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Major findings:

» Temperature levels had the strongest influence on disease spread
» Epidemic spread is also sensitive to distance between infected

» Spatio-temporal nature.
» Environmental noise.
» Multicolinearity issues.

herds.
> Presence of excess zeros.

temperature

E - min |average| max | distance
min g=0.78| =0 g=1 0=0.61

» Sheep pox is a highly contagious viral infection of sheep that can median |9=0.66| q=0.66 | q=0.66 | g=0.66
have devastating consequences. max  |g=0.41] g=1 | ¢=0 | g=0.66
Table 1: Estimated average extinction probabilities (q) for different
covariate combinations

» Major sheep pox epidemic in Evros Prefecture, northeastern
Greece during 1994-98.

» Included 35,440 dead animals and 250 infected farms. min median max
Aendemic 0.17 2.84 121.6
L Bayesian regression modelling | Aepidemic 127 1005 3.19
> We adopt the Bayesian paradigm for modelling the weekly Table 2: Endemic/epidemic decomposition of A
frequencies of disease occurrence incorporating various factors such
as spatial information, environmental covariates and autoregressive 18
(O-U type) processes. 16 1
14
» We ameliorate the existing methodologies by improving 12
accuracy of predictions through the incorporation of spatial 1'%3”2 ]
information, implementing suitable zero-inflated distributions, ¢ ] .
dealing with correlated data and introducing an epidemic < | i . ap
interpretation via a branching process approximation. i 1 s ids i f, T L i
Let yIJ be the number Of occurrences for the |th year and the Jth 1 15 29 43 57 71 85 99 113127 141 155169 183 197 211 225 239253
week (i=0,1,2,3,4; j=0,1,...,52). Poisson and ZIP models are wesk

special cases of:
Yy~ g(yU |6y pij)

0y 16,7 9y)= Vo) + 0y )1 (3, 16)) “

Predicted vs observed counts based on the fit of the best (ZIP-type) model

0; = h(,uij ) = |Og(uij) We have proposed a unified approach for effectively dealing with
frequent problems of epidemic data.
— *
log (/”ii ) - ch p b +Uij +0, Yicin * K (®’ K ) Our modelling framework extends similar approaches (Choi et al.,
where @ =(©,,0,,0, )t comprises of fixed-effects parameters B, 2012; Branscum et al., 2008) in various ways:

AR(1) parameter associated with number of cases in previous week

. : > Incorporation of spatial information.
(6=) and parameters of transmission kernel functions, bi yearly

random effects and Uij an O-U process adjusting for serial > Adopt g-prior-based approaches for coping with multicollinearity
correlation. problems between covariates, especially those of environmental
and/or meteorological data nature.
% » Use of suitable distributions for modelling excess zeros datasets,
» We connect the Poisson component of our model to a suitable particularly the zero-inflated Poisson (ZIP) distribution.
branching process. » Combine branching process theory with Bayesian regression

» Using this representation we obtain the probability of epidemic models to identify epidemic potential.

extinction by solving exp(q/i) =q exp(/1) - ;
> For ZIP model: prob(extinction) =14 (q(4;) + p;) m

» Model selection has been solely based on standard (deviance-
based) predictive approaches. The temporal nature of this type of
data suggests a prequential approach.

» We decompose the average rate of infection to its endemic and
epidemic components:

A= Aendemic * epidemic = EXP(O engemic + O epigemic ) > Explore continuous (DeWijs type) spatio-temporal models
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