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Features of epidemic data 

 Spatio-temporal nature. 
 Environmental noise. 
 Multicolinearity issues. 
 Presence of excess zeros. 

 

Bayesian regression modelling 

Results 
Major findings:  
 Temperature levels had the strongest influence on disease spread 
 Epidemic spread is also sensitive to distance between infected 
herds.  

Discussion 

Future directions 
  Model selection has been solely based on standard (deviance-
based) predictive approaches. The temporal nature of this type of 
data suggests a prequential approach.  

 Explore continuous (DeWijs type) spatio-temporal models 

 We adopt the Bayesian paradigm for modelling the weekly 
frequencies of disease occurrence incorporating various factors such 
as spatial information, environmental covariates and autoregressive 
(O-U type) processes. 

 We ameliorate the existing methodologies by improving 
accuracy of predictions through the incorporation of spatial 
information, implementing suitable zero-inflated distributions, 
dealing with correlated data and introducing an epidemic 
interpretation via a branching process approximation. 

Motivating example 

 Sheep pox is a highly contagious viral infection of sheep that can 
have devastating consequences. 

 Major sheep pox epidemic in Evros Prefecture, northeastern 
Greece during 1994-98. 

 Included 35,440 dead animals and 250 infected farms. 

We have proposed a unified approach for effectively dealing with  
frequent problems of epidemic data.  
Our modelling framework extends similar approaches (Choi et al., 
2012; Branscum et al., 2008) in various ways: 

 Incorporation of spatial information. 

 Adopt g-prior-based approaches for coping with multicollinearity 
problems between covariates, especially those of environmental 
and/or meteorological data nature. 

 Use of suitable distributions for modelling excess zeros datasets, 
particularly the zero-inflated Poisson (ZIP) distribution. 

 Combine branching process theory with Bayesian regression 
models to identify epidemic potential. 

Epidemic control 

Let       be the number of occurrences for the ith year and the jth 
week (i=0,1,2,3,4; j=0,1,...,52). Poisson and ZIP models are 
special cases of: 
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where                                comprises of fixed-effects parameters β, 
AR(1) parameter associated with number of cases in previous week 
(θτ) and parameters of transmission kernel functions, bi yearly 
random effects and Uij an O-U process adjusting for serial 
correlation.  
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 We connect the Poisson component of our model to a suitable 
branching process. 

 Using this representation we obtain the probability of epidemic 
extinction by solving  

 For ZIP model:  

 We decompose the average rate of infection to its endemic and 
epidemic components: 
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min q=0.78 q=0 q=1 q=0.61 
median q=0.66 q=0.66 q=0.66 q=0.66 
max q=0.41 q=1 q=0 q=0.66 

Table 1: Estimated average extinction probabilities (q) for different 
covariate combinations  

Predicted vs observed counts based on the fit of the best (ZIP-type) model 

  min median max 
λendemic 0.17 2.84 121.6 
λepidemic 1.27 1.005 3.19 

Table 2: Endemic/epidemic decomposition of λ 
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