when only

medium to high resolution data are used is worth discussing :

All self rotation functions calculated using medium to high resolution data

(Figure 4.1, A & F) indicate the presence of a non-crystallographic 3-fold axis

parallel to x. The κ=180◦ sections from the same functions show strong peaks on

the yz plane as would be expected from a 32 hexamer. The peak at ω=30◦, φ=90◦,

κ=180◦ suggests that the orientation of the non-crystallographic 2-folds is such

that one of them is parallel to y. This would require the presence of a strong

(pseudo-origin) peak on the v=0 Harker section of the Patterson function for

the native crystals (see Section 4.3 and Figure 4.5). A native Patterson function

which was calculated using all data between 30 and 12Å showed no major features

(the highest peak was 4% of the origin peak and it was located on the w=0.5

Harker section). The absence of strong features in the 12Å native Patterson

function suggests that (i) there are no even-fold non-crystallographic symmetry

axes parallel to the crystallographic, and (ii) there are no simple translations

relating parts of the structure. It should be noted, however, that the above

considerations can not exclude the possibility that the non-crystallographic 3-

fold is parallel to x with one of the non-crystallographic 2-folds nearly, but not

exactly, parallel to y.

4.2.2 Heavy Atom Structures.

An analysis of the non-crystallographic symmetry present in the heavy atom

structure of a derivative is based on the same concepts as for the native crystals,
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the only difference being the use of the isomorphous difference Patterson function

instead of the native Patterson. For reasons that have already been discussed

(Section 3.1.1), most of the calculations have been performed using a sharpened

Patterson function.

Figure 4.2 shows the sections κ=120◦ and κ=180◦ from self rotation functions

for the Niobium derivative which have been calculated using different resolution

ranges. The strongest peaks on the κ=120◦ section are at ω=90◦, φ=60◦ and

ω=60◦, φ=90◦. Although the exact positions and relative strengths of the various

peaks are different when different resolution ranges are used for the calculation,

the overall appearance of the functions is preserved. The same sections from the

self rotation function for the Iridium derivative are shown in Figure 4.3. The

major peak on the κ=120◦ section is again at ω=90◦, φ=60◦. Taken together,

the self rotation functions for the Niobium and Iridium derivatives suggest the

presence of a non-crystallographic 3-fold at ω=90◦, φ=60◦. Although this result

is not consistent with any of the self rotation functions for the native crystals

(Figure 1.4), several attempts were made to determine the heavy atom structure

using the Argos & Rossmann method and assuming that the indications from

the self rotation functions for the heavy atom structures are correct. These are

discussed in Section 5.3.6.

In summary, a confident determination of the non-crystallographic symmetry

of the orthorhombic AhrC crystals is not possible. The strongest indication from

the native self rotation functions (a non-crystallographic 3-fold parallel to x) is

not consistent with the self rotation functions calculated using the isomorphous

difference Patterson function for two of the most promising derivatives.
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(A)

(B)

(C)

Figure 4.2: Self Rotation Functions for Nb6Cl14.
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Figure 4.3: Self Rotation Function for H2IrCl6.

4.3 A Model of the Crystal Packing.

4.3.1 Pseudo-origin Peaks.

The unit cell dimensions of the orthorhombic form AhrC crystals are a=231.3Å,

b=74.4Å and c=138.0Å. If it is assumed that the AhrC hexamer (at very low

resolution) is approximately spherical, then its estimated radius is ≈32Å. The

very short b translation would suggest that in this direction the molecules do

not overlap. An attempt was made to determine the approximate location of the

molecules in this projection. The plane group of the projection of the electron

density along [010] is pmg. Although the origin for this plane group is conven-

tionally taken at the 2-fold axis, we preferred to keep the origin at the same

position as for the space group, that is, at the intersection of a mirror and glide

line as shown in Figure 4.4A. Figure 4.4B shows the packing arrangement that

minimises the overlap between crystallographically related molecules (each circle

in this diagram represents the projection of an AhrC hexamer). The radius of
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the circles is 29.2Å and the fractional coordinates of the centre of the circle which

is closest to the origin are x=0.126 and z=0.212. We saw in Chapter 3 that the

fractional coordinates of an atom at the position indicated by the very strong

peaks in the isomorphous difference Patterson function for the Niobium deriva-

tive are x=0.13, y=0.09 and z=0.225. The difference in the x and z coordinates

is only 0.8 and 1.8Å respectively.

The agreement between the position of a “heavy atom” as determined from

the isomorphous difference Patterson for the Niobium cluster, and the posi-

tion of the molecular centre deduced from packing considerations, suggests that

the large peaks in the difference Patterson function are not due to the pres-

ence of a single major site, but arise from the “special” orientation of the non-

crystallographic symmetry axes of the heavy atom structure : when even-fold

non-crystallographic symmetry axes are parallel to crystallographic even-fold

axes, large pseudo-origin peaks will be observed on the corresponding Harker

sections (if the crystallographic axis is a 3-fold, then the heavy atom structure

must have a non-crystallographic 3- or 6-fold parallel to the crystallographic for

pseudo-origin peaks to be present). Figure 4.5A is a two-dimensional example

showing a four-atom heavy atom structure with a non-crystallographic 2-fold

axis parallel to a crystallographic one. Figure 4.5B is a schematic diagram of the

Patterson function of this structure. The large non-origin Patterson peaks arise

from the presence of a simple translation relating the two copies of the heavy

atom structure. The position of these peaks depends only on the position of

the non-crystallographic axes in the crystallographic frame and not on the heavy

atom structure itself. The title ‘pseudo-origin’ peaks can now be justified : the

pattern of vectors around the true origin peak and the large non-origin peaks is

identical. To put this in a different way, the observed Patterson function is the

convolution of the Patterson function of the isolated heavy atom structure with

a periodic function consisting of only the origin and pseudo-origin peaks (which
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are ‘structure-independent’). This provides a means for obtaining the Patterson

function of the heavy atom structure alone (as if there was no crystallographic

symmetry present). A more complete discussion of the peculiarities arising from

the presence of non-crystallographic symmetry axes which are parallel to crystal-

lographic is given in Chapter 5.

This interpretation of the isomorphous difference Patterson function for the

Niobium derivative suggests that the heavy atom structure has three intersecting

and mutually perpendicular even-fold non-crystallographic axes. There are sev-

eral point groups that satisfy this requirement (222, mmm, 422, 4̄2m, 4/mmm,

622, 6/mmm, 432, m3m) but none of them belongs to the trigonal system. If it is

assumed that the heavy atom structure has the 32 point group as a subgroup, then

the unavoidable conclusion is that the point group of the heavy atom structure

must be 622, 6/mmm, 432 or m3m. The first two (hexagonal) point groups would

require the presence of a non-crystallographic 6-fold parallel to one of the major

axes, but this conclusion is not supported by the self rotation function of the

heavy atom structure (Figure 4.2). The two cubic point groups are not entirely

inconsistent with the observed self rotation function. Attempts to determine the

heavy atom structure using the Argos & Rossmann method and assuming a cubic

point group symmetry for the heavy atom structure, are described in Chapter 5.

The preceding analysis suggests that the molecular centre of an AhrC hexamer

in the orthorhombic form is at x=0.13, y=0.09 and z=0.225 or equivalent by Pat-

terson symmetry (the choice of enantiomorph is arbitrary at this stage). Further

evidence supporting this model of the crystal packing came from (i) Examination

of very low resolution permutation maps in the [010] projection (Section 4.3.2),

(ii) A systematic search of the asymmetric unit using a packing function as a

criterion (Section 4.3.3), and (iii) Electron microscopical studies of AhrC crystals

(Chapter 6).
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4.3.2 Very Low Resolution Permutation Syntheses.

The basis of the permutation syntheses method is very simple : given a set of

observed amplitudes for a number of structure factors, Fourier syntheses are cal-

culated for all unique phase combinations, and these are then examined for the

presence of correct —or, as is usually the case, for the absence of unreasonable—

features. The method is practical when (i) only a small number of centrosym-

metric terms is to be examined, and (ii) a suitable selection criterion is available.

Woolfson, M.M., , showed that examination of only 16 selected sign com-

binations of 7 terms will ensure that at least one of the syntheses will be calculated

with 6 signs out of 7 correct (the total number of sign combinations for 7 terms is

128). Woolfson’s method has been of some use in small molecule crystallography

(see for example Wright, W.B., a and b).

In protein crystallography, Boyes-Watson, J. and Perutz, M.F., , used

the permutation syntheses method to obtain “the first direct picture of a small

protein molecule” by determining the signs of the four observed h0l reflections

from air-dried haemoglobin crystals.

We applied the method to the [010] projection of the orthorhombic form. The

total number of unique phase combinations for the four strongest low resolution

reflections (201, 202, 002 and 402) is only 4 : the 002 and 402 terms are structure

semi-invariants (that is, their signs are independent of the choice of origin) and

all their sign combinations must be examined, but the 201 and 202 reflections

belong to the two parity groups needed to fix the origin and signs can thus

be allotted to them at will3. The four unique permutation maps are shown in

Figure 4.6. The syntheses B, C and D are unreasonable since, (i) there are peaks

with very high protein density either on the 2-folds or the mirror lines (B, C and

D), (ii) the solvent areas are unreasonably large (B and D), and (iii) the density is

3It should be noted that because the origin is not at a 2-fold, not all reflections have phases
0 or π : the origin has been shifted by 0.25 along z, and so all reflections with l = 2n + 1 have
phases ±π/2



Page 82

-0.25                                  z                               1.25 

x

1.25 (A) (B)

(C) (D)
Figure 4.6: Permutation syntheses for the [010] projection using the four

strongest, low resolution, h0l reflections. The lines enclose one unit cell.
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not connected (B and D). Synthesis A shows a more or less uniform distribution

of connected density with a reasonably small solvent area.

The position of the highest peak in this map is consistent with the packing

model of the orthorhombic AhrC form and, as was found later in the course of

the investigation, map A is as a whole in very good agreement with low resolu-

tion images of the [010] projection as seen in electron micrographs of negatively

stained, crushed AhrC crystals (Chapter 6).

4.3.3 A Packing Function.

A programme was written which, for every unique packing arrangement of spheres

of a given radius in the known orthorhombic unit cell, calculated the amount of

overlap (expressed as fraction of the volume of the asymmetric unit) between

crystallographically related molecules.

If the radius of the spheres is sufficiently large, the result from this search will

be the closest, non-overlapping packing of spheres in the given cell. The search

was conducted on a grid covering the asymmetric unit of the search function,

which, since the origin and the enantiomorph are not fixed, is only 1/8th of the

asymmetric unit of the space group. Three sections from the search with a sphere

of radius 32Å are shown in Figure 4.7. The peak seen on these sections corre-

spond to an overlap between symmetry related spheres of less than 0.001% of the

volume of the asymmetric unit. The position of the peak on the y=7/36 section

is at x=0.133, z=0.220, in very good agreement with the packing model. The

position along y is not well defined : all sections from y=0.0 to y=0.25 show the

same peak with more or less the same amount of overlap between crystallograph-

ically related spheres. This is not surprising, since the unit cell along the [010]

direction is only one molecule thick. The conclusion, therefore, is that although

the x and z coordinates of the molecular centre can be determined from packing

considerations alone, the y coordinate can only be determined accurately from the
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pseudo-origin peaks on the u=0.0 and w=0.5 Harker sections of the isomorphous

difference Patterson function for the Niobium derivative4.

0.0                        z                      0.25

x

0.25

y=7/36 y=8/36 y=9/36

Figure 4.7: Three sections from the packing function. The radius of the spheres

used for this search was 32Å.

4 The validity of the results obtained from both the packing function (Section 4.3.3) and the
packing considerations (discussed in Section 4.3.1), depends on whether the implicit assump-
tion that the crystallographic asymmetric unit contains one hexamer (and not two independent
trimers) is correct. There is no a priori reason why this should be so, and indeed, it is possible
to arrive at sensible packing arrangements by assuming that crystallographic 2-fold axes coincide
with non-crystallographic 2-fold axes of a 32 hexamer. The space group C2221 has two sets of
equivalent positions with point symmetry 2 : one set is at x,0,0 (and positions equivalent by
crystallographic symmetry) and the second is at 0,y,0.25 (and equivalent). If it is assumed that
the molecules are approximately spherical and that they do not overlap in the [010] projection,
then there are only two additional packing arrangements that must be examined.
In the first (marked as A in Figure F.1) the two hexamers are at
x1, 0, 0 and x2, 0, 0, and the molecules form columns parallel to x. In
the second (F.1(B)) the two hexamers are at x1, 0, 0 and 0, y2, 0.25,
and the projection down the [010] axis has an approximately hexago-
nal appearance. The calculation of the permutation syntheses shown
in Figure 4.6 involves no assumptions about the packing arrange-
ment and their inconsistency with both F.1(A) and F.1(B) suggests
that the crystallographic asymmetric unit contains a single hexamer
and not two independent trimers. This conclusion is consistent with
the presence (and position) of the pseudo-origin peaks in the iso-
morphous difference Patterson function for the Nb6Cl14 derivative
and the Electron Microscopical studies of AhrC crystals.
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Figure 4.8 shows views of the crystal packing down the [100], [010] and [001]

axes. The molecules form layers parallel to the xy planes, with alternating layers

being displaced by ≈13Å in a direction parallel to y (most clearly seen by the zig-

zag arrangement of molecules in the [100] view). Large solvent channels (≈40Å

in diameter) run parallel to z.

    y   

 z 

    z   

 x 

    y   

 x 

[100] [010] [001]

Figure 4.8: The crystal packing of the orthorhombic form. Views of the packing

down the [100], [010] and [001] axes are shown. The radius of the spheres (each

representing an AhrC hexamer) is 30Å. In all views 3×3 unit cells are shown.
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Chapter 5

Attempts to Determine the

Heavy Atom Structures of AhrC

Derivatives

5.1 Introduction.

Chapter 4 made clear that the determination of the crystal structure of AhrC

had to continue in the absence of a firm knowledge of the orientation of the non-

crystallographic symmetry axes. This meant that the difference Patterson maps

had to be interpreted in all their complexity. This Chapter describes the methods

used in the attempt to determine the heavy atom structures of AhrC derivatives.

For clarity, we divided the methods we used into three major categories. In

the direct methods category are included all methods based on an algebraic for-

malism describing probabilistic phase relationships between structure factors of

known amplitudes. The second category includes those methods in which a direct

interpretation of the Patterson function is being attempted. A third category in-

cludes methods that are not directly related to either direct or Patterson based

methods. It should be noted that although direct and Patterson methods have
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been kept as separate categories, these methods are related and in some cases

they are formally equivalent (for example the Σ1 formula of Hauptman & Karle,

 is directly related to the presence of Harker peaks in the Patterson function

(Cochran, W. & Woolfson, M.M., , Vand, V. & Pepinsky, R., , Cochran,

W., )).

Several of the methods described in this Chapter attempt to determine the

heavy atom structure from the centrosymmetric projections only. Although over-

lap is a serious problem when working with projections, the fact that the phases

—for the conventional choice of origin— are either 0 or π, makes all analyses far

more accurate1. The amplitudes of the heavy atom structure (assuming that care

has been taken to exclude the terms for which a “crossover”, FH = FPH + FP , is

possible) can be determined with an accuracy that is limited only by the standard

deviations of the individual measurements. This makes possible (i) the calculation

of reliable Patterson projection maps and (ii) the refinement of trial structures

without the problems associated with estimating FH for non-centrosymmetric

terms. Finally, phases can be calculated for the centrosymmetric terms of the

native crystals from only one derivative. Although a projection of the native

crystals is not very useful in the context of a three-dimensional structure deter-

mination, in our case, where the low resolution projection maps along [010] and

[001] were known in advance (Chapters 4 and 6), such a calculation can be seen

as an independent test of the correctness of a proposed heavy atom structure.

5.2 Direct Methods.

The use of direct methods for the determination of the heavy atom positions

in derivatives of protein crystals is well documented (Steitz, T.A., , Neidle,

1In the presence of anomalous scattering, the phase of FPH will, in general, be different from
0 or π for the conventional choice of origin. For the rest of this thesis, the assumption will be
made that the imaginary dispersion correction term (∆f ′′) is so small that the errors introduced
by treating FP and FPH as colinear are negligible compared with the errors of measurement.
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S., , Navia, M.A. & Sigler, P.B., , Wilson, K.S., , Sheldrick, G.M.,

). These studies showed that (i) it is feasible to use direct methods to

determine the heavy atom structure of derivatives from isomorphous difference

data, even at resolutions as low as 8Å, (ii) whereas some relationships appear to

work well with ∆F data (such as the triple-product sign relationship), others (eg.

negative quartets) are less effective. It is clear that relationships in which active

use is made of very weak terms can not work properly with ∆F data, since a

small ∆F can still correspond to a large FH if FH ⊥ FP . This means that most of

the recent developments in the field of direct methods (see Woolfson, M.M., 

and references therein) are not expected to be very useful for the interpretation

of isomorphous difference data. What follows is a short description of only those

formulae that are needed for a discussion of our attempts to determine the heavy

atom structures.

Three papers, published in the same issue of Acta Crystallographica, showed

how the constraints of both positivity (which alone leads to the determinantal

inequalities of Karle & Hauptman, ) and atomicity of the electron density

give rise to relationships between structure factors : Sayre, D.,  used the

convolution theorem to show that for a structure consisting of equal resolved

atoms :

Fh =
1

V Sh

∑
k

FkFh−k (5.1)

where Sh is a function which accounts for the change of the atomic scattering

factor of the atoms in the “squared” (ρ2) structure and the summation is taken

over all terms to infinity. (It should be noted that Sayre’s equation is an exact

equality relationship valid for both centrosymmetric and non-centrosymmetric

structures). Cochran, W.,  suggested that for such a structure, a Fourier

synthesis calculated using only a subset of structure factors will be characterised

by a large value of the integral
∫
V

ρ3dV . He then showed that the requirement
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‘
∫
V

ρ3dV is maximum positive’ is equivalent to

Q =
∑
h

∑
k

FhFkFh+k , is maximum positive (5.2)

For a centrosymmetric structure, the value of Q will be maximum positive when

most of the products FhFkFh+k are positive. This led him to the triple-product

sign relationship

s(h)s(k)s(h + k) ≈ +1 (5.3)

where s(h) means ‘sign of Fh’ and ≈ means ‘probably equals’. Zachariasen,

W.H.,  extended equation 5.3 to the general case when several pairs of k and

h + k terms give sign indications for the h term :

s(h) ≈ s


∑

k

s(k)s(h + k)


 (5.4)

and used this equation to solve the structure of metaboric acid (this was the first

application of what later became known as “The Symbolic Addition Procedure”

(Karle, I.L. & Karle, J., , Karle, I.L. & Karle, J., , Karle, J. & Karle,

I.L., )). Equation 5.4 is equivalent to the
∑

2 formula of Hauptman & Karle,

. The derivation of the probability formulas for relationships 5.3 and 5.4

was not straightforward (see Klug, A.,  and references therein). Cochran &

Woolfson,  gave the first practically correct derivation, although it was Klug,

A.,  who gave the complete (and complex) treatment. Cochran & Woolfson’s

probability formula for the most useful equation 5.4 is :

P+(h) ≈ 1
2

+
1
2

tanh


(σ3σ

−3/2
2 ) | Eh |

∑
k

EkEh+k


 (5.5)

where

σn =
N∑

j=1

Zn
j

In the above equations Zj is the atomic number of the jth atom, and Eh is the

normalised structure factor.

For the case of a non-centrosymmetric crystal, Cochran,  showed that

φ(h) ≈ φ(k) + φ(h − k) (5.6)
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where φ(h) is the phase angle of Fh. This is the triple-phase relationship. Al-

though the exact formula for the probability distribution of the above equation

will not be given here, it can be said that its general form is very similar to a

Gaussian centered on the expected value of φ(h) (Cochran, ). Finally, Karle

& Hauptman,  produced the so called ‘tangent formula’ which can be used

to estimate φ(h) when several pairs of known phases are available :

tan(φ(h)) ≈

∑
k
| EkEh−k | sin[φ(k) + φ(h − k)]

∑
k
| EkEh−k | cos[φ(k) + φ(h − k)]

(5.7)

The last formula needed for the discussion of the programmes and methods

used in the study of AhrC, comes from the theory of ‘nested neighborhoods’.

Hauptman, H.,  showed that the expected value of the quartet :

Φ = φ(h) + φ(k) + φ(l) + φ(m) (5.8)

where

h + k + l + m = 0

is Φ = 0 if all | Eh |, | Ek |, | El |, | Em |, | Eh+k |, | Ek+l |, | El+h | are large,

but it is Φ = π if the ‘cross’ terms | Eh+k |, | Ek+l |, | El+h | are all small.

When some of the cross terms are small and other are large the probability

distribution is bimodal. The indications Φ = π (known as negative quartets)

are very useful for plane or space groups that lack translational symmetry (also

known as symmorphic groups), since they drive the development of phases away

from the trivial solution φ(h) = 0 for all h.

5.2.1 SHELXS-86.

An analysis of all data sets collected from possibly useful heavy atom derivatives

of AhrC crystals was attempted using the programme SHELXS-86 (Sheldrick,

G.M., , Sheldrick, G.M., , Robinson, W. & Sheldrick, G.M., ). The

programme is based on three relationships : the triple-phase relationship (which
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reduces to the triple-product sign relationship for centrosymmetric terms), the

negative quartets and a weighted tangent formula. SHELXS starts by forming

phase permutations of a subset of reflections chosen by the user and then refines

each permutation using the tangent formula. The best 10% of those permutations

(as judged by two figures of merit, see below) is then refined with all data above

a user defined threshold |Emin |. The two figures of merit used in SHELXS are

related to (i) how well the refined phases agree with their estimated values from

the known probability distributions, and (ii) how well the phase sets agree with

the indications from the negative quartets. The phase set with the best combined

figure of merit is then improved by a partial structure expansion procedure.

During our attempts to obtain a solution (mainly for the Niobium and Iridium

derivatives), the following parameters have been varied : the |Emin | threshold, the

expected number of atoms (a large number reduces the probabilities of the phase

relationships, Equation 5.5), the atom types, the inclusion or not of negative

quartets, the number of phase permutations to be examined, the composition

of the subset, the low and high resolution cutoff, the omission of the largest

E-values, and, finally, the use of FHLE instead of ∆F data.

The results from SHELXS-86 were evaluated as follows. If the best solution

was a ‘uranium atom solution’ (that is, the best E-map contained only one or two

very large peaks, usually at special positions or at the assumed molecular centre,

see Chapter 4), no further consideration was given to it. Most of the solutions

examined belonged to this category. If the best E-map contained several ap-

proximately equal peaks, the Patterson function corresponding to these sites was

calculated and compared with the observed Patterson. In the few cases where the

agreement was acceptable, the trial heavy atom structure was refined and SIRAS

phases were calculated for the native crystals as discussed in Section 3.3.1. These

phases were used to calculate a cross difference Fourier, m(∆FIr)eiφSIRAS, for a

different derivative. The atomic sites corresponding to the top six peaks in this
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map were then used to calculate a Patterson function and the agreement between

the observed and calculated Patterson functions was assessed. None of the so-

lutions examined required any further calculations to confirm their incorrectness

(or otherwise).

As already discussed, the centrosymmetric ∆F terms are probably the most

accurate isomorphous difference data available when the heavy atom structure

is unknown. We have collected the hk0 and h0l terms both from native crystals

and crystals soaked in Nb6Cl14 and H2IrCl6 to as high resolution as possible and

as accurately as practically feasible (Tables 3.1 & 3.4). Attempts to phase these

reflections using SHELXS have also been unsuccessful.

5.2.2 MULTAN77.

The approach used in MULTAN77 (Main, P., , Woolfson, M.M., ) is

outlined below : A list of all triple-phase relationships involving large E-values

is prepared. The CONVERGENCE procedure (Germain, G. & Woolfson, M.M.,

, Germain, G., Main, P. & Woolfson, M.M., ) is then used to exclude

reflections that are not well linked (through phase relationships) to many other

reflections. The result from this procedure is a small number of strong reflections

which, when assigned phases, will reliably propagate the phase information to a

large number of other terms. A starting phase set is obtained by defining the ori-

gin and the enantiomorph and by permuting the phase values for a small number

of reflections chosen from the CONVERGENCE procedure. The refinement and

extension of the starting phase set is based on a weighted tangent formula.

The results from MULTAN were evaluated as described in the previous sec-

tion. Again, the great majority of the E-maps examined contained essentially

one peak either at the molecular centre or at a special position. It must be noted,

however, that the various parameters have not been tested as extensively as for

SHELXS-86.
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5.2.3 The Cochran & Douglas Method.

The Cochran & Douglas method is one of the oldest computer-based direct

method algorithms (Cochran & Douglas, , Cochran & Douglas, ). It is

essentially a direct maximisation of Q in Equation 5.2 : if there are n centrosym-

metric structure factors related by m triple-product sign relationships (Equa-

tion 5.3), then for each unique combination of signs (2n in total) the value of

χ =
∑
h

∑
k

UhUkUh+k (5.9)

where U is the unitary structure factor, is evaluated and its largest values stored

(the summations are over all m triple-product sign relationships). The sign com-

bination with the largest χ-value will be the one for which most of the strongest

phase indications are satisfied. If the assumptions behind the probability distri-

bution formulae are valid for the structure under examination, this will be the

most probable phase set.

Given that programmes as powerful as SHELXS or MULTAN have not found

a convincing solution for either of the two most promising derivatives, it would

appear that this algorithm is bound to fail. Nevertheless, Wright, W.B., a

and b, showed that the Cochran & Douglas method succeeded where several

other methods (including symbolic addition) failed (it is fair to note, however,

that the compound she examined (Glutathione) contained a ‘heavy’ atom, the

presence of which increased substantially the probability that the phase relation-

ships hold).

A programme was written which for a given number (≤ 32) of centrosymmetric

terms (i) prepared a list of all unique triple-product sign relationships, and (ii) for

every unique sign combination the sum in Equation 5.9 was evaluated (using

normalised instead of unitary structure factors) and if its value was greater than

a preset limit, the combination was stored. At the end of the procedure, all stored

sign combinations were listed in order of decreasing χ-values.
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The programme was used with various sets of centrosymmetric hk0 or h0l

∆F terms for the Niobium derivative. The number of reflections in these sets

was in the range 24 to 32 and the number of phase relationships was between 40

and 72. For the [001] projection, 30 terms are about 20% of all reflections to 7Å

resolution, and model calculations showed that this number of reflections is quite

adequate for solving an artificial structure consisting of 6 atoms.

The results were evaluated as follows : Fourier syntheses were calculated for

the top 100 phase sets and these were examined for the presence of a reasonable

number (> 2) of approximately equal peaks. For the most promising of these

syntheses, a trial heavy atom structure was constructed with atomic positions

corresponding to the largest peaks in the map, and these were refined as described

in Section 3.3.1. If the refinement statistics were of acceptable quality, phases

were calculated for the native crystals and these were used to obtain a projection

of the native crystals along [001] (or [010]). This projection was then examined

for the presence of solvent channels at the positions expected from the model of

the crystal packing (Chapters 4,6) and taking into account a possible origin shift.

None of the maps examined showed any sign of solvent channels at the expected

positions.

In conclusion, all our attempts to determine the heavy atom structure of

AhrC derivatives using direct methods have been unsuccessful. From a theoretical

standpoint this is exactly what we should expect : the ∆F data will be a rather

bad estimate of FH for half of the reflections, only low resolution data are used, the

possible non-isomorphism is not taken into account, etc. However, these problems

were present even in those cases where the procedure was found to work. In the

case of AhrC there is an additional problem. Due to the presence of high non-

crystallographic symmetry, the heavy atoms are not ‘randomly and uniformly’

distributed in the unit cell. Since the probabilistic approach is based on the
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assumption that the atomic positions are random variables, this ‘non-randomness’

makes the validity of the probability distribution formulae questionable. Schenk,

H., , Krieger, W. & Schenk, H.,  showed —using model calculations—

how systematic overlap in the Patterson function leads to considerable deviations

from the theoretical models. Systematic overlap in the Patterson function is

exactly what we observe in the case of our best derivative (Section 4.3.1).

5.3 Patterson Methods.

Several Patterson function based methods have been used in the attempt to de-

termine the heavy atom structure of AhrC derivatives. Before discussing the

individual methods, it is useful to illustrate the size and peculiarities of the prob-

lem that these methods had to tackle.

Figure 5.1 shows the three Harker sections from the sharpened isomorphous

difference Patterson function for the Niobium derivative. The meaning of the

three large peaks (marked A,B & C) has already been discussed (Section 3.3.1 and

Section 4.3.1). It is obvious that the Harker sections contain several significant

peaks apart from the pseudo-origin peaks. It was thought that it would be

useful to know how many possible heavy atom sites are consistent with those

Harker sections and what their distribution would be. A programme was written

which for every position in the crystallographic asymmetric unit, calculated the

Harker vectors that would be observed if an atom was present at that position.

If the value of the Patterson function was greater than zero for all three Harker

vectors, then the sum of those values was stored at the corresponding position

of a map which was a copy of the asymmetric unit. Figure 5.2 is the result of

such a search using the sharpened Patterson function for the Niobium derivative

(Section y=2/32 contains no significant peaks and has been omitted). This map

is very similar to what Buerger, M.J.,  called an ‘implication diagram’. This
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Figure 5.1: Harker sections u=0.0, v=0.0 and w=0.5 from a 13–7Å

[E∆Fisom
∆Fisom]2 synthesis for the Nb6Cl14 derivative. Contours every 2% of the

origin peak.
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0.0                                  z                                  0.5

x

0.5
y=0/32                                                                      y=1/32

y=3/32                                                                      y=4/32

Figure 5.2: Implication diagram of the Nb6Cl14 derivative. Contours every 4%

of the origin peak of the Patterson function.
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0.0                                  z                                  0.5

x

0.5
y=5/32                                                                      y=6/32

y=7/32                                                                      y=8/32

Figure 5.2: Implication diagram of the Nb6Cl14 derivative. Contours every 4%

of the origin peak of the Patterson function.
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search is also similar to the ‘single atom search’ as used in several Patterson

solution programmes (such as HASSP or GROPAT), although in this case it is

not required that significantly large Harker peaks are present on all three Harker

sections.

Several features of this map are worth discussing. The first is that the im-

plication diagram has extra symmetry : its asymmetric unit is 1/8th of the

crystallographic asymmetric unit. This is because neither the enantiomorph nor

the origin are fixed in this type of search. The second point is the large num-

ber of possible heavy atom positions : well over 80 peaks can be found in the

asymmetric unit of the diagram. Most of these peaks arise from the presence

of cross vectors on the Harker sections of the Patterson function. In the case of

the Niobium derivative, the presence of cross vectors on the Harker sections is

not accidental. Because non-crystallographic symmetry axes are parallel to all

three crystallographic 2-folds, the non-crystallographic Harker sections coincide

with the crystallographic. In other words, the Harker sections contain vectors

between atoms related by both crystallographic and non-crystallographic sym-

metry. A third point is the presence of very large peaks on section y=0.0. These

arise because no correction has been made for the different multiplicities of the

various Patterson peaks. The last point is the very regular distribution of peaks

in the implication diagram : the majority of significant peaks are arranged on

lines parallel to z. These lines are again arranged in a regular manner : they form

layers perpendicular to the y axis. It is well known since the early days of protein

crystallography (see for example Dickerson, R.E, et al, & Weinzierl, J.E., )

that a small number of bad measurements of relatively low resolution reflections

can lead to isomorphous difference Patterson functions with a very regular ar-

rangement of peaks which are nothing more than ripples arising from those bad

measurements. There is evidence which suggests that the regular arrangement

of peaks in the difference Patterson map for Niobium arise from the heavy atom
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structure and not from errors of measurement : (i) the Patterson function re-

mains virtually unchanged when different native or derivative data sets are used

for the calculation, (ii) the presence of some of the largest ∆F terms has been

confirmed from comparison of precession photographs, (iii) the correlation coeffi-

cient between Patterson functions calculated using different resolution ranges is

acceptably high (Section 3.3.1), and finally, (iv) the implication diagram corre-

sponding to the [010] Patterson projection (Figure 5.3) shows the same pattern

of peaks although only the h0l terms have been used for this calculation and

the presence of the largest ∆F terms has been confirmed from examination of

precession photographs of that zone.

It is interesting to note that several authors have suggested that all ∆F terms

greater than four (or even three) times the mean value of the observed isomor-

phous differences should be excluded from all subsequent calculations. Their

argument is of a statistical nature and is based on calculating the probability of

∆F > n∆F . In the absence of any information about the heavy atom structure,

the best that can be done is to assume that the heavy atoms are distributed

randomly and uniformly in the unit cell. In the presence of non-crystallographic

symmetry, the distribution of heavy atoms will be non-random and since most of

these reagents are ionic (and, thus, bind on the surface of the macromolecule),

their distribution will also be non-uniform. This is not to imply that bad mea-

surements which result in very large differences should not be monitored and

excluded. The solution adopted in the case of AhrC, was to collect and compare

at least two data sets from each possibly useful derivative.

One final point that has to be made, concerns the evaluation of the results.

All methods described in this section are bound to produce trial heavy atom

structures whose Patterson function will be related to the observed Patterson.

This is more so for the Niobium derivative because the presence of regularities in

the heavy atom structure makes it very easy to obtain solutions which, although
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Figure 5.3: (A) [010] Patterson projection for Nb6Cl14 : 17-5Å ∆F 2, (B) Sharp-

ened synthesis, (C) Implication diagram using the sharpened function.
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wrong, can reproduce several of the strong peaks in the observed difference Pat-

terson. In these cases where the agreement with the observed Patterson function

was not sufficiently bad for the solution to be discarded immediately, refinement

of the trial structure followed by calculation of cross difference Fourier synthe-

ses for other derivatives proved to be a very powerful test of the correctness of

the proposed heavy atom structure (the paper from Dickerson, R.E, et al, &

Weinzierl, J.E.,  is again illuminating).

5.3.1 HASSP.

Terwilliger, T.C., Kim, S.-H. & Eisenberg, D.,  proposed a method of deter-

mining heavy atom positions which is based on using isolated Patterson peaks as

an aid to identify possible two-site solutions which are then extended through a

systematic search of the asymmetric unit for additional sites consistent with the

starting pair. They have implemented their ideas in the programme HASSP, a

short description of which is given below.

The programme starts with a systematic search for single-site solutions using

only the Harker sections. Probability measures are applied in order to identify

potentially significant solutions, but these possible single-site solutions are not

used in the subsequent calculations. The next step is to identify isolated peaks in

the Patterson function and to use each one of these in turn as a possible ‘single-

weight’ cross vector in a systematic search of the crystallographic asymmetric

unit : if u is the vector from the origin of the Patterson function to the isolated

cross peak, then for every crystallographically unique atomic position x, the

Harker vectors corresponding to a pair of atoms at x and x + u are calculated.

If the density of the Patterson function at these Harker vectors satisfies certain

probability criteria, then these atoms form a possible two-site solution. From all

possible two-site solutions for any given cross peak, the one which gives the most

significant Harker vectors is extended by searching the asymmetric unit for an
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additional atom whose Harker vectors and cross vectors with the starting pair are

significantly above the noise level. The procedure is repeated until no significant

additional sites can be found, or the limit of 6 possible atomic sites per solution

is reached.

Most of the data sets which showed signs of specific heavy atom binding

have been examined using HASSP. Attempts were made with both unsharpened

∆F 2 and sharpened [E∆Fisom
∆Fisom]2 syntheses using various resolution ranges,

typically 13-6Å and 10-5Å. The single-site search was not very useful : In the

case of the Niobium derivative, only four significant single-site solutions could

be identified, two of which were on special positions while a third was at the

molecular centre. The reason for the very small number of possible single-atom

solutions is the requirement that all Harker peaks should be significantly above

the noise level. In the two-site search, all isolated peaks that the programme

could identify (usually about 40 peaks) were used. The solutions produced from

this search, were examined as described in the previous Section. Although several

of the most promising solutions for the Niobium derivative gave good statistics

during centric refinement (typical values were wRc = 0.55, C = 0.48, Gradient

0.45, see Section 3.3.1 for definitions), no further progress could be made with

any of them.

A possible explanation for these problems can be traced to the selection of the

“best” pair of atoms for any given cross vector. As the number of sites increases,

the probability that an incorrect solution can give a better fit to the Harker

sections increases. Furthermore, the Harker sections, especially for Niobium, are

dominated by cross vectors and can not be trusted in the early stages of the

development of a solution. A more cautious approach would be to compile a list

of all pairs which give positive Harker vectors and then to expand each one of

these in turn. The expansion step would also have to keep track of more than

just the “best” solution. It is obvious that this is a hierarchical tree structure
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in which the number of possibilities grows too fast for the calculation to be

practical (If at every step the best n solutions are kept and the decision as to

which combination is best is postponed until each combination consists of m

atoms, the total number of combinations for only one cross vector is nm. For 40

cross vectors and n = m = 8, it would be necessary to search the crystallographic

asymmetric unit 83,886,080 times and at the end of the procedure 671,088,640

combinations of 8 sites would have to be compared).

5.3.2 GROPAT.

Jones, Y. & Stuart, D.,  proposed a ‘brute force’ approach to the solution of

complex difference Patterson maps. Their algorithm is summarised below.

For every position in the crystallographic asymmetric unit, the values of the

Patterson function at the end of the predicted Harker vectors are used to cal-

culate an overall ‘probability’ that the position under examination corresponds

to a heavy atom site. Six criteria are used in calculating this probability :

the sum, product and minimum of the Patterson densities, their root mean

square, the mean probability for observing those values and, finally, the prod-

uct of these probabilities. The probabilities are calculated from the expression

exp[−(Pideal −Pobs)2/σ2], where, Pobs is the observed Patterson density at a given

grid point, Pideal is a user input parameter which should be equal to the Patterson

density expected from a single Harker vector, and σ is the expected error level in

the Patterson map (this is again a user-defined parameter but the authors suggest

that the root mean square deviation of the Patterson map can be used as an esti-

mate of the expected error). All pairwise combinations of the best 200 positions

from this search are then examined and the best 200 pairs (as judged from the

criteria outlined above but now considering cross vectors) are written out. This

list of best pairwise combinations forms the basis of the subsequent analysis : if

all heavy atom sites are present in the initial list of putative single-site solutions,
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then, the list of pairwise combinations should contain all possible pairs of those

sites. The problem is reduced to that of finding all possible sets of atomic sites

whose pairwise combinations are present in the list. These are possible heavy

atom structures.

Searching through a list of 200 pairs of atomic codes for the presence of all

pairwise combinations of an initially unknown number of sites invites mistakes.

A programme was written therefore, which searched this list for all possible 3-,

4-, 5- and 6-atom solutions. Even if some pairs of, say, a 6-atom solution are

missing from the initial list, the solution will not be missed since most of the

5-atom combinations will be present.

GROPAT has been tested with both ∆F 2 and [E∆F∆F ]2 syntheses for the

Niobium and Iridium derivatives. Again, as with HASSP, no convincing solution

could be identified. Considerations similar to those described in the previous

section apply here also : As the complexity of the problem increases, the prob-

ability that incorrect pairs of atoms (from the single-site search) will give cross

vectors on regions of the Patterson function with high density, is also increasing.

Furthermore, the presence of cross vectors on the Harker sections for Niobium,

makes the probability-based single-site search less reliable.

5.3.3 A Method by Nixon, P.E., 1978

The effect of non-randomness of the atomic positions on the probability distri-

bution of the basic phase-determining formulae has already been discussed (Sec-

tion 5.2.3). We have also seen that this non-randomness is best expressed in

terms of overlap of Patterson peaks. Nixon, P.E.,  suggested a method for

lessening the problems associated with overlapping Patterson peaks. Although

his method is based on using direct methods to solve the phase problem, it will

be discussed in this section since it involves a modification of the Patterson func-

tion. In this approach, the observed Patterson function P (u) is modified to give
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of reflections. In some cases, the classes of reflections that are systematically

weak or strong can be identified and the E-values (within each class) can be

re-normalised (although more complex algorithms do exist (Hai-Fu, F., Jia-Xing,

Y., Main, P. & Woolfson, M.M., )). Nixon’s method is an indirect way of

re-normalising the E-values for those classes of reflections that are systematically

strong without having to identify them explicitly.

A programme was written to modify a given Patterson function according

to Equation 5.10. The modified function was back-transformed using the pro-

gramme SFC from the CCP4 suite. The resulting intensities were input to the

direct methods programme SHELXS86 (Section 5.2.1). Most of the solutions ex-

amined belonged to the ‘uranium atom’ category. No convincing solutions could

be identified.

5.3.4 Image-seeking Methods.

The Patterson function of a structure consisting of N atoms can be viewed as the

superposition of N images of the structure, where the ith image (i = 1, . . . , N), is

obtained by placing the ith atom at the origin of the function, as shown in Fig-

ure 5.5. Image-seeking methods attempt to retrieve any one of these images. Sev-

eral different names (Atomic superposition, Vector superposition, Image-seeking)

have been proposed for methods that are in principle equivalent. Although these

procedures represent the most logical way to proceed in the analysis of a Patterson

function, the power and automation of direct methods, made them largely redun-

dant. The theory and practice of image-seeking methods is very well documented

and will not be discussed in great detail (Buerger, M.J., , Buerger, M.J.,

, Buerger, M.J., , Ramanchandran, G.N. & Srinivasan, , Fridrich-

sons, J. & Mathieson, A.McL., , Shoemaker, D.P., Barieau, R.E., Donohue,

J. & Lu, C.-S., , Donohue, J. & Bryden, J.H., , Simpson, P.G., Dobrott,

R.D. & Lipscomb, W.N., , Germain, G. & Woolfson, M.M., , and more
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(A)                             (B)                                (C)

Figure 5.5: (A) A hypothetical four-atom structure, (B) Its Patterson func-

tion, (C) The Patterson function seen as the superposition of four images of the

structure (Note the presence of four enantiomorphic images).

recently, Richardson, J.W. & Jacobson, R.A., , Sheldrick, G.M., ).

The principle of the vector-superposition method is illustrated in Figures 5.6

and 5.7 for the centrosymmetric and non-centrosymmetric cases respectively. Fig-

ure 5.6(A) shows a hypothetical two-dimensional centrosymmetric structure con-

sisting of 5 atoms, and Figure 5.6(B) is a schematic diagram of its Patterson

function. In Figure 5.6(C) two copies of the Patterson function (one represented

with open circles, the second with filled) have been superimposed so that the

origin of the second function coincides with the peak marked “I” in (B). It can be

seen that there are only five places where peaks from the two functions coincide,

and these are shown in Figure 5.6(E). This is the original structure. Peak “I” is

a single-weight Patterson peak which corresponds to the vector between the two

atoms that are furthest apart in the structure. If the multiple peak marked as

“II” in (B) is used for the superposition (shown in Figure 5.6(D)) then Patterson

peaks coincide at 8 places. Diagram (F) shows that these can be interpreted

as two images of the structure related by a simple translation. It is an inter-
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(A)                                               (B)

(C)                                               (D)

(E)                                               (F)

I

II

Figure 5.6: Vector superposition : The centrosymmetric case.
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esting result that in the case of a centrosymmetric structure (or projection) a

superposition on a single-weight Patterson peak can reveal the structure.

Figure 5.7(A) shows a hypothetical non-centrosymmetric 4-atom structure

and 5.7(B) is its Patterson function. The superposition on a multiple peak

(marked as “II” in (B)) is shown in Figure 5.7(C). In (E) these coincidences

are interpreted as arising from two images of the structure (related by a simple

translation) plus their enantiomorphs. In (D), a single-weight vector was used

for the superposition. The result (shown in (F)) is the superposition of an image

of the structure and its enantiomorph. The ambiguity arising from the presence

of both enantiomorphs can be resolved either by a second superposition on a

different peak or by “hand exorcism” of one of the enantiomorphic images.

It is worth noting that, in general, the space (plane) group of the superposition

function is P1 (p1). Identification of a permissible origin (for the given space or

plane group) can be achieved either by visual examination of the superposition

map or by a systematic search for the position (in the superposition map) which

if chosen as a crystallographic origin will maximise the agreement between the

observed peaks.

If one or more atomic positions are known (from examination of Harker sec-

tions or lines, for example), then these can be used in a variation of the superpo-

sition method known as ‘Atomic Superposition’. If for a structure that belongs to

a plane or space group with m equivalent positions, the coordinates (with respect

to a permissible origin) of n atoms are known, then mn copies of the Patterson

function are superimposed with their origin peaks at all equivalent positions of

the n atoms, and the resulting superposition function is examined for the presence

of additional (and initially unknown) atomic sites (Figure 5.8). Since the space

or plane group symmetry is used explicitly, the atomic superposition function has

the space (plane) group of the structure.

Our first attempts with the vector superposition method were based on su-
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(A)                                               (B)

(C)                                               (D)

(E)                                               (F)

I

II

Figure 5.7: Vector superposition : The non-centrosymmetric case.
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(A)

(B)

(C)

Figure 5.8: Atomic superposition : (A) A hypothetical two-atom structure in

p2, (B) Its Patterson function, (C) Superposition of two copies of the Patterson

function at the two equivalent positions of one atom (black circles). Double circles

denote additional coincidences.
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perimposing manually contoured Patterson projection functions. It was soon

realised that an automatic procedure was needed if the superpositions were to be

carried out accurately a large number of times : Two programmes have been de-

veloped. The first deals with the two-dimensional (centrosymmetric) case. Given

a Patterson projection P and a number n of grid points, the programme will su-

perimpose (using the sum, product or minimum function) n copies of P with their

origin peaks at the specified grid points. The superposition function is written

as a CCP4 map file which can be plotted using the programme PLUTO (from

the CCP4 suite of programmes). This superposition programme can be used for

both vector and atomic superposition.

The second programme deals with the general case of a three-dimensional Pat-

terson function and implements some of the ideas presented by Richardson, J.W.

& Jacobson, R.A.,  and Sheldrick, G.M., . Two copies of the Patterson

function are superimposed on a given Patterson peak using the minimum func-

tion. The position (in the superposition function) which if chosen as an origin of

the known space group will maximise the agreement between grid points related

by crystallographic symmetry is then identified through a systematic search :

the criterion used is the sum of the minimum density of all crystallographically

related grid points, for every given choice of origin. Once the “best” origin has

been identified, the superposition function is averaged using the crystallographic

symmetry and the final (averaged) map is written out in the CCP4 map format.

Most of our attempts with the superposition method concentrated on the

[001] and [010] Patterson projections of the Niobium and Iridium derivatives.

Although the [001] projection is down a 138Å long axis, it was hoped that useful

results could still be obtained : the implication diagram (Figure 5.2) suggests

that the heavy atom sites of the Niobium derivative are arranged on lines parallel

to z and would, thus, overlap in the [001] projection. The [001] Patterson projec-

tion (Figure 5.9) clearly indicates the presence of a regular arrangement of heavy
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atom sites. The ∆F -weighted reciprocal lattice representation of the hk0 level

(Figure 5.10) shows a hexagonal arrangement of clusters of large ∆F terms with

two outstandingly large differences for the reflections 11,5,0 and 12,6,0. After

removal of these two terms, the projection remained virtually unchanged, sug-

gesting that the large differences are due to the underlying heavy atom structure

and not due to errors of measurement. The presence of regularities in the heavy

atom structure made the identification of single-weight Patterson peaks very dif-

ficult : Superpositions have been carried out on all relatively weak Patterson

peaks with density greater than zero. Some of the most promising superposition

functions showed an arrangement of peaks which was in very good agreement

with the model of the crystal packing (Figure 5.11). Unfortunately, none of these

solutions led to a projection of the native crystals with the expected arrangement

of solvent channels.

Several attempts using the [010] projection have also been unsuccessful. One

of the most promising atomic superposition functions is shown in Figure 5.12.

The presence of a non-crystallographic 2-fold axis at the position of the assumed

molecular centre is indicated. No progress could be made with this or any other

solutions examined.

Finally, a number of attempts using the second of the programmes described

above with the three-dimensional isomorphous difference Patterson function for

the Niobium derivative have been unsuccessful. This was mainly due to the

difficulty in identifying single-weight Patterson peaks and the presence of both

enantiomorphs in the superposition function.

5.3.5 A Patterson Interpretation Programme : MSS.

The discussion in sections 5.3.1 and 5.3.2 suggested that accepting (or rejecting)

partial two-site solutions very early during the development of a possible heavy

atom structure is not necessarily the best way forward. The most systematic
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Figure 5.9: 15-6Å [001] Patterson projection for the Niobium derivative.

h00

0k0

Figure 5.10: hk0 weighted reciprocal lattice for Nb6Cl14.
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-0.25                                                                   x 1.25

1.25

z

Figure 5.11: [001] Vector superposition functions for the Niobium derivative.

0.0                                                                  x 1.0

1.0

z

Figure 5.12: [010] Atomic superposition function for the Niobium derivative.
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(but least elegant) approach for the interpretation of a Patterson function would

be to evaluate the agreement between the observed Patterson function and the

Patterson function calculated from every crystallographically unique arrangement

of atoms. Such a procedure would be equivalent to a direct R-factor search, that

is, calculation of the R-factor for all unique atomic arrangements. This approach

is practical only for relatively small unit cells : in the case of the orthorhombic

form of AhrC, a systematic search of the “best” six-atom structure (as judged by

the R-factor or the correlation coefficient between the observed and calculated

structure factor amplitudes), would require the calculation of structure factors

3.4·1024 times (assuming that a 2Å grid is used).

A Patterson function interpretation programme has been developed in which

the number of possible heavy atom structures that have to be examined is reduced

to a manageable size through the application of the following a priori assumptions

about the Patterson function :

1. For every heavy atom position x, the value of the implication diagram I(x)

is greater than zero, that is, the Patterson function has positive values for

all Harker vectors corresponding to x.

2. If x is a heavy atom position, then a pair of numbers n, m exists such that

(i) n out of the m atomic positions which give the largest sum of both

Harker and cross vectors with x, are also heavy atom positions, and, (ii)

the sum of the values of the Patterson function for all vectors between the

n heavy atom sites is the largest of all other combinations of n out of these

m sites.

The pseudocode for this programme is shown in Figure 5.13.

Although the requirement of the positivity of the Patterson function for all

Harker vectors of all heavy atom sites reduces significantly the volume of the

crystallographic asymmetric unit that has to be searched for possible heavy atom
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1. Calculation of the implication diagram I :

for (every grid point x of I)

if (the density of the Patterson function (P) for all Harker vectors

corresponding to a heavy atom site at x is greater than zero)

then I(x) =
∑P(Harker(x))

else I(x) = 0

2. Development of n-site partial heavy atom structures :

for (every x in I)

if (I(x) > 0)

then (find m other grid points which give the largest sum of both Harker

and cross vectors with x. Find the combination of n out of these m

sites which give the largest sum of all predicted vectors and save

this n-site partial structure)

else (next grid point)

3. Extension of all n-site partial structures :

for (every n-site partial solution)

(Find additional sites for which I(x) > 0 and all predicted vectors with

the already known sites lie in positive areas of the Patterson function.)

4. Refinement and calculation of useful metrics :

for (every heavy atom structure)

if (before refinement : Corr(Eo, Ec) > limit1)

then (Refine the positional parameters using Hart’s algorithm. Target

function is the correlation coefficient between Eo and Ec for

centric terms)

if (after refinement : Corr(Eo, Ec) > limit2)

then (calculate lengths of vectors between heavy atom sites

and between heavy atoms and the molecular centre).

Figure 5.13: MSS : pseudocode.
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sites (≈ 10% for the Niobium derivative), the algorithm is still practical only for

relatively small values of n and m (typically n ≤ 6, m ≤ 12).

As an aid to the identification of possible correct solutions, the programme

refines the positional parameters of the heavy atoms using Hart’s algorithm (Hart,

R.G., ) and calculates the lengths of the vectors between heavy atoms and

between the molecular centre and the heavy atom sites (due to the presence of

non-crystallographic symmetry, the correct solution was expected to show clusters

of vectors of similar lengths).

The programme has been tested with hypothetical heavy atom structures con-

sisting of up to 20 atoms in the crystallographic asymmetric unit (space group

C2221), some of which had non-crystallographic symmetry axes parallel to crys-

tallographic. The correct solution could be identified for all structures consisting

of less than approximately 14 atoms. For the more complex structures, only

partially correct solutions were usually identified. The main reason for these

problems was a violation of the assumption of the positivity of all Harker vec-

tors : since the F000 term is not included in the calculation of the Patterson

function, it was not unexpected to find that for some vectors the value of the

Patterson function was negative. An attempt was made to lower the threshold

for the acceptance of a possible vector; the result was a very large number of pos-

sible heavy atom structures which made the identification of the correct solution

rather difficult.

Several attempts with both conventional and sharpened isomorphous differ-

ence Patterson functions for the most promising derivatives have been unsuc-

cessful. As before, some solutions gave very good statistics during least squares

refinement, but no further progress could be made with any of them.
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5.3.6 The Argos & Rossmann Method.

Argos, P. & Rossmann, M.G., ,, were the first to realise that in the

presence of known non-crystallographic symmetry, the problem of determining

the positions of the heavy atoms in the crystallographic asymmetric unit of

a derivative can be reduced to that of determining their positions in the non-

crystallographic asymmetric unit (assuming that the heavy atom structure obeys

the non-crystallographic symmetry of the macromolecular assembly).

When the position of the molecular centre in the crystallographic frame is not

known, their method is divided in two steps.

In the first step (Type I search), an attempt is made to determine the po-

sitions of the heavy atoms with respect to the molecular centre : for every po-

sition x in the non-crystallographic asymmetric unit, the positions of all non-

crystallographically equivalent positions of x are generated and the vectors be-

tween those sites are calculated. The sum of the density of the isomorphous

difference Patterson function at the end of the predicted vectors is a measure of

how well a heavy atom site at x agrees with the observed Patterson function.

It is obvious that at this stage, vectors between heavy atoms that are bound to

crystallographically related molecules, as well as vectors between multiple heavy

atom sites on the same protein subunit, are not been taken into account.

Once the positions of the substitution sites with respect to the molecular

centre are known, the position of the molecular centre with respect to a permis-

sible —for the given space group— origin, can be determined (Type II search) :

For every position of the molecular centre in the unit cell of the corresponding

Cheshire group (Hirshfeld, F.L., ), the sum of the values of the isomorphous

difference Patterson function at the end of all predicted vectors (now taking into

account the crystallographic symmetry) is evaluated. Clearly, this second step is

a translation function very similar to those discussed in Sections 5.4.2 and 7.2.1.

If the position of the molecular centre in the crystallographic frame is known,
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then it is possible to include this information in the Type I search : for every

equivalent (by non-crystallographic symmetry) position of x, the vector corre-

sponding to one of the equivalent positions of the molecular centre is added and

all crystallographically related sites are generated. The summation now is over

all unique vectors between heavy atoms related by both non-crystallographic and

crystallographic symmetry. The inclusion of vectors between heavy atoms that

are bound to crystallographically related molecules offers a significant improve-

ment of the signal to noise ratio.

If there is more than one heavy atom site per non-crystallographic asymmetric

unit and the positions (with respect to the molecular centre) of one or more of

these atoms have been determined, then, it is possible to repeat the Type I

search with these heavy atoms ‘fixed’ at their known positions. This search can

be performed with or without knowledge of the position of the molecular centre.

A set of programmes has been developed to carry out the calculations required

for these two types of searches. Since in our case the amount of calculation

involved is not as large as in the case of icosahedral viruses (discussed in detail

by Argos, P. & Rossmann, M.G., ), no attempt was made to reduce the

number of vectors that are used in the various steps of the procedure. The

programmes allow the Type I search to be conducted with or without knowledge

of the position of the molecular centre or of any ‘fixed’ heavy atom sites. In

the translation function step (Type II search), all known heavy atom sites in the

non-crystallographic asymmetric unit can be used.

Although the Type I search need only be done within the non-crystallographic

asymmetric unit (that is, in the molecular as opposed to the crystallographic

frame), in the case of AhrC where the non-crystallographic symmetry was not

known with certainty, a more general scheme was used : the search was carried

out in the (orthogonal) crystallographic frame and a volume equal to a hemi-

sphere around the molecular centre was examined (the radius of the sphere is a
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user-defined parameter). This means that in those of our attempts where 32 sym-

metry was assumed, the amount of calculation involved was as much as 3 times

that needed. The advantages of this approach are (i) any point group symmetry

can be used without any need for modifying the programmes, and, (ii) the anal-

ysis of the results is simplified since no conversion to the crystallographic frame

is necessary. The programmes have been tested with hypothetical heavy atom

structures obeying various non-crystallographic point group symmetries (32, 622,

432, etc.). These calculations showed that when the number of heavy atoms in

the non-crystallographic asymmetric unit was greater than about three, spurious

peaks appeared in the Type I search conducted without knowledge of the molec-

ular centre. When the position of the molecular centre was treated as known, the

heavy atom positions could be easily identified in all cases examined.

All indications from the self rotation functions for both the native crystals

and the heavy atom structures (Chapter 4), have been examined using the Argos

& Rossmann method with the isomorphous difference Patterson functions for the

most promising AhrC derivatives.

From these attempts, we will discuss in detail the results from the calcu-

lations for the Niobium derivative which were based on the assumption that

the point group symmetry of the heavy atom structure is 32 with the 3-fold

at ω = 90◦, φ = 60◦ and one of the 2-folds parallel to z (discussed in Section

4.2.2). Figure 5.14 shows the results from the Type I search conducted without

knowledge of the position of the molecular centre. Figure 5.15 is the same search

but this time assuming that the molecular centre is at x = 0.13, y = 0.09 and

z = 0.225 (Because the programme calculates a volume equal to a hemisphere

around the molecular centre, some of the peaks in these maps are related by

non-crystallographic symmetry. Such peaks are marked by the same numeral).

The similarity of these two functions suggests that the assumed non-crystallo-

graphic symmetry is consistent with the previously determined position of the
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Figure 5.14: Argos & Rossmann, Type I search for Nb6Cl14, Molecular centre

unknown. Contours every 1.5σ with first contour at 1.5σ above the mean.
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Figure 5.15: Argos & Rossmann, Type I search for Nb6Cl14. Molecular centre

at x = 0.13, y = 0.09, z = 0.225.
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molecular centre. Figure 5.16 shows the results from the Type II search using only

the six atoms corresponding to the peak marked as (I) in Figures 5.14 and 5.15.

The highest translation function peak is at x = 0.13, y = 0.09 and z = 0.22

as expected. Peak (I) in Figures 5.14 and 5.15 is clearly the most significant

feature of these maps. The six heavy atom sites corresponding to it (through

application of the non-crystallographic symmetry operators) are at the corners of

an approximately regular octahedron whose edges are ≈14Å long. The orientation

of the octahedron is such that three orthogonal, intersecting, non-crystallographic

2-folds are parallel to the three crystallographic 2-fold axes, thus generating large

pseudo-origin peaks on all three Harker sections of the ∆F 2
calc Patterson function2.

0.0                       z                      0.5

x

0.5 y=2/32 y=3/32 y=4/32

Figure 5.16: Argos & Rossmann, Type II search for Nb6Cl14. Three sections

through the highest peak are shown.

A comparison of the observed 13-7Å sharpened isomorphous difference Pat-

terson function for the Nb6Cl14 derivative with the Patterson function calculated

2The three orthogonal non-crystallographic 2-folds are generated by the extra symmetry that
an octahedral arrangement of heavy atoms possesses : the point group symmetry of a regular
octahedron is m3m, which has the 32 point group as a subgroup.
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from these six heavy atom sites alone, is shown in Figure 5.17 (for clarity, the

contouring level for the observed Patterson has been increased to 3% of the ori-

gin peak). Although several of the most prominent peaks can be accounted for,

some of the predicted peaks are not present or are misplaced by 0.025 along w.

Least squares refinement of these six sites against all centric terms between 15

and 6Å resolution converged to rather high R-factors and a very low correlation

coefficient between the observed and calculated amplitudes for the heavy atom

structure.

An attempt to determine the heavy atom structure of the Iridium derivative

using SIRAS phases calculated from the unrefined six atom structure for the Nio-

bium derivative was unsuccessful. These problems suggested that the indications

from the self rotation function for the Niobium derivative could not lead to a

successful structure determination.

It was a surprise to find that a Fourier synthesis for the native crystals which

was calculated using SIRAS phases from the unrefined six atom structure for

the Nb6Cl14 derivative (Figure 5.18) showed well defined solvent channels with

a distribution of density which was in very good agreement with the model of

the crystal packing and the electron microscopical studies of AhrC crystals. The

calculation of reasonable low resolution protein density maps from incorrect heavy

atom structures was unexpected. Further investigation of this problem led to the

conclusion that when the non-crystallographic point group symmetry of the heavy

atom structure is the same as (or is a supergroup of) the crystallographic point

group symmetry and the non-crystallographic and crystallographic symmetry

axes are parallel, then, protein phases calculated from any heavy atom structure

that obeys the non-crystallographic symmetry are not random, but will lead

to a protein density map consisting of images of the origin-removed Patterson

function of an isolated protein molecule. To put this in a more practical way,

protein phases calculated from any heavy atom structure that can generate the
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Figure 5.17: Observed and calculated Patterson functions for the Nb6Cl14

derivative.
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Figure 5.18: 10Å [001] projection of native AhrC crystals, Top : (+), Bot-

tom : (−) hand. Phases calculated from the Niobium derivative modelled as an

octahedral arrangement of six sites.

large pseudo-origin peaks seen in the ∆F 2 Patterson function for the Niobium

derivative, are not random and are bound to generate reasonable, but incorrect

low resolution protein density maps.

Figure 5.19 shows the results of model calculations which were undertaken

in order to confirm the argument presented above. Figure 5.19(A) is the [010]

projection of the electron density of a hypothetical “native” crystal structure con-

sisting of 36 atoms obeying 32 symmetry with all non-crystallographic symmetry

axes at general orientations. Figure 5.19(B) is the projection of a “derivative”

of the structure shown in (A) : four “heavy” atoms have been added in such a

way that the heavy atom structure has point group symmetry 222 with the non-

crystallographic 2-fold axes parallel to all three crystallographic 2-folds (the space
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group of these hypothetical structures is C2221). Figure 5.19(C) shows the v = 0

section from the isomorphous difference Patterson function for this hypothetical

derivative. The large pseudo-origin peak at u = 0.25, w = 0.05 arises from the

parallelism between the non-crystallographic and crystallographic 2-folds. Least

squares refinement of a “heavy atom” site at the position of the molecular centre

against all centric terms between 13 and 6Å resolution gave statistics of accept-

able quality (Rc = 0.55, C = 0.59). SIRAS phases were calculated from this

refined atomic position and a Fourier synthesis for the “native” crystals was cal-

culated using coefficients m(Fp)eiαSIRAS . This is shown in Figure 5.19(D). It is

obvious that this map has high density at the correct position but the density

itself is incorrect (it is an image of the origin removed Patterson function of an

isolated hypothetical molecule).

It was not a surprise to find that a Fourier synthesis for the native AhrC

crystals which was calculated using SIRAS phases from the Niobium derivative

modelled with one site at the molecular centre (Section 3.1.1), showed the now

familiar distribution of density down the [010] and [001] directions (Figure 5.20).

The agreement between the permutation map (A) in Figure 4.6 with the [010]

projection in Figure 5.20 is worth noting.

In conclusion, the presence of non-crystallographic symmetry axes which have

a “special” orientation with respect to the crystallographic, makes a reasonable

low resolution protein map a necessary but not sufficient condition for the cor-

rectness of a proposed heavy atom structure.

5.4 Other Methods.

5.4.1 Permutation Syntheses Method.

The application of the permutation syntheses method to centrosymmetric, low

resolution terms, has been described (Section 4.3.2). The extension of the method
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Figure 5.19: (A) A hypothetical 36 atom structure, (B) Its derivative, (C) The

difference Patterson function, (D) A Fourier synthesis based on modelling the

derivative as a single site at the molecular centre.



Page 131
-0.5 z 1.5

x

1.5

-0.5 x 1.5

y

1.5

Figure 5.20: [010] & [001] projections of native AhrC crystals based on mod-

elling the Nb6Cl14 derivative as a single site at the position of the molecular

centre.
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in the special case of ∆F data is straightforward : Fourier syntheses are calculated

for all unique phase combinations of a small number of large ∆F terms, and the

most promising of these are further analysed by other methods (least squares

refinement, cross difference Fourier syntheses for other derivatives, etc.). The

resolution range over which these terms are chosen is important. Low resolution

∆F data are greatly affected by differences in the electron density of the solvent

of crystallisation and are not very useful for the determination of the heavy atom

positions. High resolution ∆F terms are sensitive to lack of isomorphism and

tend to give permutation maps with a grid pattern of fringes (this is due to the

small number of terms included in the syntheses). For most of our attempts, data

between 13 and 7Å resolution were used.

The application of the method to ∆F data is complicated by the fact that the

only criteria for selecting those phase combinations which are likely to be correct

are (i) the absence of heavy atom sites from what was known to be solvent areas,

and, (ii) the concentration of electron density at few atomic sites. Since in the

[010] projection the solvent channels are less well defined, our efforts focused on

the [001] projection. Figure 5.21 shows two of the most promising permutation

syntheses for the [001] projection of the Niobium derivative using the seven largest

hk0 terms between 13 and 8Å resolution. The agreement with the model of the

crystal packing and the concentration of the electron density at few atomic sites

is obvious, but, as further examination of these solutions suggested, it can only

be taken to mean that the data are not inconsistent with our presumptions.

Several sets of hk0 and h0l ∆F terms for the Niobium and Iridium derivative

have been examined. Although some of the heavy atom structures suggested by

the permutation maps could be refined with very good statistics, none of these

solutions led to protein projection maps with the expected distribution of density.
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Figure 5.21: [001] permutation syntheses for the Niobium derivative.

5.4.2 Molecular Replacement.

Examination of the sharpened isomorphous difference Patterson for the Niobium

and Iridium derivatives at the region around the origin of the function, led to the

development of several possible (partial) heavy atom structures. For example,

the u = 0.0 Harker section from the sharpened isomorphous difference Patterson

function for the Niobium derivative (Figure 5.22) shows strong peaks at the cor-

ners of an approximately regular hexagon centered at the origin of the function.

The average length of the vectors corresponding to those peaks is 14Å. A partial

heavy atom structure consisting of three sites at the corners of an equilateral

triangle with the 3-fold parallel to x and one of the edges parallel to z can ac-

count for these features. Similarly, the u = 0.0, v = 0.0, w line shows a regular

arrangement of equidistant Patterson peaks which can be accounted for by four

heavy atom sites arranged on a line parallel to z with interatomic distances equal
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to 13.8, 41.1 and 13.8Å.

The determination of the position of such models in the crystallographic frame

was attempted using the translation function programme BRUTE (Fujinaga, M.

& Read, R.J., ). For every crystallographically unique position of the search

model in the known cell, BRUTE calculates the correlation coefficient and the

R-factor between the observed and calculated intensities of the structure factors3.

Figure 5.23 shows three sections through the highest peak of the translation func-

tion for the second of the models described above. The major peak is at x = 0.13,

y = 0.09, z = 0.22 with a corresponding value of the linear correlation coefficient

of 0.42. The four heavy atom sites are symmetrically arranged about the as-

sumed position of the molecular centre. A comparison of the observed Patterson

function for the Niobium derivative with the Patterson function calculated from

these four heavy atom sites is shown in Figure 5.24. Because all four sites are

on a line parallel to z, the Patterson function calculated from this structure has

peaks only on sections v = 0.0 and v = 0.18. Although the agreement with the

observed Patterson function is acceptable (for a partial heavy atom structure),

these four sites could not be refined. Furthermore, a difference Fourier synthesis

for the Iridium derivative which was calculated using SIRAS phases from the

unrefined heavy atom positions, showed a more or less uniform distribution of

peaks that could not be interpreted in terms of a heavy atom structure. Very

similar results have been obtained from all models examined.

5.4.3 Direct Maximisation

of an Electron Density Function.

The [001] permutation syntheses in Figure 5.21 showed the level of clarity to be

expected even from few correctly phased hk0 terms. Our attempts to determine

3The procedure is made practical through the use of partial structure factors for each crys-
tallographically related copy of the search model. In this way, the computationally expensive
Fourier transforms can be avoided (Nixon, P.E. & North, A.C.T, )
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Figure 5.22: u = 0.0 Harker section from the sharpened isomorphous difference

Patterson function for the Niobium derivative. Contours every 2% of the origin

peak.
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Figure 5.23: Three sections from the translation function using BRUTE.
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Figure 5.24: Comparison of two sections from the observed (top row) and cal-

culated Patterson function for a four-atom structure.
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the phases of the hk0 terms using either the direct methods programme SHELXS-

86 (Section 5.2.1) or the Cochran & Douglas method (Section 5.2.3) have been

unsuccessful. The main problem with the application of the Cochran & Douglas

method to the hk0 terms, appears to be the absence of translational symmetry in

this projection. The plane group of the [001] projection is cmm for which F (hk) =

F (h̄k̄) = F (h̄k) = F (hk̄), that is, all crystallographically related structure factors

have the same phase and, thus, all triple sign products are satisfied with the trivial

solution s(Fh) = +1 for every h (This is not the case, for example, with the [010]

projection (plane group pmg) for which F (hk) = F (h̄k̄) = −F (h̄k) = −F (hk̄)

when l = 2n + 1). In other words, the “best” phase set from the Cochran

& Douglas method will be the one with all signs positive, and the phase sets

that follow will be linear combinations of the indices of the reflections that enter

the triple sign products. The solution with all signs positive will give a map

with a very large peak at the origin and will, thus, maximise the value of the

integral
∫
V

ρ3dV (Equation 5.2).

In the case of AhrC derivatives, where a large number of substitution sites

are present, the function
∫
V

ρ3dV —which reaches a maximum for the map with

the smallest number of peaks consistent with the data— is not very useful. An

attempt was made to identify an electron density function that would be more ap-

propriate for the given problem. The most promising results have been obtained

from the function
∫
V

ρ3dV/ max(ρ) is maximum positive. (5.11)

Model calculations showed that this function will take its maximum value for the

phase set which gives the largest number of peaks consistent with the data. The

same calculations showed that when a large number of sites is present, Equa-

tion 5.11 can give better results than Equation 5.2, that is, the correct phase

set can be closer to the top of the list of best solutions for Equation 5.11 than

for Equation 5.2 (Stanley, E.. ,  also discussed various electron den-
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sity functions, but his conclusion was that the most useful integral is
∫
V

ρ3dV .

Function 5.11 was not considered in his papers).

A programme was written, which for every unique phase combination of a

given number of terms, calculated the value of the function 5.11. At the end of

the procedure, the “best” phase sets were saved for further examination. Since

there is no analytical approximation to the value of max(ρ), it is necessary to

calculate a Fourier synthesis for each phase combination. This means that the

number of terms that can be examined is not as large as is the case for the

Cochran & Douglas method.

The programme has been tested with both hk0 and h0l ∆F data (the 21

largest differences between 13 and 7Å resolution were used for both calculations).

The top 100 phase sets from each run were evaluated as discussed in Section 5.2.3.

No convincing solutions could be identified.

5.4.4 Monte Carlo Methods.

We have seen how all analytical approaches to the problem of determining the

heavy atom structures of the most promising AhrC derivatives were unsuccessful.

It was hoped that a method based on a modified direct minimisation of a suitable

statistical metric (such as the R-factor or (1-C), where C is the linear correlation

coefficient), although less elegant, would avoid the need for any assumptions

other than the basic crystallographic requirement that the global minimum of the

chosen statistic corresponds to the true crystal structure or one of its homometric

pairs4.

Our first attempt with such a method was based on refinement of randomly

chosen atomic configurations : The random number generator was used to prepare

a list of fractional coordinates for a given number of atoms in the crystallographic

4Strictly speaking, this requirement can only be true in the case of very accurate (small
molecule) data. When the errors of measurement are significant, the correct treatment is given
by the Maximum Entropy methods.
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asymmetric unit. The positional parameters of those atoms were refined using

an implementation of Hart’s algorithm with target function the linear correlation

coefficient between the observed and calculated structure factor amplitudes. If the

value of the correlation coefficient after refinement was greater than a preset limit,

the refined positional parameters were stored for further use. The procedure was

repeated for a new random structure until a user-defined number of iterations had

been completed. In the final step, all atomic sites saved during the main part of

the the calculation were plotted on a map that was a copy of the crystallographic

asymmetric unit. If the procedure had been successful, these should cluster at

few, hopefully correct, atomic positions5.

Several tests with data calculated from hypothetical heavy atom structures

showed that the method could converge to the correct structure only when the

number of heavy atom sites was less that about six per asymmetric unit. This is

due to (i) the relatively small number of random structures that can be examined

(in the order of few thousands), and, (ii) the rather inefficient sampling of the

parameter space as will be discussed below. Several attempts with ∆F data for

the Niobium derivative showed no sign of convergence.

Khachaturyan, A., Semenovskaya, S. & Vainshtein, B.,  and Semen-

ovskaya, S.V., Khachaturyan, K.A. & Khachaturyan, A.G.,  (hereafter re-

ferred to as SKK) proposed a much more elegant and thoughtful Monte Carlo

approach to the determination of a crystal structure. They started by noting the

analogy between the determination of the thermodynamic equilibrium in statisti-

cal mechanics and the optimisation problem for a function of many variables, and

they argued that the problem of determining a crystal structure can be viewed

as that of determining the low-temperature state of a model gas composed of a

known number of atoms in a known unit cell, with the unit cell and the R-factor

5It is worth noting that following the development of this algorithm, an abstract of a paper
by Vand, V., Niggli, A. & Pepinsky,  was discovered in which a closely related method was
described.
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being regarded as a vessel and a potential energy term respectively. They sug-

gested that the low-temperature state can be determined with the variation of the

Monte Carlo method proposed by Metropolis, N., Rosenbluth, A.W., Rosenbluth,

M.N., Teller, A.H. & Teller, E.,  (but see also Rosenbluth, M.N. & Rosen-

bluth, A.W., , Wood, W.W. & Parker, F.R., , Alder, B.J. & Wainwright,

T.E., , Hammersley, J.M. & Handscomb, D.C., ) :

When a classical system is in thermodynamic equilibrium with its surround-

ings, the expectation F̄ of any state-function F (n) is given by

F̄ =
∫

F (n) exp(−En/kT )dn∫
exp(−En/kT )dn

(5.12)

where En is the energy of the state n, k is Boltzmann’s constant, T is the absolute

temperature of the surroundings and dn is a volume element in the multidimen-

sional phase space (the dimension of the integral in Equation 5.12 equals the

number of degrees of freedom of the system. For a two-dimensional structure

consisting of N particles, the integral is 2N -dimensional). The simplest Monte

Carlo method for calculating F̄ would be to choose a configuration n randomly,

calculate its energy En, give Fn a weight exp(−En/kT ) and iterate. When the

number of configurations tends to infinity, the weighted average of Fns will tend

to F̄ . This procedure is inefficient because with high probability we choose low-

weight states (that is, configurations for which exp(−En/kT ) is very small). The

adaptation of this rather primitive Monte Carlo method to the crystallographic

problem is obvious : an atomic configuration n is chosen randomly, the structure

factors Fh,n are calculated, the agreement between the observed and calculated

amplitudes —in the form of the R-factor— is evaluated, the Fh,n are given a

weight exp(−Rn/kT ) and the procedure is iterated. When the number of struc-

tures examined tends to infinity, the weighted average of the structure factors will

tend to its thermodynamic average both in amplitude and phase. As the temper-

ature of the system tends to zero, the thermodynamic average of the structure

factors will tend to the true (crystal structure) value. Clearly, this approach is
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very similar to our first attempt with a Monte Carlo method as described above.

The objective of the Monte Carlo method proposed by Metropolis, N., Rosen-

bluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E.,  is to generate a

series (formally : a Markov chain) of configurations in which each state n recurs

with frequency exp(−En/kT ). When such a chain of configurations has been

attained, the expectation F̄ of any state-function F (n) can be found by taking

the average of F over an infinitely long segment of the chain with all configura-

tions being given the same weight, or as the authors put it, “instead of choosing

configurations randomly and weighting them with exp(−E/kT ), we choose con-

figurations with a probability exp(−E/kT ) and weight them evenly”.

Their algorithm for choosing states with probability exp(−E/kT ), as modi-

fied by SKK for the crystallographic problem, is as follows. Initial coordinates

for all (N) atoms in the crystallographic asymmetric unit are chosen randomly

and uniformly. The random number generator selects one of these N atoms, and

one of the six nearest grid points to which that atom may migrate (the atoms are

constrained to move on a fine rectangular grid inscribed in the asymmetric unit).

Whether the atom will move to this new position or not is decided as follows : If

the new position is occupied by a different atom no migration occurs and the same

atomic configuration is used as a starting point for the next iteration. If the new

position is vacant, the change in the R-factor (∆R) resulting from the migration

to the new site is calculated. If ∆R ≤ 0, that is, the R-factor for the new config-

uration is lower, the move is accepted. If on the other hand, ∆R > 0 the move

may be realised with probability exp(−∆R/T ) : the random number generator

chooses a number ξ such that 0 < ξ < 1. If ξ < exp(−∆R/T ) the move is ac-

cepted, otherwise no migration will occur and the previous configuration is taken

to be the new configuration. Finally, a new atom is chosen and the procedure is

iterated. The proof that this algorithm chooses configurations with probability

exp(−R/T ) will not be given here (see Wood, W.W. & Parker, F.R.,  and
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Hammersley, J.M. & Handscomb, D.C., ). It is worth noting that since the

paper by SKK, this method of minimising the difference between the observed

and calculated amplitudes of the structure factors has been termed “the reverse

Monte Carlo method” and found uses in such diverse areas of science, as struc-

tural modelling of glasses (Keen, D.A. & McGreevy,  and references therein)

and ab initio phasing of low resolution data from protein crystals (Subbiah, S.,

, , David, P.R. & Subbiah, S., ).

What we are interested in, is the average value of the structure factors over a

segment of this chain of configurations that is sufficiently remote from its starting

point. If we start taking our averages at a ‘time’ t0 from the starting point of

the chain and the averages are calculated for the time interval (t0, t0 + t), then at

t → ∞ the average value of any structure factor will tend to its thermodynamic

average. If the temperature T is low, the system will spend most of its time close

to the ground state (that is, close to the global minimum of the R-factor) and

the average value of the structure factors (both amplitudes and phases) will tend

to their true values. SKK noted that the value of

η(h, t) =
|<Fh,t >|
|Fh | obs

(5.13)

where |<Fh,t >| is the amplitude of the average value of the structure factor

Fh at a time t and |Fh|obs is its observed value, will tend to 1 when the system

approaches the global minimum and to 0 when the system is in a disordered state

(it should be noted that there is no physical ‘time’ or ‘temperature’ involved in

these calculations. ‘Time’ is a variable counting successive atomic configurations,

whereas ‘temperature’ is a control parameter defining the average mobility of the

atoms). SKK used L-proline (which consists of 8 atoms excluding hydrogens)

as a model structure for testing their algorithm. For their calculations they

used a 15×15×15 grid (the average distance between grid points was 0.3Å), the

averaging procedure was started at t = 2.24 · 106 and lasted 7.04 · 105 time units.

The maximum deviation of the final phases from their true values was only 23◦
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and the phases of all reflections for which η(h, t) > 0.4 were correct.

A programme was developed to implement the ideas presented above. Al-

though the basic algorithmic steps are identical with those given in SKK, some

minor alterations were found to be necessary. The first modification is the cal-

culation of the free R value (Rfree) for a randomly chosen subset of reflections

(usually 10% of the total) that were not allowed to enter the expression for the

R-factor during minimisation (Brünger, A.T., a). Because Rfree is an unbi-

ased indicator of the information content of the atomic model, it can be used to

differentiate between a minimum of the R-factor that corresponds to the correct

solution and a local minimum with no structural significance. Rfree can also be

helpful in deciding the approximate number of heavy atom sites which are likely

to be present in the derivative. The second modification concerns the compu-

tational efficiency of the algorithm : the limiting step of the whole procedure is

the structure factor calculation. In their paper, SKK used a space-group specific

geometrical structure factor calculation algorithm (International Tables for X-

ray Crystallography, Vol. I, ). When the number of atoms and reflections is

small, this approach can be faster than FFT. What escaped their notice, however,

is that because at each step only one atom is being moved, the calculation can

be made independent of the number of atoms : If at t = 0 the contribution of

each atom to each reflection is calculated, then for the rest of the minimisation

it is only necessary to calculate the contribution to the structure factors of only

the atom that is being tested. The method is fairly efficient : for 170 reflections,

a DEC 4000 can go through 2314 configurations in one second of CPU time inde-

pendently of the number of atoms involved (the same algorithmic improvement is

also applicable to the method described by Subbiah, S., , , David, P.R.

& Subbiah, S., ).

Figure 5.25 shows the results from model calculations using a hypothetical

12-atom structure in plane group pmg : (A) and (B) show the variation of the
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R-factor and the free R value during the first 4,200,000 time units of the min-

imisation (the programme calculates and saves the average value of these two

metrics over successive segments of the chain. In this example, the averages were

calculated every 20,000 time units). It can be seen, that at t = 4, 000, 000 the

system reached a deep minimum with R=18% and Rfree=24% (the R-factor is not

0 due to the finite size of the grid used. For this calculation we used 7Å data with

a grid spacing of about 1.6Å). This minimum corresponds to the true structure,

shown in Figure 5.25(D) (the noise in this map is due to the omission of 56 weak

reflections from the minimisation). Figure 5.25(C) shows the Patterson function

for this hypothetical 12-atom structure. It is interesting to note that several

attempts to determine the same structure using the direct methods programme

SHELXS-86 have been unsuccessful : the violation of the assumptions behind

direct methods is so serious that even error-free data can not help.

Figure 5.26 shows typical examples of the results obtained from minimisations

using ∆F data from the most promising AhrC derivatives : both R-factor and

Rfree show a more a less uniform distribution with relatively high average values.

For most of the reflections, the η(h, t) values (Equation 5.13) at the end of the

minimisation were very close to zero and the ∆Fo exp(iφaveraged) maps could not

be interpreted in terms of a heavy atom structure. Numerous attempts with

different temperatures, number of atoms (6 to 16), chain lengths (4,000,000 to

50,000,000), averaging intervals (2,000,000 to 5,000,000), number of reflections,

cooling protocols, etc., have all given very similar (negative) results.

There are several different possible explanations for these problems : the num-

ber of heavy atom sites could be larger than 16, the chain length or the averaging

interval may be too short for the given problem, the errors of measurement may

be too large for the method to work, etc. Model calculations with hypothetical

structures consisting of up to 18 atoms showed that as the number of degrees of

freedom of the system increases, the distribution of the R-factor (for the same
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Figure 5.25: Monte Carlo : Results from model calculations with a hypothetical

12-atom structure. (A) R-factor, and, (B) Free R value during minimisation,

(C) The Patterson function, (D) The Fo exp(iφc) synthesis.
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Figure 5.26: Monte Carlo : R-factor and Rfree during two minimisations using

15-7Å h0l terms for the Niobium derivative, (A) : T = 0.007, 12 atoms, (B) :

T = 0.005, 16 atoms.
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number of observations) becomes more uniform with local minima as deep as the

global minimum. The same behaviour was observed when random errors were

introduced to error-free data in order to simulate the situation with ∆F data.

Although the free R value can help discriminating between a local minimum and

the correct solution, it can not be used to find the global minimum. Further-

more, if local minima are as deep as the minimum corresponding to the correct

structure, extending the length of the chain or lowering the temperature of the

system, will not help. Clearly, the best solution in such cases is to increase the

number of observations by using higher resolution data, but this would give no

improvement in the case of ∆F data from a heavy atom cluster.

5.4.5 An Attempt to Obtain Phase Information ab initio.

The knowledge of the position of the molecular centre together with a very low

resolution approximation to an AhrC hexamer (a sphere of constant density),

made possible the construction of a rudimentary model of the electron density

for the orthorhombic form. A programme was written which given the radius

and position (in the crystallographic asymmetric unit) of a number of spheres,

prepared a electron density map (using the CCP4 map format) of the whole

unit cell with the required number of spheres of constant density. This map

was back-transformed using the programme SFC from the CCP4 suite of pro-

grammes and the resulting phases were combined with the observed amplitudes

in a Fo exp(iφspheres) synthesis. Figure 5.27 shows a 7.7Å thick stack of four sec-

tions from a 115–15Å synthesis using phases calculated from a sphere of radius

32Å placed at the assumed position of the molecular centre.

Two features of this map are worth discussing : the first is the somewhat

peculiar distribution of the electron density in the form of concentric shells of

high density with regions of very low density between them. It is unlikely that

this is due to ripples arising from series termination errors, since the majority
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Figure 5.27: 115–15Å Fo exp(iφspheres) synthesis. Phases from a sphere of con-

stant density at the assumed position of the molecular centre.
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of the very low resolution reflections had been included in the calculation (it

should be noted, however, that because these terms were estimated visually from

precession photographs, their errors could be very large).

The second feature is the presence of an approximate non-crystallographic

3-fold axis parallel to y (indicated in Figure 5.27). This is consistent with the

results obtained from self rotation functions calculated using low resolution data

from native AhrC crystals (Figure 4.1). The appearance of a non-crystallographic

3-fold axis, which was not part of the starting model, raised hopes that phase re-

finement and extension through iterative real space averaging and solvent flatten-

ing, could allow us to obtain reliable phase information to a resolution sufficient

for determining the heavy atom positions (≈8Å for the Niobium cluster) : Ger-

ard Bricogne’s suite of programmes “Joy of skewing” was used to extract a box

containing a single hexamer from the Fo exp(iφspheres) map. This was averaged

about the assumed non-crystallographic 3-fold axis and the density of the result-

ing (averaged) map was interpolated back to the crystallographic frame with a

grid size identical to that of the original Fo exp(iφspheres) synthesis (Bricogne, G,

, ). A programme was written which reconstructed the whole C2221

cell from the averaged density of a single hexamer. It was at this stage that

regions outside a sphere of a given radius placed at the molecular centre (and its

crystallographically equivalent positions) were set to zero. An option to truncate

regions of very high negative or positive density was also available. The resulting

(averaged and solvent flattened) map was back-transformed using the programme

SFC, the observed and calculated amplitudes were brought to the same relative

scale using the programme RSTATS (from the CCP4 suite of programmes), and

the R-factor between them was calculated. The new phases could now be used to

calculate a Fo exp(iφc) synthesis and the procedure was iterated until convergence

(as judged from the R-factor between the observed and calculated amplitudes)

was achieved.
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Several attempts with Fo exp(iφspheres) syntheses calculated using data from

different resolution ranges failed to converge to convincingly low R-factors. Fur-

thermore, the electron density of the Fo exp(iφfinal) syntheses, where φfinal are the

phases from the last cycle of averaging, did not show the expected connectiv-

ity and were inconsistent with the low resolution images of the [001] and [010]

projections obtained from electron microscopy.

These problems suggested that the 3-fold appearance of the map shown in

Figure 5.27 is either accidental or an artifact of the procedure by which the phases

were obtained : The assumption that the molecule is a sphere of constant density

introduces extra (and probably unjustified) symmetry by imposing a centre of

symmetry on the phases calculated from it. Furthermore, the position of the

molecular centre is very close to 1/8th, 1/10th and 1/4th of the corresponding

unit cell translations (if the molecular centre is at 0.13, 0.09, 0.225 the differences

are ∆x = 1.15Å, ∆y = 0.74Å and ∆z = 3.45Å). The proximity of the x and z

coordinates to these “special” values, causes certain classes of acentric terms to

behave as if centric (this is because the structure factors calculated from a sphere

of constant density are identical to those calculated from a point atom with an

unusual form factor at the centre of the sphere). For example, when h + k = 2n

and l = 2n the real and imaginary parts of the corresponding structure factors

are proportional to :

A = cos(2πhx)cos(2πky)cos(2πlz) ≈ cos(πh/4)cos(πk/5)cos(πl/2)

B = −sin(2πhx)sin(2πky)sin(2πlz) ≈ sin(πh/4)sin(πk/5)sin(πl/2)

Clearly, if l = 2n then sin(πl/2) = 0 and B = 0. Also, for h = 2n+2, cos(πh/4) =

0 and A = 0. In other words, these reflections have phases 0 or π except when

h = 2n + 2, in which case F = 0. Because the z coordinate deviates significantly

from the value 0.25, some of the reflections for which A = 0 will have B �= 0 and

their phases will be ±π/2.
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It was not a surprise to find that a 20-12Å difference Fourier synthesis for the

Niobium derivative which was calculated using phases from spheres of constant

density at the assumed molecular centre, could not be interpreted in terms of a

convincing heavy atom structure.
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Chapter 6

Electron Microscopy

of AhrC Crystals

6.1 Introduction.

Despite our best efforts, the determination of the heavy atom structures of the

most promising AhrC derivatives proved impossible. Nonetheless, it was still

hoped that the presence of a six-fold redundancy in the observed data would be

powerful enough to allow the refinement and extension of an initial, low reso-

lution phase set to a point where difference Fourier methods could be used to

determine the positions of the heavy atoms (≈8Å for the Nb6Cl14 derivative). As

already discussed (Chapter 4), the major problems in this approach are the de-

termination of (i) the position of the molecular centre, (ii) the orientation of the

non-crystallographic symmetry axes, and, (iii) an initial, low resolution, phase

set. The main evidence supporting the model of the crystal packing presented

in Section 4.3, comes from the pseudo-origin peaks seen in the isomorphous dif-

ference Patterson map for the Niobium derivative. Although the agreement with

other, independent, methods suggested that this model was probably correct, the

possibility that the pseudo-origin peaks arise from non-crystallographic symmetry
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axes relating heavy atom sites bound on different (crystallographically related)

molecules could not be excluded with certainty, in which case all conclusions

drawn from this model would be incorrect. Clearly, an experimental demonstra-

tion of its correctness (or otherwise) would be very welcome. The determination

of the orientation of the non-crystallographic symmetry axes and of a low reso-

lution phase set can be combined. If a low resolution structure is available, the

orientation of the intramolecular symmetry axes (with respect to the density of

an isolated molecule) can be determined. The problem is then reduced to that of

correctly orienting the low resolution model in the given crystallographic frame

(assuming that the position of the molecular centre is known).

Electron microscopic image reconstruction methods are suitable both for con-

firming the model of crystal packing and for obtaining a low resolution image of

the structure of AhrC. The theory and practice of image reconstruction is very

well documented and will not be discussed in detail (Theory and Reviews : Klug,

A. & Berger, J.E., , Klug, A. & De Rosier, D.J. , De Rosier, D.J. &

Klug, A., , Crowther, R.A., De Rosier, D.J. & Klug, A., , Crowther,

R.A., Amos, L.A., Finch, J.T., De Rosier, D.J. & Klug, A., , De Rosier,

D.J. & Moore, P.B., , Crowther, R.A. & Amos, L.A., , De Rosier, D.J.,

, Erickson, H.P. & Klug, A., , Klug, A. & Crowther, R.A., , Unwin,
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D.L. & Green, N.M., , Ceska, T.A. & Henderson, R., , Valpuesta, J.M.,

Henderson, R. & Frey, T.G., , Henderson, R., Baldwin, J.M., Ceska, T.A.,

Zemlin, F., Beckmann, E. & Downing, K.H., , Grant, R.A., Schmid, M.F.

& Chiu, W., , Schultz, P. et al, & Oudet, P., , Holzenburg, A., et al, &

Ford, R.C., , Unwin, N., , Kühlbrandt, W., Wang, Da-N. & Fujiyoshi,

Y., , , Applications involving thin 3D crystals or a comparison with results

obtained from X-ray crystallography : De Rosier, D.J. & Oliver, R.M., ,

Cohen, C., Caspar, D.L.D., Parry, D.A.D. & Lucas, R.M., , Labaw, L.W.

& Davies, D.R., , Finch, J.T., Gilbert, P.F.C., Klug, A. & Leberman, R.,

, Langer, R., Poppe, C., Schramm, H.J. & Hoppe, W., , McPherson, A.

& Rich, A., , Shelley, K. & McPherson, A., , Akey, C.W. & Edelstein,

S.J., , Furcinitti, P.S., Oostrum, J. & Burnett, R.M., , Stoops, J.K., et

al, & Hackert, M.L., , Stewart, P.L., Fuller, S.D. & Burnett, R.M., ,

Voges, D., et al, & Huber, R., , Cheng, R.H., et al & Johnson, J.E., ).

The two problems that we wish to tackle have different requirements and dif-

ferent techniques are most suitable for solving them. To determine the crystal

packing we only need to identify and analyse two, preferably orthogonal, projec-

tions of thin three-dimensional AhrC crystals. Since the specimen preparation

procedure will involve crushing large crystals, only very small areas will be thin

enough to allow further analysis. This excludes the possibility of undertaking

electron diffraction experiments for this problem. In addition, the resolution re-

quirements are modest : even 30Å data should be adequate for confirming (or

otherwise) the model present in Section 4.3. Negative staining is clearly the

method of choice for this problem.

To determine the structure of AhrC to as high resolution as possible, other
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methods are needed : examination using cryo-electron microscopic techniques of

sufficiently large (>1 µm2) two-dimensional crystals or of specimens exhibiting

helical symmetry, can give phase information to a resolution not very much lower

than X-ray crystallography (Jeng, T.-W., Crowther, R.A., Stubbs, G. & Chiu,

W., , Unwin, N., . Kühlbrandt, W., Wang, Da-N. & Fujiyoshi, Y.,

), although negative staining of smaller two-dimensional crystals can also

prove adequate for our purposes.

Attempts at growing two-dimensional AhrC crystals suitable for electron mi-

croscopical studies have been unsuccessful. The majority of the conditions re-

sulted in amorphous precipitation of AhrC, although in some cases, linear aggre-

gates such as those shown in Figure 6.1 have been obtained (these may be related

to the trigonal form of AhrC).

The unavailability of two-dimensional AhrC crystals does not imply that a

low resolution structure can not be obtained from negatively stained thin three-

dimensional crystals : In the case of the orthorhombic form, there are 34 unique

reflections within the 30Å sphere. 91% of these can be measured from only 5

projections ([010] (14 reflections), [001] (5), [100] (3), [110] (6) and [130] (3)). If

the phases of these reflections can be determined experimentally, the calculation

of a three-dimensional (electron density) map is feasible.

The objective of this piece of work was to identify and analyse projections

of thin, negatively stained fragments of orthorhombic AhrC crystals. The phase

information obtained from these projections could then be combined with the X-

ray amplitudes and the resulting electron density maps could be used to determine

the crystal packing and a low resolution structure of the molecule.
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6.2 Image Reconstruction.

The discussion in this section will focus only on those aspects of image recon-

struction that are relevant to the problem under examination. The fundamental

principle of the method is the projection theorem : The Fourier transform of a

projection of a three-dimensional object is identical to a section from the Fourier

transform of the object which passes through the origin of the transform and is

perpendicular to the projection axis.

If the electron microscopic images of the projections of a thin crystal were

identical to those projections (that is, if the microscope was a perfect imag-

ing instrument), the experimental procedure would be straightforward : Fourier

transformation of the various projections would give both the amplitudes and

phases of the corresponding central sections of the three-dimensional transform

of the crystal, the complete transform could be built up section by section and

the three-dimensional potential density distribution of the crystal could be re-

constructed by back-transforming the complete three-dimensional transform.

Erickson, H.P. & Klug, A.,  showed that the effect of the various parame-

ters that modify the image of an object (such as spherical aberration, astigmatism

and defocus) are best understood in terms of their effect on the Fourier transform

of the object rather than the object itself : The Fourier transform (in circular

coordinates) of a two-dimensional object with a potential density distribution

function σ(x, y), is given by

T o(α/λ, φ) =
∫∫

σ(x, y)e−(2πi/λ)(xα cos(φ)+yα sin(φ))dxdy (6.1)

where α is the angle of scattering, λ is the electron wavelength and φ is the

azimuthal coordinate (in reciprocal space). The authors showed that if T i(α, φ)

is the Fourier transform of an image of the object, then,

T i(α, φ) = −T o(α, φ)f(α)A(α) sin [χ(α) + Φ(α)] (6.2)



Page 158

where f(α) is the atomic scattering factor for electrons, A(α) is a function defin-

ing the shape and dimensions of the objective aperture of the microscope and

sin [χ(α) + Φ(α)] is the so called contrast transfer function, with

χ(α) =
2π

λ

[
−Csα

4

4
+

∆fα2

2

]
(6.3)

In the last equation, Cs is the spherical aberration coefficient and ∆f is the

amount of defocusing. (This formulation of χ(α) is valid only when the axial

astigmatism has been corrected for). Φ(α) in Equation 6.2 is related (i) to the

ratio of the number of electrons scattered outside the objective aperture to those

that pass through it, and, (ii) to the fraction of electrons that are inelastically

scattered. It is zero if there is no objective aperture and no inelastic scattering

and its value increases with decreasing radius of the aperture or increasing atomic

number of the atoms that constitute the specimen.

Equation 6.2 shows that the Fourier transform of the image is proportional to

the Fourier transform of the object modulated by three factors all of which are real

numbers, and thus, affect only the amplitude of the transform. Of these factors,

the effects of the transfer function sin [χ(α) + Φ(α)] on the transform of the object

will be discussed in some detail. Figure 6.2 shows the variation of the values of the

transfer function versus reciprocal resolution (in nm−1) for different values of ∆f

and Φ(α), and assuming that λ = 0.042Å and Cs = 1.3mm. For ∆f = 0 nm and

Φ(α) = 0 rad (plot (A)), the transfer function has very small values for the region

from 0 to 0.5 nm−1, which means that all low resolution terms with dmin > 20Å

do not contribute significantly to the image. The function reaches a maximum at

about 1.8 nm−1 (dmin = 5.5Å) and these terms will contribute to the image with

maximum positive contrast. At about 4.6Å resolution (2.15 nm−1) the function

goes to zero (and corresponding parts of the transform do no contribute to the

image) and then changes sign. The sign reversal means that the phases of all

terms between 4.6 and 3.9Å resolution (when it reaches again zero) are shifted by

180 degrees. The physical interpretation of this phase shift is that corresponding
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(A)

(B)

(C)

(D)

Figure 6.2: Variation of the transfer function versus resolution (in nm−1) for

different values of ∆f and Φ(α) : (A) 0 nm, 0 rad (B) 90,0 (C) 500,0 and (D)

Superposition of 90,0 and 90,0.2
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parts of the transform of the object contribute with reversed contrast to the image

(areas that should be white will appear black). For ∆f = 90 nm, Φ(α) = 0 (plot

(B)), low resolution terms again do not contribute significantly to the image, but

the function remains close to its optimum value for a wide resolution range (from

about 12 to 4.5Å resolution). When ∆f = 500 nm and Φ(α) = 0 (plot (C))

low resolution terms contribute to the image, but at higher angles the function

oscillates rapidly between positive and negative contrast. Finally, plot (D) shows

the effect which Φ(α) has on the transfer function. The two superimposed graphs

correspond to ∆f = 90 nm, Φ(α) = 0.2 rad and ∆f = 90 nm and Φ(α) =

0.0 rad (identical to (B)). It can be seen that the most important difference is

the enhanced contribution of the low resolution terms to the final image1.

In Figure 6.3, the effects of the transfer function on the images and their

transforms are illustrated through a series of images of the [001] projection of a

thin, negatively stained AhrC crystal, obtained at different values of ∆f . For

each image, the modulus of its Fourier transform is also shown. For the in focus

image (A) both the transform and the image have a smooth appearance, with

most of the reflections very weak or missing. At ∆f ≈ 640 nm (Image (B)),

all reflections out to 20Å are strong and internal detail is clearly visible in the

image. As the value of ∆f increases from ≈1200 nm (C) to 1900 nm (D) and

3250 nm (E), the phases of some of the higher resolution reflections are reversed

and corresponding image details appear white instead of black, which together

with the enhanced contribution from low resolution terms, reduces the amount of

detail in the corresponding images. The effects of the contrast transfer function

on the transform are obvious. For example, the reflection 5,1 is relatively strong

in (C), it is missing in (D), and reappears in (E) but with its phase reversed.

Similarly, the reflection 0,2 in images (D) and (E) has its phase reversed.

The preceding analysis shows the importance of choosing the amount of un-

1A constant value for the function Φ(α) is unrealistic, but it illustrates its effect in the reso-
lution range of interest for this study in a simple and direct manner.
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Figure 6.3: Focus series of a thin, negatively stained AhrC crystal down the

[001] axis. Approximate defocus values are (A) in focus, (B) 640 nm, (C) 1200

nm, (D) 1900 nm, (E) 3250 nm, (F) > 3500 nm.
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derfocus that will optimise the value of the transfer function in the resolution

range of interest, but without introducing sign reversals. We will now discuss

what the resolution range of interest is in the case of AhrC. Negative staining

techniques set an upper resolution limit of about 18Å. Since our intention is to

combine the phases determined from image reconstruction with the amplitudes

determined from X-ray crystallography, it is important to choose a resolution

range for which the phases of all terms are determined by the contrast between

protein and solvent of crystallisation and not by the internal structure of the

protein (Bragg, W.L. & Perutz, M.F., ). A safe estimate would be a high

resolution cutoff equal to the longest dimension of the largest domain of AhrC.

A value of 25Å is probably an overcautious estimate, giving an optimum ∆f at

about 650 nm2.

The availability of amplitudes determined from X-ray crystallography makes

the whole procedure of image analysis much simpler. As long as the first zero

of the transfer function is outside the resolution range of interest, image recon-

struction can proceed as if the microscope was a perfect imaging instrument : no

corrections for the effects of the transfer function are necessary.

6.3 Specimen Preparation, Data Collection and

Image Processing.

AhrC crystals were crushed in a stabilising solution consisting of 10% MPD and

100 mM acetate buffer at pH=4.9. A droplet of the solution containing the

crystal fragments was transferred to a carbon-coated grid and allowed to stand

2It is worth noting that the difference in the contrast between protein and solvent in the crystals
and between stain and stain-excluding regions in the micrographs, affects only the amplitudes of
the reflections and not their phases, and so, does not invalidate the process of combining X-ray
amplitudes with electron microscopy phases. On the other hand, positive staining is a potentially
serious problem. The assumption will be made that the amount of positive staining is so small
that it can not reverse the sign of the strong reflections.
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by optical diffraction using a He/Ne LASER-powered optical diffractometer and

digitised using a Joyce-Lobel microdensitometer with a scan step of 25 µm. Fur-

ther processing of CCD images or digitised micrographs was performed using the

MRC/CCP4 suite of programmes, as follows.

The image was displayed using the programme DSLOAD, and a well pre-

served area was extracted using the programme BOXIM. This was transformed

using FFT and the transform was displayed and masked using DSLOAD. The

masked transform was back-transformed and the filtered image examined with

DSLOAD. If the projection could be identified (from the transform, the filtered

image or through an automatic procedure described below), the reciprocal lat-

tice parameters were refined (programme MMLATREF) and the amplitudes and

phases of the observed reflections were extracted (MMBOX). A programme was

written which determined the phase shifts that must be applied in order to move

the origin of the image to a permissible for the given plane group position. The

value of two useful phase residuals could now be calculated : The first residual is

applicable to centrosymmetric terms only, and equals the mean phase difference

between the observed phase angles and the values expected from symmetry con-

siderations. The second residual is the mean phase difference between symmetry

related reflections. In the final step, the phase angles were set to their expected

values, they were combined with the corresponding X-ray amplitudes and the

electron density map was calculated.

A programme was written to help with the identification of projections that

could not be recognised by inspection. The programme generated the coordinates

(in reciprocal space) of all reflections of the orthorhombic form within the 30Å

sphere and calculated the agreement between the observed reciprocal lattice and

each of the unique reciprocal lattice planes (within the 30Å sphere). At the end

of the procedure, a user-defined number of “best” solutions was written out for

further examination.
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6.4 Characterised Projections.

6.4.1 The [001] Projection.

The great majority of well preserved areas examined, belonged to this projec-

tion. This is consistent with the presence of protein layers parallel to the xy

plane (Section 4.3). Most of the [001] images analysed showed reflections out to

about 25Å, although in one case, periodicities of the order of 18Å could be de-

tected (Figure 6.5). A typical CCD image of this projection, recorded at ≈640 nm

underfocus, is shown in Figure 6.6. Figure 6.7(A) is the modulus of its Fourier

transform and Figure 6.7(B) shows the phases and amplitudes of individual reflec-

tions. It can be seen that most of the strongest reflections have phases very close

to the expected values (0 or π), and the phases of symmetry related reflections

are similar. Within the 25Å sphere, the value of Rsymm for six pairs of sym-

metry related reflections is 20.2%, the mean phase difference from the expected

phase angles (0 or π) for 18 observed reflections is 23.0◦ and the mean phase

difference between symmetry related reflections (six pairs) is 26.5◦ (the expected

values of these two phase residuals for a random distribution of phase angles are

45◦ and 90◦ respectively). Figure 6.8 shows the variation of the mean phase dif-

ference between the observed phase angles and those expected from symmetry

considerations as the origin is moved systematically over the entire unit cell. The

four peaks are equivalent by crystallographic symmetry and they correspond to a

mean phase difference between observed and expected phase angles of 14.6◦ (only

the 11 strongest reflections have been used for this calculation).

Figure 6.9(A) shows the 25Å FX−rays exp(iφEM) synthesis for this projection

and Figure 6.9(B) is the same map but with its contrast reversed. This should be

compared with Figure 6.9(C) which is a magnified area from the filtered image.

Given that map (C) is based on EM amplitudes which have not been corrected

for the effect of the transfer function and EM phases that have not been set to



Page 166

h00 0k0

530

 _ 
040

Figure 6.5: Modulus of the Fourier transform of a well preserved image of the

[001] projection. The positions of two weak but observed reflections corresponding

to spacings of 21.5 (530) and 18.3Å (04̄0) are indicated.

34.5 nm

Figure 6.6: CCD image of the [001] projection recorded at ∆f ≈ 640 nm.
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Figure 6.7: (A) Modulus of the Fourier transform of an image of the [001]

projection, and, (B) The phases (in degrees) and amplitudes (arbitrary units)

of all observed reflections.
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Figure 6.8: Results from the origin search using the 11 strongest hk0 reflections.

Contours every 0.5σ with first contour at 0.5σ above the mean (45◦).

their expected values, the agreement between these two maps is unexpectedly

good.

Two points about this projection are worth discussing. The first is its con-

sistency with the model of the crystal packing : The density corresponding to

two overlapping AhrC hexamers is organised in three interconnected high-density

areas (marked as I, II and III in Figure 6.9(B)), which surround a central, low

density region. The x coordinate of the centre of gravity of these three domains

is 0.13, in very good agreement with the previously obtained value. Due to the

overlap, the y coordinate can not be determined accurately, but, the diameter of

the solvent channels suggests that its value must be close to zero, as expected.

The second point to note is that the distribution of density gives no hints about

the orientation of the non-crystallographic symmetry axes. This is not surprising,

given that this is a projection down a 138Å long axis.
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Figure 6.9: (A) and (B) : The [001] projection at 25Å resolution using X-ray

amplitudes and EM phases, (C) : Magnified area from the filtered image.
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6.4.2 The [010] Projection.

This projection is not as common as the [001] and only a handful of images have

been obtained. Of these, only one image gave a Fourier transform which showed

reflections extending beyond the first or second order. The image is shown in

Figure 6.10. Figure 6.11(A) is the modulus of its Fourier transform, and in

(B), the phases and amplitudes of individual reflections are shown. The phase

relationships for this projection are more complex : For l = 2n + 1 the phases

should be ±π/2 with Fh0l = −Fh0l̄. When l = 2n the phases are expected to be 0

or π with Fh0l = Fh0l̄. Within the 25Å sphere, the Rsymm for 13 pairs of reflections

is 14.0%, the mean phase difference between the observed phase angles and the

values expected from symmetry considerations is 21.5◦(31 reflections) and, finally,

the mean phase difference for 13 pairs of symmetry related reflections is 35.7◦.

Figure 6.12(A) is the 25Å FX−rays exp(iφEM) synthesis for the [010] projection

and Figure 6.12(B) is the same map but with its contrast reversed. Figure 6.12(C)

is a magnified area from the filtered image. Maps (B) and (C) are again very

similar. The agreement between map (B) and the distribution of density in the

two-cell thick area of the original image (Figure 6.10), is worth noting.

The experimentally determined electron density of the [010] projection is again

consistent with the model of the crystal packing : The density corresponding to

a single AhrC hexamer is organised in three high-density areas, marked as I, II

and III in Figure 6.12(B) and a low density extension, marked as IV. Domains

I, II and IV are well connected, but the connectivity of area III is not obvious.

The z coordinate of the centre of gravity of domains I, II and III is very close

to the expected value of 0.22. It should be noted, however, that the position

of the geometrical centre is significantly different with z ≈ 0.17. Although this

projection is only one molecule thick, it is again difficult to interpret this electron

density map in terms of a projection of a hexamer with 32 point group symmetry.
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Figure 6.11: (A) Modulus of the Fourier transform of the image shown in

Figure 6.10, and, (B) The phases and amplitudes of all observed reflections.



Page 173

-0.25 x 1.25

1.25

z

(A)

(B)

(C)

I

II
IIIIV

Figure 6.12: (A) and (B) : The [010] projection at 25Å resolution using X-ray

amplitudes and EM phases, (C) : Magnified area from the filtered image.
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14.8 nm

Figure 6.14: [101] projection : (A) Modulus of the Fourier transform, (B) Fil-

tered image, (C) View of the model of the crystal packing, (D) 4◦ precession

photograph of the hkh plane, and, (E) The intensity-weighted reciprocal lattice.
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6.4.4 The [130] Projection.

This projection was again identified through the automatic procedure described

in Section 6.3. Figure 6.15(A) shows the modulus of the Fourier transform of a

selected area and (B) is the corresponding filtered image. The order is not well

preserved : the highest resolution reflection is 311, corresponding to dmin = 49Å.

Figure 6.15(C) is a view of the model of the crystal packing down the [130] axis

and, (D) is a tone representation of the 50Å FX−rays exp(iφEM) synthesis for this

projection.

6.5 Other Projections.

It has not been possible to index the Fourier transforms of all relatively well

preserved images. Figure 6.16 shows two examples of transforms that resisted

all our attempts to index them, together with the corresponding filtered images.

One characteristic common to all these projections is that each has been observed

only once, which suggests that they may correspond to “rare events” of the spec-

imen preparation procedure. The electron micrograph in Figure 6.17 provides an

example of such an event : different areas of a seemingly uniform crystal have

striking differences both in their appearance and in the observed periodicities.

The simplest explanation is that the thickness of the corresponding areas is not

the same and that their difference is less than one unit cell along the projection

axis (adding one unit cell-thick layers should leave the projection unchanged).

Other possible problems arising from the preparation procedure are : (i) speci-

mens that are less than one unit cell thick along the projection axis, (ii) uniformly

distorted crystalline areas (usually through bending), (iii) one unit cell-thick crys-

tals that are tilted with respect to the electron beam, etc. All images whose

transform could not be indexed in terms of a projection of the three-dimensional

crystals, have been discarded.



Page 177

27.6 nm

3h,h,0

00l

z

z0.0 2.0

(A) (B)

(C)

(D)

Figure 6.15: [130] projection : (A) Modulus of the Fourier transform, (B)

Filtered image, (C) View of the model of the crystal packing, (D) 50Å synthesis

using X-ray amplitudes and EM phases.
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Figure 6.16: Moduli of the Fourier transforms (first column) and filtered images

(second column) of two projections which could not be characterised.
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the crystal about the [101] axis in such a way that the [010] axis is parallel to the

tilt axis of the microscope, and, (ii) Tilt the crystal by 30.8◦or -30.8◦depending on

the orientation of the axes. This will be the [100] projection. The [110] projection

can now be reached by aligning the [001] direction with the tilt axis and then

rotating about it by 17.8◦. The two most serious problem with this procedure

are : (i) the great majority of well preserved areas belong to the [001] and [010]

projections, both of which are at right angles to the missing projections, and,

(ii) Because tilting increases the apparent thickness of the specimen, very thin

and relatively large crystals are needed. Attempts at finding crystals suitable for

this type of experiment have been unsuccessful.

The second solution would be to fix the crystals with, say, glutaraldehyde,

embed them in a polymer and cut sections perpendicular to the required axes

in an ultramicrotome. (as described, for example, in Labaw, L.W. & Davies,

D.R.,  or Langer, R., Poppe, C., Schramm, H.J. & Hoppe, W., ). AhrC

crystals proved very sensitive to this treatment : fixing them for 2 hrs in 0.5%

(v/v) glutaraldehyde resulted in a complete loss of the diffraction pattern. No

further consideration was given to this method.

Within the 30Å sphere, there are 12 non-centrosymmetric terms whose phases

are unknown and 22 centrosymmetric terms whose signs are all known with the

exception of three 0kl terms. It was decided to calculate phases for all non-

centrosymmetric terms from a model of the electron density of the crystal con-

sisting of spheres of constant density at all crystallographically equivalent posi-

tions of the molecular centre. These would be combined with the experimentally

determined phases and a 30Å three-dimensional electron density map could be

calculated.

The amount of error introduced into the final three-dimensional map from

this procedure depends on how good a model a sphere of constant density is

for the given structure. Figures 6.18 and 6.19 illustrate this : Column (A) in
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Figure 6.18 shows six sections through the density corresponding to a hypo-

thetical 32 hexamer at 30Å resolution. Column (B) shows equivalent sections

through the density of a sphere of constant density from which phases for all

non-centrosymmetric terms were calculated. Column (C) is the map obtained

from the mixed phase set and (D) is the difference between (C) and (A). Clearly,

map (C) is a good approximation to the true density. Figure 6.19 shows the same

calculations but for a hypothetical molecule (Column (A)) for which a sphere of

constant density (Column (B)) is not a good model. The map calculated from the

mixed phase set (Column (C)) is now a bad approximation to the true density,

although, some correct features (such as the lack of density on section y = 10/16)

are still present.

These model calculations suggest that (i) the final three-dimensional map can

be a good approximation to the true structure only in favorable cases, (ii) the

errors introduced in the final model can not be predicted, and, (iii) if a sphere

of constant density is a bad approximation to the density of one molecule in the

final map, then, serious errors are almost certainly present.

Figure 6.20(A) is a surface representation (drawn at ≈1.5σ above mean) of

the 30Å electron density map corresponding to one hexamer. The most striking

feature of this map is its lack of symmetry. The density is organised in six domains

(marked I to VI in Figure 6.20) : Domains I, II and III are well connected and the

same is true for domains IV, V and VI. Both trimers are irregular in shape and

their relative orientation deviates significantly from that expected from a regular

(32 or 6) hexamer. Figure 6.20(B) is a one molecule thick stack of sections

from the same map, but this time the view is down the [010] axis. This should be

compared with (C) which is the equivalent part of the experimentally determined

[010] projection. The three high-density areas in the [010] projection can be

identified with projections of the domains I, II and V; III and VI; and IV.

Although several features of this map might prove to be correct, the fact that
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(A) (B) (C) (D)

 y=4/16

 y=6/16

 y=8/16

y=10/16

y=12/16

y=14/16

Figure 6.18: Sections through (A) : the density of a hypothetical 32 hexamer

at 30Å resolution, (B) : a sphere of constant density, (C) : the map calculated

with the mixed phase set, (D) : the difference map (C)-(A).
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(A) (B) (C) (D)

 y=4/16

 y=6/16

 y=8/16

y=10/16

y=12/16

y=14/16

Figure 6.19: Sections through (A) : the density of a hypothetical molecule at

30Å resolution, (B) : a sphere of constant density, (C) : the map calculated with

the mixed phase set, (D) : the difference map (C)-(A).
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Figure 6.20: (A) : Surface representation of the 30Å electron density map, (B) :

a stack of sections from the same map, and, (C) the corresponding area from the

[010] projection.
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a sphere of constant density is a bad approximation to its density and the absence

of the expected symmetry elements, suggested that this model contains serious

errors. Attempts to refine the phases (at constant resolution) though real space

averaging have been unsuccessful.
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Chapter 7

Molecular Replacement

7.1 The Model.

Greg van Duyne and Paul Sigler (Yale University) determined the crystal struc-

ture of the hexameric core (residues 80–152) of the Arginine Repressor from

Escherichia coli (ArgR) at 2.5Å resolution. They generously made the atomic

coordinates of their model available to us before publication. Their help is grate-

fully acknowledged.

Richardson type diagrams (Richardson, J.S., , drawn using MOLSCRIPT,

Kraulis, P.J., ) of the structure of the protomer, trimer and hexamer are

shown in Figure 7.1 : (A) and (B) are orthogonal views of the structure of the

protomer (the rotation axis is parallel to the longest dimension of the page). It

consists of two adjacent β-hairpins and two α-helices which run approximately

parallel to each of the hairpins, with an inter-helix angle of ≈90◦. In (C) the

orientation of the protomer is identical to the one seen in the trimer when viewed

along the 3-fold axis (shown in (D)). Views (B) and (C) are approximately re-

lated by a 70◦ rotation about an axis parallel to the shortest dimension of the

page. (E) and (F) are views of the hexameric core along the 3-fold and one of

the 2-fold axes respectively. The hexamer is organised as a dimer of trimers in an

appoximately eclipsed conformation. Small deviations from exact 32 symmetry
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Figure 7.1: Schematic diagrams of the structure of the hexameric core of ArgR

(Greg van Duyne and Paul Sigler, personal communication).
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are present.

A sequence alignment of AhrC and ArgR in the region of interest is shown in

Figure 7.2. From a total of 73 amino acids, 34% are identical and another 23%

are similar. Following Chothia, C. & Lesk, A.M., , the root mean square

deviation in the positions of main chain atoms is expected to be ≈1.37Å.

ArgR 80- SPLKNLVLDIDYNDAVVVIHTSPGAAQLIARLLDSLGKAE

AhrC 78- RALMDAFVKIDSASHMIVLKTMPGNAQAIGALMDNLDWDE

.* . . ** ..*. * ** ** *. *.*.*. *

ArgR GILGTIAGDDTIFTTPANGFTVKDLYEAILELFDQEL -156

AhrC -MMGTICGDDTILIICRTPEDTEGVKNRLLELL -149

..*** *****. .. . .***.

Figure 7.2: Pairwise alignment of the C-terminal region of ArgR and AhrC.

The structure of the hexameric core of ArgR accounts for less than half of

the scattering material present in the asymmetric unit of the orthorhombic form

of AhrC. Determination of the structure of AhrC from the ArgR model alone,

although possible, would not be trivial. It was hoped that the phase information

obtained from even half of the structure would allow the determination of the po-

sitions of the heavy atoms. The MIRAS phases could, then, be combined with the

phases from the correctly oriented and positioned model, the non-crystallographic

symmetry operators and the molecular envelope(s) determined from the (hope-

fully) improved MIRAS-MR map and the procedure of phase refinement and

extension could be initiated.

The following sections describe the results from our attempts to solve the

molecular replacement problem for both the orthorhombic and monoclinic forms

of AhrC.
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7.2 Orthorhombic Form.

7.2.1 The Programmes ALMN-TFFC and AMoRe.

Our first attempts at determing the correct orientation of the hexameric core of

ArgR were based on the fast rotation function (Section 4.2) as implemented in the

programmes POLARRFN and ALMN from the CCP4 suite of programmes. The

result from numerous attempts with different resolution ranges and integration

radii was an inconsistent collection of uniform distributions of peaks. Some of

the orientations obtained were further tested using the Crowther & Blow, ,

T2 translation function as formulated by Harada, Y., Lifchitz, A., Berthou, J. &

Jolles, , and modified by Tickle, I.J., ,  to allow for subtraction of

all intramolecular vectors (programme TFFC from the CCP4 suite) :

T2(t) =
∫
V

(Po(u) − P11(u))(Pc(u, t)− P11(u))du (7.1)

where, u is a vector in Patterson space, Po is the Patterson function of the un-

known crystal, Pc(t) is the Patterson function calculated from a model structure

(in the space group of the unknown crystal) which is obtained by translating the

model by t before applying the crystallographic symmetry and P11 is the Pat-

terson function corresponding to the set of intramolecular vectors of the model

in the space group of the unknown crystal1. All translation functions examined

showed, as before, a more or less uniform distribution of peaks, none of which

was consistent with the assumed position of the molecular centre. Model calcu-

lations with data calculated from hypothetical structures in space group C2221

showed that these problems were not due to a space group specific bug in the

programmes.

Our next attempt at solving the molecular replacement problem was based

1Equation 7.1 represents the convolution of two Patterson functions, and by the convolution
theorem, the Fourier transform of T 2 is the product of the Fourier transforms of these functions.
T 2 can, thus, be obtained by Fast Fourier Transformation of a set of coefficients corresponding
to the product of the Fourier coefficients of the Patterson functions.
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on AMoRe, a package of programmes developed by Navaza, J.,  (and refer-

ences therein), and modified by Dodson, E., for the CCP4 suite of programmes.

AMoRe uses a modified fast rotation function (Crowther, R.A., ) which is

made more accurate by (i) omitting low (angular) resolution spherical harmonic

coefficients, and, (ii) by using numerical integration instead of Fourier-Bessel ex-

pansions (Navaza, J, ). Because AMoRe calculates and stores the whole

molecular transform, both the fast rotation function and the Crowther & Blow

translation function are made even faster, thus allowing an automatic exploration

of a large number of rotation function solutions (typically the best 100 solutions).

Again, the great majority of cross rotation functions examined showed a more

or less uniform distribution of peaks, with no identifiable consistency between re-

sults obtained from different calculations. It should be noted, however, that when

low resolution data were used (12-6Å), the translation functions corresponding to

some of the best orientations, gave top peaks at the assumed position of the molec-

ular centre. Difference Fourier syntheses for the Niobium derivative which were

calculated using phases from these solutions were uninterpretable. No progress

could be made with any of these solutions.

7.2.2 X-PLOR.

Brünger, A.T., , b, proposed a new strategy for solving the molecu-

lar replacement problem and incorporated his ideas in the programme X-PLOR

(Brünger, A.T., c). The first step in this approach, is the calculation of a

rotation function based on Huber’s real-space Patterson search algorithm (Hu-

ber, R., ) : the Patterson function of the search model placed in a P1 cell

is calculated, the vectors corresponding to a user-defined number of the highest

peaks are saved and, then, for every unique rotation matrix Ω, the value of

RF (Ω) =< PobsPmodel(Ω) > (7.2)
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is calculated. In this equation, Pobs is the Patterson function of the unknown crys-

tal and Pmodel(Ω) is the rotated Patterson function of the search model consisting

of only the selected peaks.

In the second step, a large number of the best solutions from the rotation

function are examined using the “Patterson Correlation refinement” procedure

(PC-refinement). This is a conjugate gradient minimisation of the target function

(1−PC(Ω, Ωi, ti)), where Ω is the rotation matrix defining the orientation of the

molecule, Ωi are rotation matrices of individual domains or other collections of

atoms that are treated as rigid bodies, ti are the corresponding translations, and

PC(Ω, Ωi, ti) =
< E2

oE
2
c (Ω, Ωi, ti)− < E2

o >< E2
c (Ω, Ωi, ti) >>√

< E4
o− < E2

o >2> − < E4
c (Ω, Ωi, ti)− < E2

c (Ω, Ωi, ti) >2>

(7.3)

The right-hand side of Equation 7.3 is the linear correlation coefficient between

the squared normalised amplitudes of the structure factors of the unknown crystal

(E2
o) and of the model structure placed in a P1 cell identical in geometry with

the unknown crystal (E2
c (Ω, Ωi, ti)). This is equivalent to calculating the linear

correlation coefficient between the (sharpened) observed Patterson function and

the Patterson function of the model structure in a P1 cell. Clearly, the aim of

PC-refinement is to maximise the agreement between the predicted and observed

intramolecular vectors, by making the tacit assumption that cross vectors between

crystallographically related molecules (in the unknown crystal) can be treated as

noise. If the procedure is successful, PC-refinement of the correct orientation will

converge to a much higher value of the correlation coefficient than any of the false

solutions. An additional advantage of this approach, is that the availability of a

refined model can offer a significant improvement of the signal to noise ratio in a

subsequent calculation of a translation function.

The translation function in X-PLOR is identical to the one used in BRUTE

(discussed in Section 5.4.2), the only difference being that X-PLOR uses E-values

instead of F s (although it is possible to do the calculation on F s).
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Several attempts with different resolution ranges, integration radii, number

of vectors and PC-refinement protocols, have all resulted in a more or less uni-

form distribution of the PC metric. When low resolution data were used, some

promising solutions appeared. Figure 7.3 shows the results from PC-refinement

of the best 298 orientations from a rotation function calculated with 13-5Å data,

integration radius 25Å and 1000 vectors : (A) is the value of the Patterson Cor-

relation coefficient before refinement of the orientation of the hexamer and (B)

is after 15 cycles of conjugate gradient minimisation of the target function.

(A)

(B)

Figure 7.3: The value of the PC metric, (A) before, and, (B) after PC refinement

of the orientation of the hexamer for the best 298 solutions from a rotation

function calculated with low resolution data.

A translation function which was calculated using the orientation correspond-

ing to the highest peak from this search (indicated by an arrow in (B)), gave a

uniform distribution of peaks none of which was close to the expected position

of the molecular centre. Similar results have been obtained from all orientations
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examined.

The organisation of the hexamer as a dimer of trimers and the not very

extensive interface between the two trimers suggested that the relative orientation

of the trimers about the 3-fold might not be the same for AhrC and ArgR.

Figure 7.4 shows the results from PC-refinement using as a search model only

the ArgR trimer. The lack of signal is again evident.

(A)

(B)

Figure 7.4: The value of the PC metric, (A) before, and, (B) after PC refinement

of the orientation of the ArgR trimer for the best 198 orientations from the

rotation function.

Similar calculations (using X-PLOR and AMoRe) have been carried out with

models of the hexameric core in which the two trimers have been rotated with

respect to each other by -15, -10, -5, 5, 10 and 15◦ (the rotation is about the

common 3-fold axis). Again, no convincing solutions could be identified.

Brünger, A.T., c, suggested a new “Direct Rotation Function” algorithm.

This is a calculation of the PC metric (without refinement) for all unique orien-
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tations of the molecule. The best solutions from this search are then subjected

to the usual PC-refinement. Figure 7.5 shows the results from this search.

Figure 7.5: The value of the PC metric after PC refinement of the orientation

of the ArgR hexamer for the best 216 orientations from the “Direct Rotation

Function”.

Our final attempt at solving the molecular replacement problem was a brute

force approach based on the knowledge of the position of the molecular centre :

for every unique orientation of the search model, the translation corresponding

to one of the equivalent positions of the molecular centre was applied, the crys-

tallographically related molecules (in the space group of the unknown crystals,

C2221) were generated, and 12 cycles of rigid-body refinement of the orientation

of the hexamer were carried out (target function was the correlation coefficient

between the observed and calculated amplitudes of the structure factors). Since

both intra- and inter-molecular vectors are used, this search is expected to be

more powerful than PC-refinement (assuming that the position of the molecular

centre is known with sufficient accuracy). Figure 7.6 shows the values of the

correlation coefficient (after rigid-body refinement) for 7030 unique orientations
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and for two searches conducted using data from different resolution ranges (a 10◦

step size of the three Eulerian angles (α, β, γ) was used for both calculations).

The search using 7-5Å data has also been performed with the molecular centre

at x = −0.13, y = −0.09 and z = −0.225 but with similar (negative) results.

(A)

(B)

Figure 7.6: Results from a brute force search using X-PLOR. (A) 9-7Å,

(B) 7-5Å.

7.3 Monoclinic Form.

7.3.1 A Model of the Crystal Packing.

Analysis of the [001] and [010] projections of monoclinic AhrC crystals allowed

us to obtain a model of the crystal packing for this form. Because this model

was subsequently used to judge the results obtained from the translation function

calculations, the procedure by which it was determined will be discussed in this

Section.
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The presence of a centered superlattice in the [001] projection was inferred

from a precession photograph of the hk0 level (Figure 2.8 in Chapter 2). This

pattern of systematically weak and strong reflections generates a large peak at

u = 0.5, v = 0.25 in the low resolution [001] native Patterson projection (shown

in Figure 7.7).

1.25

-0.25 1.25u

v

(A)

(B)

Figure 7.7: Monoclinic form : (A) 202-12, and, (B) 202-15Å [001] native Pat-

terson projection. Contours every 3% of the origin peak.

The height of this peak is ≈37% of the origin peak, fairly close to the value

expected for a Patterson peak arising from the presence in the unit cell of two

crystallographically independent molecules which are related by a simple transla-

tion. Given that both the b (=72.6Å) and c (=73.0Å) translations are too short

to allow significant overlap of two hexamers, we conclude that the four molecules

in the unit cell are resolved in this projection. Since the large peak is at u = 0.5,
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the two molecules whose projections are related by a simple translation must

belong to different asymmetric units, that is, the translation u = 0.5, v = 0.25

must relate the projection of one of the molecules in the asymmetric unit with

a crystallographically equivalent copy of the second. This immediately suggests

that the sum of the x coordinates of the two molecules in the asymmetric unit

is ≈0.5. Furthermore, since we require that after application of the crystallo-

graphic symmetry to the second molecule, its projection will be identical to that

of the first, we can conclude that the two molecules in the asymmetric unit are

related by a non-crystallographic “glide” line parallel to y with a translational

component of ≈0.25. Because the plane group of this projection (pg) is polar,

the y coordinate of one molecule can be set to 0.0 to fix the origin, in which

case the second molecule is at y ≈ 0.25. This leaves only one parameter to be

determined : the x coordinate of only one of the molecules in the asymmetric

unit, or equivalently, the separation between them.

We have determined this coordinate by three different methods : (i) examina-

tion of very low resolution permutation syntheses, (ii) analysis of the native Pat-

terson projection, and, (iii) through a systematic correlation search. Figure 7.8

shows the two unique permutation maps for the two strongest low resolution

[001] reflections (110 and 210)2. Clearly, the first synthesis is the only reasonable

solution. The two molecules in the asymmetric unit are seperated by 0.25 along

y as expected. Their x coordinates are x1 = 0.149 and x2 = 0.351 (=0.5-0.149).

The x coordinates of the projection of the two molecules in the asymmetric

unit can be determined more accurately from the [001] native Patterson projec-

tion : because the non-crystallographic symmetry (a “glide” line with a trans-

lational component of 0.25 parallel to y) is parallel to the crystallographic glide

2Because this projection is non-centrosymmetric, four possible phase angles were examined for
each reflection (±π/4, ±3π/4). Although the total number of phase combinations is 16, fixing
the origin and the enantiomorph leaves only 4 unique phase sets. The electron density maps
corresponding to these four sets are two syntheses plus their Babinet opposites. Because only two
reflections are used, the electron density maps of each pair of Babinet opposites are equivalent
(related by a simple translation), leaving only two unique syntheses.
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1.25

-0.25 1.25x

y

Figure 7.8: Monoclinic form : [001] Permutation syntheses.

line, cross vectors between molecules related by both crystallographic and non-

crystallographic symmetry will coincide at u = 2x1, v = 0.5 and at u = 2x2,

v = 0.5, thus generating significant Patterson peaks at those positions. The

expected peaks are obvious in the 202-15Å Patterson projection (marked by an

arrow in Figure 7.7(B)) but not in the 202-12Å map, suggesting again that the

non-crystallographic symmetry is not exact. Their positions are u = 0.33 and

u = 0.67, giving x1 = 0.165 and x2 = 0.335. The difference from the values

determined from the permutation synthesis is 3.2Å.

Finally, an attempt was made to determine the x coordinates through a sys-

tematic search : A programme was written which for every position (along x) of

a disc of constant density calculated the correlation coefficient and R-factor be-

tween the observed and calculated amplitudes of the structure factors. Figure 7.9

shows the results obtained from a search conducted with a disc of radius 28Å and
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all data between 202 and 22Å resolution (18 reflections). The highest peak is at

x ≈ 0.10 but the function has high values for the whole range from x=0.09 to

x=0.20.

(A)

(B)

Figure 7.9: Results from a systematic search along x using discs of constant

density, (A) Correlation coefficient, (B) R-factor.

The analysis of the [010] projection was again based on examination of low

resolution permutation syntheses and on a systematic search using discs of con-

stant density. Figure 7.10 shows the 60Å permutation map that gave the best

agreement with the previously established x coordinates of the two molecules.

Their z coordinates (as determined from this map) are 0.138 and 0.550.

A programme was written which for every crystallographically unique combi-

nation of the coordinates of two discs of constant density, calculated the R-factor

and linear correlation coefficient between the observed and calculated amplitudes

of the structure factors. The best solution from this search (with C = 0.79 and

R = 0.38) placed the centre of the two discs at x1 = 0.10, z1 = 0.15 and x2 = 0.42,

z2 = 0.55.
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1.25

-0.25

1.25

z

x

Figure 7.10: [010] Projection : A 60Å permutation synthesis (6 reflections :

1̄01, 100, 101, 200, 201 and 300).

In conclusion, the positions of the molecular centres of the two hexamers in

the asymmetric unit of the monoclinic form have been determined as x1 ≈ 0.16,

y1 = 0.0, z1 ≈ 0.15 and x2 ≈ 0.34, y2 ≈ 0.25, z2 ≈ 0.55.

7.3.2 Molecular Replacement.

Several attempts (using AMoRe and X-PLOR) to solve the molecular replacement

problem for this crystal form have again been unsuccessful. When low resolution

data were used, some promising solutions appeared, but no progress could be

made with any of them.

Figure 7.11(C) and (D) shows results obtained from PC-refinement of the best

121 orientations from a rotation function calculated using 8-5Å data. The uniform

distribution of peaks in these graphs is typical of the calculations performed.

Figure 7.11(A) and (B) shows results obtained from PC-refinement of the best

302 orientations from a rotation function calculated using very low resolution

data (12-7Å). Comparison of Figures 7.11(A) and (B), shows that the two peaks
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(A)

(B)

(C)

(D)

Figure 7.11: Values of the PC metric before (A and C) and after (B and D)

PC-refinement of the best solutions from two rotation functions calculated using

12-7 and 8-5Å data.
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(B)

Figure 7.12: Monoclinic form : Results from two translation function calcula-

tions in X-PLOR (A) 12-7, (B) 8-5Å. Contours every 0.5σ above mean.

that are clearly above the noise level in (A), are still the highest peaks in (B),

but the distribution of the Patterson correlation coefficient after PC-refinement

is more uniform.

Figure 7.12 shows two translation functions which were calculated in X-PLOR

using the same orientation (the one corresponding to the highest peak from PC-

refinement) but different resolution ranges (12-7Å for (A) and 8-5Å for (B)).

The more or less uniform distribution of peaks and the inconsistency of the two

functions is obvious. Similar results have been obtained from all translation

functions examined.
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Discussion

Before discussing the future prospects of this project, the results from some

experiments which have not been mentioned in the preceding Chapters will be

presented.

We saw in Chapter 3 that most of the heavy atom containing compounds

damage the crystals even at very low concentrations. It was thought that these

problems were due to the presence of two cysteine residues in AhrC. Coleen

Miller (Department of Genetics, University of Leeds) prepared (using PCR-based

site-directed mutagenesis) three mutant forms of the ahrC gene encoding for

proteins in which either or both of the cysteine residues were substituted for

serine. Attempts to purify the products of these genes showed that their solubility

properties were totally different from that of the native AhrC; all three mutants

are insoluble in Arg buffer (Section 2.1.1) containing NaCl with concentrations

ranging from 100 mM to 3 M. A possible explanation of this result is that the

mutants can not fold properly and have, thus, formed inclusion bodies.

Carol Holtham (Department of Genetics, University of Leeds) prepared a gene

construct encoding for a chimaeric molecule consisting of the N-terminal (DNA-

binding) domain of AhrC (residues 1-87) and the C-terminal domain of ArgR
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(residues 91-156). The product of this gene has solubility properties very similar

to that of the native AhrC and it was purified as described in Chapter 2. At-

tempts to crystallise this AhrC-ArgR chimaera under conditions similar to those

used for AhrC have been unsuccessful. Further attempts using other, unrelated

crystallisation conditions (including a commercially available wide screen) have

also been unsuccessful.

The availability of a model for the hexameric core fragment of ArgR and the

problems encountered with obtaining a Molecular Replacement solution for the

AhrC crystals (Chapter 7) suggested that an attempt to prepare and crystallise

the core fragment of AhrC would be a worthwhile exercise : Its structure could

be determined by Molecular Replacement using the hexameric core fragment of

ArgR as a search model and the thus determined structure could, in turn, be used

as a search model for the native AhrC crystals. Due to the unavailability of a gene

construct encoding for the C-terminal domain of AhrC, it was decided to prepare

the core fragment through proteolytic cleavage of intact AhrC. Figure D.1 shows

the results from the attempt to cleave AhrC using the V8 endopeptidase.

1

Figure D.1: Lane 1 : Intact AhrC, Lanes 2, 3, 4, ..., samples taken after 2, 4,

8, ..., minutes of incubation in the presence of 2% (w/w) V8 at 38◦C.
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process of phase refinement and extension. Although our attempts at growing

two-dimensional crystals have not been successful, the range of conditions tried

is by no means exhaustive and further attempts may be in order.

One other promising way for determining the structure of AhrC is to pursue

the crystallographic studies of the AhrC-ArgR chimaera or of individual domains

of AhrC, especially the hexameric core fragment. Although proteolytic cleavage

of intact AhrC gave a relatively pure preparation of this fragment, a serious

crystallographic study would probably require the production of a gene construct

encoding for the C-terminal domain of AhrC.

Finally, crystallisation of an AhrC-DNA complex would not only be exciting

in itself, but it might also make the preparation of useful heavy atom derivatives

with few sites easier (through chemical modification of the DNA).
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tograph corresponds to a superposition of more than one reciprocal lattice plane

can not be excluded with certainty. For this reason a detailed interpretation will

not be attempted. One conclusion that can safely be drawn, however, is that

the lattice is rhombohedral and not primitive as was incorrectly deduced from

examination of the hk0 and hk1 precession photographs (Figures 2.10 and 2.11

in Chapter 2). The only possible enantiomorphic space groups are R3 and R32

and since the hk0 level has symmetry 6mm (Figure 2.10), the space group is R32

and not P312 or P321 as discussed in Section 2.2.3.

Figure A.2: Magnified area of the precession photograph shown in Figure A.1.
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