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ABSTRACT: Folding molecular dynamics simulations amounting to a grand total of
4 μs of simulation time were performed on two peptides (with native and mutated
sequences) derived from loop 3 of the vammin protein and the results compared with
the experimentally known peptide stabilities and structures. The simulations faithfully
and accurately reproduce the major experimental findings and show that (a) the native
peptide is mostly disordered in solution, (b) the mutant peptide has a well-defined
and stable structure, and (c) the structure of the mutant is an irregular β-hairpin with a
non-glycine β-bulge, in excellent agreement with the peptide’s known NMR structure.
Additionally, the simulations also predict the presence of a very small β-hairpin-like
population for the native peptide but surprisingly indicate that this population is
structurally more similar to the structure of the native peptide as observed in the
vammin protein than to the NMR structure of the isolated mutant peptide. We
conclude that, at least for the given system, force field, and simulation protocol, folding molecular dynamics simulations appear to
be successful in reproducing the experimentally accessible physical reality to a satisfactory level of detail and accuracy.

1. INTRODUCTION
The increased accuracy of the latest generation of empirical
force fields together with the long time scales currently available
has transformed the field of molecular dynamics simulations.1

Numerous studies have demonstrated the ability of folding
molecular dynamics simulations to accurately reproduce the
folded state of small proteins and peptides.2−13 Especially in the
field of peptide structure, a consensus appears to slowly
emerge: the AMBER99SB family of force fields (mainly the
ILDN and STAR-ILDN variants14−16) with the TIP3P water
model17 and full (PME-based) electrostatics18 have repeatedly
been shown to be able to accurately predict the structure and
dynamics of peptides ranging from very stable folders,5,13−16 to
mostly disordered peptides,12,13,19−21 and for all structural
motifs from mainly helical5,12,15,16 to almost exclusively β-
hairpin-like.16,21 This increased accuracy has shifted the interest
to the question of how accurate and sensitive are folding
simulations in predicting the effect of relatively small changes in
the initial conditions.
In this spirit, we examine here the ability of folding molecular

dynamics simulationsin explicit solvent and with full
electrostaticsto reproduce the effects of mutations on peptide
structure and dynamics. The system we selected to study is
based on two variants of the vammin-derived peptides that
were synthesized and thoroughly examined experimentally by
the Jimeńez group.22 The two peptides are (a) the native
peptide corresponding to loop 3 of the vammin protein (PDB
entry 1WQ8, residues 69−80) hereafter referred to as the
native (Nat) peptide and (b) the W3W10 double tryptophan
mutant designed by Mirassou et al.,22 hereafter referred to as

the mutant (2W) peptide. The sequences of these two peptides
(with the mutated sites highlighted in red) are shown in the
lower panel of Figure 1. The major experimental findings22 with
which the results from the simulations will be compared are as
follows:
(a) The isolated native peptide is largely disordered in

solution, with no discernible long-range NOEs and with Hα,
13Cα, and

13Cβ chemical shifts that are very close to their
expected random coil values.22 This is to be contrasted with the
irregular β-hairpin structure that this same peptide adopts when
observed as part of the complete vammin protein X-ray
structure (the structure of the peptide as seen in the vammin
1WQ8 crystal structure is shown in the upper panel of Figure
1). The implication is clear: the native peptide’s irregular β-
hairpin structure (Figure 1) is only stable within the scaffold of
the fully folded protein but not in isolation. The reason for that
is probably that in the fully folded protein the β-hairpin is
flanked by a third (antiparallel) β-strand with which it forms a
three-stranded antiparellel β-sheet.
(b) In contrast with the native peptide, the double

tryptophan mutant (V3 → W, S10 → W) assumes a very stable
structure in solution. The adopted structure was shown22 to be
almost as stable as that of a designed quadruple mutant
containing a disulfide bridge connecting the termini of the
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peptide (the C1C12W3W10 peptide in the Mirasssou et al.
nomenclature22).
(c) This stable structure of the 2W mutant was determined

via NMR spectroscopy and was shown to be an irregular 4:6 β-
hairpin with a non-glycine β-bulge, an edge-to-face stacking of
the tryptophans’ indole rings (with W3 at the edge position and
W10 at the face position), and unusual dihedral angles for the
Q8 (bulge) residue located in the αL region of the
Ramachandran plot.23 A schematic representation of the
NMR structure of the isolated 2W mutant demonstrating the
tryptophan stacking is shown in Figure 1. Note that the
difference in stability between the native and mutant structures
is not due to differences in the hydrogen bonding pattern which
is virtually unchanged between the two structures shown in
Figure 1.
In the following paragraphs, we describe the simulation

protocol and the analyses performed, followed by a detailed
comparison between the computational results and the
experimental findings. We conclude by discussing the
implications of these results with an emphasis on the question
of how close are peptide folding simulations to the stage of
serving as dependable and robust analytical tools for predicting
peptide structure and dynamics.

2. METHODS
2.1. System Preparation and Simulation Protocol. The

starting peptide structures were in the fully extended state, as
obtained from the program Ribosome (http://www.roselab.jhu.
edu/∼raj/Manuals/ribosome.html). Addition of missing hydro-
gen atoms and solvation-ionization were performed with the
program LEAP from the AMBER tools distribution.24 For both
simulations, we used periodic boundary conditions and a cubic
unit cell sufficiently large to guarantee a minimum separation

between the PBC-related images of the peptides of at least 16
Å. We followed the dynamics of the peptides’ folding
simulations using the program NAMD26 for a grand total of
4 μs (2 μs for each peptide) using the TIP3P water model,17

the AMBER99SB-ILDN force field,16 and adaptive tempering25

as implemented in the program NAMD (adaptive tempering is
formally equivalent to a single-copy replica exchange folding
simulation with a continuous temperature range; for our
simulations, this temperature range was 300−500 K inclusive
and was applied to the system through the Langevin
thermostat, see below).
The simulation protocol for both peptides was the following.

The system was first energy minimized for 1000 conjugate
gradient steps followed by a slow heating-up phase to the final
temperature of 300 K (with a temperature step of 20 K) over a
period of 32 ps. Subsequently, the system was equilibrated for
10 ps under NpT conditions without any restraints, until the
volume equilibrated. This was followed by the production NpT
run with the temperature and pressure controlled using
Langevin dynamics and the Langevin piston barostat control
methods as implemented by the NAMD program, with
adaptive tempering applied through the Langevin thermostat,
while the pressure was maintained at 1 atm. The Langevin
damping coefficient was set to 1 ps−1, and the piston’s
oscillation period to 200 fs, with a decay time of 100 fs. The
production run was performed with the impulse Verlet-I
multiple time step integration algorithm as implemented by
NAMD. The inner time step was 2 fs, short-range nonbonded
interactions were calculated every one step, and long-range
electrostatics interactions every two time steps using the
particle mesh Ewald method with a grid spacing of
approximately 1 Å and a tolerance of 10−6. A cutoff for the
van der Waals interactions was applied at 8 Å through a
switching function, and SHAKE (with a tolerance of 10−8) was
used to restrain all bonds involving hydrogen atoms.
Trajectories were obtained by saving the atomic coordinates
of the whole system every 0.8 ps.

2.2. Trajectory Analysis. The programs CARMA27 and
GRCARMA28 have been used for almost all of the analyses,
including removal of overall rotations/translations, calculation
of RMSDs from a chosen reference structure, calculation of the
radius of gyration, calculation of the average structure (and of
the atomic root mean squared fluctuations), production of PDB
files from the trajectory, Cartesian space principal component
analysis and corresponding cluster analysis, dihedral space
principal component analysis and cluster analysis, calculation of
the frame-to-frame RMSD matrices, calculation of similarity Q
values, etc. Secondary structure assignments were calculated
with the program STRIDE.29 All molecular graphics work and
figure preparation were performed with the programs VMD,30

RASTER3D,31 and CARMA.
2.3. Extent of Sampling. Quantifying the extent of

sampling of molecular dynamics trajectories is always difficult,
even more so in the case of folding simulations where the
configurational space is vast. There are two aspects of the
problem. The first is to quantify the extent of sampling with
respect to the full configurational space accessible to the
system, irrespectively of whether the peptides are in the folded
or unfolded state. For all reasonable simulation time scales
and considering the number of feasible unfolded conforma-
tionsthis (global) coverage will almost certainly be poor. The
secondmore relevantquestion concerns the extent of
sampling of only the peptides’ stable conformers. Such a

Figure 1. Peptide structures and sequences. The upper panel shows
schematic diagrams of the structures of (a) the native peptide as
observed in the crystal structure of the vammin protein (PDB entry
1WQ8, residues 69−80) and (b) the representative solution (NMR)
structure of the 2W mutant. Please note that the isolated native
peptide is disordered in solution and the structure shown here is only
meaningful within the context of the fully folded vammin protein. In
both diagrams, residues 3, 5, and 10 are marked to aid interpretation
and cartoon representations of the secondary structure elements have
been used with the following color coding of the STRIDE-derived
secondary structure assignments: yellow → β structure, cyan → turns,
white → coil. The lower panel shows the sequences of the native
(Nat) and mutant (2W) peptides with the mutated sites highlighted in
red.
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differentiation is feasible in our case because stable conformers
are associated with low adaptive tempering temperatures. We
tackle both of these questions through the application of a
recently described approach32 which is based on the application
of Good-Turing statistics to estimate the probability of
unobserved peptide conformations as a function of the
RMSD from all already observed (in the trajectory) structures.
For the calculation, we have used the computer program
available via https://github.com/pkoukos/GoodTuringMD.
The results are shown in Figure 2 in the form of three graphs.

The two upper (black and red) graphs in this figure quantify
and compare the extent of sampling for the two peptides,
without differentiating between stable or unstable and folded or
unfolded configurations. These graphs clearly show the better
sampling for the more stable 2W peptide, as will be discussed in
the next section. The lower (orange) curve in Figure 2 is the
Good-Turing estimate for the 2W trajectory but only including
peptide structures whose corresponding adaptive tempering
temperature was less than 320 K. Because these structures
mostly correspond to stable peptide conformations, the lower
curve is the answer to the question “what is the probability that
if we continue the simulation we will observe a stable peptide
conformation with an RMSD (from all other already observed
stable peptide conformations) higher than X Angstrom?”
Clearly, the analysis suggests that all major stable conformers
of 2W have been sampled. The corresponding analysis (i.e.,
with a temperature cutoff) for the native peptide is meaningless,
since the native peptide is disordered (see next section).

3. RESULTS
3.1. The Native Peptide Is Mostly Disordered, the

Mutant Peptide Has a Well-Defined Structure. The upper
row of graphs in Figure 3 compares the log density

distributions of (Tadaptive vs Q) for the two simulations, where
Tadaptive is the adaptive tempering temperature, Q is the
similarity index33 to the experimentally known peptide
structures (with a value of 1.0 corresponding to a structure
identical with the experimentally known), and hot colors in the
graph indicate high log density (i.e., that a large number of
structures from the trajectory have the corresponding values of
Q−T). Because these graphs contain a wealth of information
but are not very common in the literature, we will discuss them
in some detail. We start by presenting the expected form of
these graphs in the case of an ideally disordered peptide
(meaning a peptide with a completely flat energy landscape for
any and all of the temperatures visited during a given
simulation) and compare it with what would be expected
from a peptide with an ideally perfect folding funnel. An ideally
perfect disordered peptide wouldat least for all reasonably
available simulation time scalesgive a density distribution
that would resemble a vertical line close to zero on the Q-values
and covering the whole range of temperatures. The reason is, of
course, that a disordered peptide will spend almost all of the
simulation time away from any given structure irrespectively of
the temperature of the system. On the other hand, a peptide

Figure 2. Convergence and sufficient sampling. Results from the
application of Good-Turing statistics to estimate the extent of
sampling of the native and mutant trajectories as produced by the
GoodTuringMD program (https://github.com/pkoukos/
GoodTuringMD). The two upper graphs (black and red) are the
estimates of the probability of unobserved species (i.e., thus far
unobserved peptide conformers) as a function of the RMSD from all
already observed conformations of the native (black curve) and
mutant (red curve) trajectories. The lower (orange) curve is the
Good-Turing estimate for the 2W trajectory but only including
peptide structures whose corresponding adaptive tempering temper-
ature was less than 320 K. See section 2.3 for details.

Figure 3. Comparative analysis of the native and mutant trajectories.
The four rows compare from top to bottom (a) the Q−T diagrams,
(b) the RMSD matrices, (c) the adaptive tempering temperature
distributions, and (d) the secondary structure assignments. See section
3.1 for a detailed discussion of this figure.
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with an ideally perfect folding funnel would give a graph
resembling a section through a half-funnel: structures with low
Q (disordered-unfolded configurations) would be associated
with high temperatures, and structures with high Q (native-like,
stable structures) would be associated with low temperatures.
As is obvious from Figure 3, the behavior of the two peptides
follows closely the descriptions above. The mutant (2W)
peptide shows a clear funnel-like distribution with two major
concentrations, one at the high(Q)−low(T) part of the diagram
(lower right, corresponding to the basin of the folding funnel)
and the other at the low(Q)−high(T) end of the diagram
(upper left, corresponding to unfolded conformations). In
contrast with the mutant, the native peptide lacks any
significant features at the high(Q)−low(T) part, and the
distribution closely resembles a vertical line at low Q values, as
would be expected from a largely disordered peptide. Even at
this early level of the analysis, the differences between the two
peptides are so pronounced that they leave little doubt: the
native peptide is disordered, and the 2W mutant has a funnel-
like folding landscape with a single deep minimum that
corresponds to a stable structure very similar to the one
determined experimentally.
The RMSD matrices shown in the second row of Figure 3

corroborate with and expand the conclusions drawn from the
Q−T diagrams. These matrices represent an all-to-all
comparison between the structures recorded from each of the
corresponding trajectories, and are presented in this figure with
a color coding in which dark blue corresponds to low RMSD
values (very similar structures), going through yellow (RMSDs
of approximately 6 Å) to dark red which corresponds to high
RMSD values (dissimilar structures, RMSDs of approximately
12 Å). The upper half of these matrices was calculated using the
Cα atoms only, and the lower half, all non-hydrogen atoms.
Dark blue boxes centered on the diagonal of those diagrams
indicate stable peptide conformations that persist in time,
yellow-red areas indicate disordered fast-interconverting
peptide conformations, and off-diagonal dark blue areas
indicate that the simulation repeatedly and independently
visited the same peptide structure. Clearly, the native peptide
hardly takes any long-lasting stable conformations and spends
almost all of the 2 μs long simulation interconverting between
numerous different peptide conformations. In contrast, the 2W
mutant spends most of the simulation time having a stable
structure (blue areas of the diagram) which is being recurrently
visited through several unfolding and refolding events. The
unfolding events are associated with high adaptive tempering
temperatures, as can be seen in the graphs immediately below
the RMSD matrices. These diagrams (third row of Figure 3)
show the log density distribution of the adaptive tempering
temperatures as a function of simulation time and are in a one-
to-one correspondence with the RMSD matrices in the vertical
direction. Comparison of the RMSD matrix with the temper-
ature distribution for the 2W peptide clearly indicates that
unstable fast-converting peptide structures (yellow-red areas of
the RMSD matrix) correspond to the high temperature range
of adaptive tempering.
Finally, the graphs in the last row of Figure 3 show the per-

residue secondary structure assignments for the two simulations
as a function of time. The assignments are as obtained by
STRIDE with yellow corresponding to β structure, cyan-
magenta to turns and 310-like turns, and white to coil. Taken
together with the RMSD matrices (with which they are in a
one-to-one correspondence), a clear picture emerges: the 2W

peptide takes up a stable β-hairpin (β-turn-β) structure that
persists for the great majority of the simulation and is only
given up at the high temperature regime of adaptive tempering.
The native peptide interconverts between numerous unstable
conformations, with only a very minor β-hairpin population
which was briefly visited at approximately 0.3, 1.4, and 1.8 μs
(this conformation corresponds to the very light blue area
centered at Q ∼ 0.6 in the native peptide’s Q−T diagram).

3.2. The Major Conformation for Both Peptides Is a β-
Hairpin but with Large Differences in Stability. If
molecular dynamics is to be used as a stand-alone analysis
tool aiming to identify from first-principles whether a given
peptide has a stable structure, and if yes, which one this stable
structure is, it is important that the selection of a representative
structure from the molecular dynamics trajectories is unbiased,
i.e., made completely agnostic of any experimental information
available for the systems being studied. For this work, unbiased
representative structures were selected as follows. In the first
stage, dihedral principal component analysis (dPCA) was
performed,34,35 and an initial set of clusters was identified by
three-dimensional dPCA cluster analysis as performed by the
program CARMA. In the second stage, these dPCA-derived
clusters were used as input to a three-dimensional Cartesian
PCA clustering but using only the peptides’ backbone atoms.
The result from these two stages is a set of prominent clusters
with distinct backbone conformations but without any
differentiation with respect to putative heterogeneity in the
side chains’ conformations. In the final step, these clusters were
further analyzed using another round of Cartesian PCA, but
this time using all of the peptides’ non-hydrogen atoms.
Representative structures for these final clusters were identified
by calculating an average structure for each cluster and then
selecting the frame from the trajectory with the lowest rms
deviation from the corresponding average structure.
Figure 4 is a collage showing schematic diagrams of the

representative structures corresponding to the four most highly
populated clusters of the native and mutant peptides as
identified by the procedure described above. The guiding
diagrams in the middle of this figure are the log density
projections of the trajectories on the first two principal
components derived from dPCA, demonstrating again the
large differences between the folding behavior of the two
peptides. The marked peaks (A through D for the mutant, E
through H for the native peptide) are in a one-to-one
correspondence with the structural diagrams at the periphery
of the diagram (noting again that the actual cluster analysis was
performed in the three-dimensional space defined by the top
three principal components, and not in two dimensions). The
numbers below each structure schematic are the percentage of
simulation time that each of the corresponding dPCA-derived
clusters occupied. On the whole, Figure 4 places all
observations up to now on a structurally solid ground: The
mutant peptide has a very stable and persistent β-hairpin
structure (marked A in Figure 4) that occupies the great
majority of the trajectory. This is more so if we note that the
structures marked as B and C have essentially the same β-
hairpin characteristics with a stabilizing Trp-Trp edge-to-face
stacking.
The most highly populated cluster recorded from the native

peptide simulation is again a β-hairpin structure (marked H in
Figure 4), which, however, is quite distinct from the mutant
structure, and occupies only 7% of the trajectory, clearly
indicating again the absence of a stable and persistent
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conformation for this peptide. The percentage for this cluster is
actually as low as the sum of the E and F conformers, both of
which display a clearly non-native conformation with a
disordered N-terminal region and an ordered C-terminal turn
(these two peptide structures both correspond to the stable
conformation that can be seen in Figure 3 diagrams at
approximately 0.9 μs).
3.3. The Structures Derived from Molecular Dynamics

Are in Excellent Agreement with the Experimentally
Determined Ones. The wall-eyed stereodiagrams in Figure 5
are a direct comparison between the representative molecular-
dynamics-derived peptide structures with the experimentally
determined (NMR and X-ray) structures. The upper stereo-
diagram in Figure 5 compares the unbiased representative
structure of the major cluster from the mutant simulation
(marked A in Figure 4) with the representative NMR structure
as determined by Mirassou et al.22 and shown in Figure 1. The
agreement between the least-squares superimposed structures is
excellent down to the level of the conformation of individual
side chains, especially the tryptophans’ edge-to-face stacking.
To put this in numbers, we calculated the RMSD between the
backbone atoms of the two structures (excluding the two
hyper-mobile terminal residues) and this was found to be only
0.79 Å, comparable with the experimental uncertainty of the
atomic positions. If instead of using the unbiased molecular
dynamics structures for calculating the RMSD we select the
structure (from the trajectory) that best agrees with the
experimental NMR structure, the RMSDs drop down to 0.23 Å
using the Cα atoms and to 0.33 Å using all backbone atoms,
demonstrating again the excellent agreement between experi-
ment and simulation. What is more important, however, is the
ability of the folding simulations to reproduce the β-bulge and
the associated unusual dihedral angles for the bulge (Q8)
residue. This is discussed in more detail in the next section.
What was rather unexpected was the finding that the rather

unstable β-hairpin structure adopted by the native peptide in its

folding simulation turned out to be more similar to the
structure of this same peptide as seen in the complete vammin
protein crystal structure than the structure seen in the NMR
determination of the peptide’s mutant form. Actually, and as
can be discerned from the lower stereodiagram of Figure 5, the
agreement between the least-squares superimposed X-ray and
molecular-dynamics-derived structures is even better than that
of the mutant. The backbone atom RMSD between the
representative structures was only 0.69 Å, reducing even further
to 0.35 Å (Cα atoms) and 0.44 Å (all backbone atoms) when
the best-agreeing structure from the trajectory was selected.
Having made that observation, the question naturally arises as
to its significance. It is clearly tempting to invoke the well-
known argument concerning pre-existing structural preferences
of peptides which are manifested and maintained in the
structures they adopt inside proteins. For the specific case
considered here, we believe that the evidence is circumstantial
and inconclusive: the native peptide has been studied
experimentally using NMR22 and no stable structure could be
discerned within the detection limits of the method. The very
small β-hairpin population indicated by molecular dynamics
agrees with the absence of a stable structure, but clearly, this
agreement does not validate any short-lived structure that could

Figure 4. Clusters and their frequencies. The two diagrams in the
center of the image are the log density projections of the
corresponding trajectories on the top two principal components.
Prominent clusters are marked on these diagrams (A−D for the
mutant peptide, E−H for the native). The structure diagrams in the
periphery of the image are the corresponding unbiased representative
structures which were calculated as described in section 3.2, with
cartoon representations of the secondary structure elements and color
coded according to the STRIDE-derived secondary structure assign-
ments. The numbers below the structure diagrams are the cluster
frequencies expressed as a percentage of the total simulation time for
each peptide.

Figure 5. Experiment vs simulation: Structural comparison. The upper
wall-eyed stereodiagram compares for the 2W mutant the
representative molecular-dynamics-derived structure (colored orange,
same as the structure “A” in Figure 4) with the experimentally (NMR)
determined one (colored gray, same with Figure 1). The lower
stereodiagram shows the same comparison for the native peptide but
using the experimental structure observed in the vammin protein
crystal structure (as shown in Figure 1). For both diagrams, cartoon
representations of the secondary structure elements are shown to aid
interpretation with the coloring scheme described in the legend of
Figure 1.
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have been observed during the simulation. Having said that, we
shall not resist the temptation of noting the improbability that
it is only by pure coincidence that the following two statements
turned out to be concurrently true, i.e., that (a) the known
NMR structure of the mutant agrees much better with the
structure obtained from the mutant simulation but not with the
structure obtained from the native simulation and (b) the
structure of the native peptide from the vammin X-ray structure
agrees much better with the structure obtained from the native
simulation but not with the structure obtained from the mutant
simulation.
3.4. The Simulation Faithfully Reproduces the β-

Bulge, the Tryptophans’ Edge-to-Face Stacking, and the
Unusual Dihedral Angles for the Q8 Residue. With such
an excellent agreement between the structures derived from
simulation and experiment (see section 3.3 and Figure 5), it is
not surprising that the unusual geometry of the mutant β-
hairpin is faithfully reproduced by the folding simulation. This
is shown in Figure 6 (upper wall-eyed stereodiagram). The

structure in this figure is again the representative 2W structure,
but this time with all backbone atoms and their hydrogen
bonds (broken lines) drawn. The view is from the top (loop
region) of the peptide structure and clearly demonstrates the
bulge and the bifurcated hydrogen bond, in excellent agreement
with the experimental studies.

The same figure also demonstrates the tryptophan stacking
as obtained from the simulation. The arrangement is a classical
edge-to-face stacking of the indole rings with W3 at the edge
position and W10 at the face position (seen also in Figure 5),
again in full agreement with the experimental findings.
Finally, the lower panel of Figure 6 shows an analysis of the

dihedral angles of the mutant peptide’s Q8 residue which was
shown by Mirasssou et al.22 to occupy the αL region of the
Ramachandran plot. The diagram on the left is the (log
density) Ramachandran plot of Q8 using all peptide structures
recorded in the whole of the 2W trajectory. This is to be
compared with the distribution (right diagram) obtained when
only the major (β-hairpin) cluster was used for the analysis
(cluster A in Figure 4). Again, the simulation faithfully
reproduces the experimental observations.

3.5. Folding Thermodynamics Calculations Indicate
That the Mutant Peptide Is Extremely Stable and That
Its Folding Is Entropy-Driven at Low Temperatures. The
discussion up to now focused almost exclusively on the
structural aspects of the native and mutant peptides’ behavior,
systematically ignoring the underlying folding thermodynamics.
There are two reasons for that. The firstand by far the most
importantis that there are no direct experimental data
available concerning the peptides’ folding thermodynamics and
kinetics, which precludes a meaningful comparison with the
simulation. The only qualitative indication of the peptides’
native-state stability comes from the ranking (based on NMR
chemical shifts) of the six peptides that Mirasssou et al.22

studied whichin order of decreasing stabilityis the
following: C1C12W3W10 > W3W10 ≫ C3C10 > C1C12 ≫
native, where the C3C10 and C1C12 are double cysteine
mutants containing a disulfide bridge each. The second reason
for placing the emphasis of the structures per se is our belief that
it is indeed the ability of folding simulations to correctly
identify stable structuresif they existthat would be the
most convincing indication of the maturity and accuracy of the
method. Having said that, information concerning the peptides’
folding thermodynamics is available directly from the
trajectories and in this section we present a collection of
pertinent thermodynamics quantities obtained from the mutant
(2W) peptide simulation.
The whole treatment in this section follows closely the

approach described by Boned, van Gunsteren, and Daura36

with two significant deviations. The first concerns the ever-
present question of how to select which trajectory structures
should be classified as folded or unfolded. Instead of a pure
RMSD cutoff, we have classified folded structures as being
those that lie at the intersection of three sets. The first set was
obtained through the application of an (RMSD vs native
structure) cutoff which was calculated from the histogram of all
RMSDs recorded in the trajectory. The second set was based
on using the Q-values as criteria, implementing again a cutoff
obtained from the corresponding histogram. The last set was
obtained through the application of a more “fuzzy” structure-
based selection as follows. Structures were classified as folded if
and only if all three of the following criteria were true: (a) At
least four of the residues 2−4 and 9−11 (corresponding to the
two β-strands) were classified by STRIDE as belonging to β
structure. (b) At least two hydrogen bonds existed between the
backbone atoms of residues 2−4 and 9−11 (noting that
STRIDE also uses hydrogen bonding patterns for its assign-
ments). (c) Finally, there was a contact between the side chains
of the two tryptophans, with contact being defined as a distance

Figure 6. β-bulge, Trp stacking, and Q8’s dihedral angles. The wall-
eyed stereodiagram (upper panel) is a skeletal model of the backbone
of the mutant’s representative molecular dynamics structure. To aid
interpretation, the Cα atoms are shown as spheres and the side chains
of W3, P5, and W10 are drawn in full (colored gray). The broken lines
(colored brown) represent hydrogen bonds, with the bifurcated bond
involving N4, Q8, and S9 clearly visible. The classical edge-to-face
stacking of the tryptophans’ indole rings is clearly visible. The lower
panel compares the Ramachandran plots (in log density units) of
residue Q8 when using (a) the whole of the mutant simulation (left
diagram) and (b) only the structures of the major (β-hairpin) cluster
(right diagram). The major peak in both diagrams coincides with the
αL region of the Ramachandran plot.
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of less than 5 Å between any of the non-hydrogen atoms of the
two side chains. The agreement between the assignments
obtained from these RMSD-, Q-, and structure-based criteria
was of the order of 90% which also allowed us to obtain an
estimated standard error for the derived (from the trajectory)
frequencies of the folded and unfolded populations.
The second important deviation from the Boned et al.36

approach arises from differences in the simulation protocol per
se. For our simulations, we have used adaptive tempering25

which is formally equivalent to a reweighted single-copy replica
exchange folding simulation with a continuous temperature
range. The continuity of temperature has two consequences.
The first is that it is necessary to establish that the trajectory-
derived thermodynamic quantities do converge for a sufficiently
small temperature integration interval. That this is indeed the
case is shown in Figure 1 of the Supporting Information, which
uses the estimated folding enthalpy ΔHFolded−Unfolded (denoted
ΔHFU hereafter) to demonstrate that convergence is achieved
once the temperature integration interval reaches a value of
approximately 3 K or less. The second consequence of having a
continuous temperature space (and with such a small
temperature integration interval) is that the statistical noise
per data point increases significantly, but simultaneously, the
sampling along temperature is much finer. We believe that this
can be turned to an advantage, since it allows both the smooth
fitting of the primary data and the estimation of standard errors.
This is shown clearly in the middle graph of Figure 7. In this
diagram, the scatter plot (red circles) is the primary ΔHFU data
as obtained from the trajectory using temperature integration
intervals of 2 and 3 K plus their offsets (the scatter plot is
identical with the five upper curves shown in Figure 1 in the
Supporting Information). The black line in this same diagram is
the corresponding local polynomial regression fit of the primary
data (obtained via R’s loess function), and the shaded area is
the standard error obtained from the regression. The availability
of smooth and almost continuous estimates for the
thermodynamic quantities greatly simplifies their integration
and differentiation, as well as the propagation of their errors.
We should note here that the sampling of the high temperature
regime (higher than ∼420 K) is rather incomplete in our
simulation, as testified by the much higher noise level seen in
the scatter plot of the middle diagram of Figure 7. Although we
have decided, for completeness, to keep all data for the
calculations reported below, the derived quantities for temper-
atures higher than ∼420 K should probably be considered
unreliable. Finally, it should be mentioned here that no
additional histogram-based reweighting is needed for simu-
lations performed with adaptive tempering. As demonstrated by
Zhang and Ma25 using an Ising model and a Lennard-Jones
system, adaptive tempering allows the correct calculation of
thermodynamic quantities for the entire temperature spectrum
without additional reweighting.
We start the presentation of the results by showing in the

upper diagram of Figure 7 the variation of the folding free
enthalpy ΔGFU vs temperature as obtained from counting
statistics (relative frequencies of folded vs unfolded config-
urations in a given temperature interval, see Boned et al.36).
The shaded area corresponds to the estimated standard error
and was obtained by assigning an uncertainty equal to 0.10 to
each of the observed frequencies (see second paragraph of this
section). The derived sigmoidal curve appears to be fairly
typical for a foldable peptide, but what is definitely untypical is
how stable this mutant peptide appears to be: with a more or

less constant ΔGFU of approximately −4.1 kJ/mol for
temperatures up to ∼340 K and an estimated melting
temperature of ∼390 K, the mutant peptide would appear to
be structurally more persistent than some very stable
thermophilic proteins. This is more so if we consider the

Figure 7. Folding thermodynamics. From top to bottom, these graphs
show the variation of the folding free enthalpy as a function of
temperature (upper graph), of the folding enthalpy as a function of
temperature (middle graph), and, finally, the variation of the folding
heat capacity per Kelvin as a function of temperature (lower graph).
See section 3.5 for details and an extensive discussion.
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rather strict selection criteria we applied in classifying structures
as folded (discussed in the second paragraph of this section). In
the absence of direct experimental evidence, it is clearly
impossible to estimate how much force-field-dependent the
observed stabilization of the native state is. It should be noted,
however, that Mirasssou et al.22 showed that this mutant is
significantly more stable than two mutants (C3C10 and
C1C12) in which the two β-strands were covalently bonded
through a disulfide bridge. Additionally, the force-field-depend-
ent stabilizationif presentwould clearly not be in the form
of a secondary structure bias of the force field, since the native
peptide is under identical simulation parameters almost
completely disordered.
The middle diagram in Figure 7 shows the variation of ΔHFU

as a function of temperature. The scatter plot (red circles)
corresponds to the primary data as calculated from the
trajectory’s total energies,36 the solid black line is the local
polynomial regression fit, and the shaded area is the estimated
standard error of the regression. The important observation
here is that enthalpy appears to favor folding at higher
temperatures, with an almost linear relationship between
ΔHFU and T for all temperatures up to ∼370 K. What this
finding implies is that for temperatures below the peptide’s
melting temperature the loss of enthalpy with increasing
temperature is faster for the unfolded state than for the folded
state.36 The observation that enthalpy promotes folding at
higher temperatures may sound surprising at first, but as it
turns out, the behavior of ΔHFU as observed in Figure 7 has
also been observed and is in excellent agreement with the
findings of Boned et al.36 on the folding of a completely
unrelated helical β-heptapeptide in methanol (and with a
completely different force field and simulation protocol).
Whether this behavior may represent a consistent trend for
fast and stably folded peptides remains to be seen.
The last graph in Figure 7 shows the variation of the folding

heat capacity per Kelvin as a function of temperature. The
standard errors shown in this diagram were estimated through a
direct local polynomial regression fit of the primary data. The
diagram clearly indicates what was already expected given the
behavior of enthalpy: the entropy appears to be more favorable
to folding at lower temperatures and to dominate the peptide’s
folding process. This, naturally, is also is full agreement with the
findings of Boned et al.36 Note also how the folding heat
capacity per Kelvin reaches zero simultaneously with the
stabilization of the values of the folding enthalpy at ∼440 K.
Having obtained folding free enthalpies both through counting
statistics (upper diagram of Figure 7) and from the trajectory
derived total energies (in the form of differences), we can
compare the corresponding estimates as an internal consistency
check. The value of ΔΔGFU between 390 and 320 K was found
to be 4.1 kJ/mol based on frequencies and 5.2 kJ/mol based on
total energies, dropping to 1.9 and 2.2 kJ/mol, respectively,
when the temperatures 370 and 340 K were considered. The
good agreement and consistency between these estimates
justifies, we believe, our choice to apply the Boned et al.36

approach to a trajectory obtained via the adaptive tempering
method.

4. DISCUSSION
The take-home message of this communication is clear: folding
molecular dynamics simulations were so accurate that they
could have successfully substituted the experiment in character-
izing the stability and structure of the two peptides studied

here. The simulations correctly identified which peptide is
disordered and which one has a stable and persistent structure,
and they correctly identified both the general characteristics of
the major conformer as well as its detailed and uncommon
structural properties (i.e., that it is an irregular β-hairpin with a
non-glycine β-bulge, an edge-to-face stacking of the trypto-
phans’ indole rings, and unusual dihedral angles for the Q8
residue). Additionally, the simulations indicated that the
disordered (native) peptide does take up a irregular β-hairpin
structure, and that this structure is more similar to the
conformation observed in the protein’s crystal structure than
the structure observed in the mutant’s NMR structure (note,
however, that there is no direct experimental evidence that this
prediction is indeed correct). Clearly, and for the case examined
here, molecular dynamics performed as a robust, dependable,
and sensitive method for characterizing peptide structure and
dynamics. This is more so if we recall that the two peptides
studied here share 83% sequence identity.
Having said that, it is this large difference in the behavior of

the two peptides that also constitutes the major weakness of
this work: the peptides we have selected to study have very
pronounced differences in their folding behavior, so pro-
nounced that their comparison may not provide the sensitivity
needed for further development of the force fields (note,
however, that this statement makes the tacit assumption that
other popular empirical force fields would also reproduce the
experimental findings at the level of accuracy afforded by the
AMBER99SB-ILDN force field, an assumption that may not
hold true).
In summary, we have added one more example to the

growing gallery of very successful applications of folding
molecular dynamics simulations to predict peptide structure
and dynamics. The combination of the AMBER99SB-ILDN (or
STAR-ILDN) force field with the TIP3P water model and full
electrostatics appears to be one of the best combinations
currently available for studying peptide structure.
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