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Features of epidemic data 

 Spatio-temporal nature. 
 Environmental noise. 
 Multicolinearity issues. 
 Presence of excess zeros. 

 

Bayesian regression modelling 

Results 
Major findings:  
 Temperature levels had the strongest influence on disease spread 
 Epidemic spread is also sensitive to distance between infected 
herds.  

Discussion 

Future directions 
  Model selection has been solely based on standard (deviance-
based) predictive approaches. The temporal nature of this type of 
data suggests a prequential approach.  

 Explore continuous (DeWijs type) spatio-temporal models 

 We adopt the Bayesian paradigm for modelling the weekly 
frequencies of disease occurrence incorporating various factors such 
as spatial information, environmental covariates and autoregressive 
(O-U type) processes. 

 We ameliorate the existing methodologies by improving 
accuracy of predictions through the incorporation of spatial 
information, implementing suitable zero-inflated distributions, 
dealing with correlated data and introducing an epidemic 
interpretation via a branching process approximation. 

Motivating example 

 Sheep pox is a highly contagious viral infection of sheep that can 
have devastating consequences. 

 Major sheep pox epidemic in Evros Prefecture, northeastern 
Greece during 1994-98. 

 Included 35,440 dead animals and 250 infected farms. 

We have proposed a unified approach for effectively dealing with  
frequent problems of epidemic data.  
Our modelling framework extends similar approaches (Choi et al., 
2012; Branscum et al., 2008) in various ways: 

 Incorporation of spatial information. 

 Adopt g-prior-based approaches for coping with multicollinearity 
problems between covariates, especially those of environmental 
and/or meteorological data nature. 

 Use of suitable distributions for modelling excess zeros datasets, 
particularly the zero-inflated Poisson (ZIP) distribution. 

 Combine branching process theory with Bayesian regression 
models to identify epidemic potential. 

Epidemic control 

Let       be the number of occurrences for the ith year and the jth 
week (i=0,1,2,3,4; j=0,1,...,52). Poisson and ZIP models are 
special cases of: 
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where                                comprises of fixed-effects parameters β, 
AR(1) parameter associated with number of cases in previous week 
(θτ) and parameters of transmission kernel functions, bi yearly 
random effects and Uij an O-U process adjusting for serial 
correlation.  
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 We connect the Poisson component of our model to a suitable 
branching process. 

 Using this representation we obtain the probability of epidemic 
extinction by solving  

 For ZIP model:  

 We decompose the average rate of infection to its endemic and 
epidemic components: 
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  temperature 
distance   min average max 

min q=0.78 q=0 q=1 q=0.61 
median q=0.66 q=0.66 q=0.66 q=0.66 
max q=0.41 q=1 q=0 q=0.66 

Table 1: Estimated average extinction probabilities (q) for different 
covariate combinations  

Predicted vs observed counts based on the fit of the best (ZIP-type) model 

  min median max 
λendemic 0.17 2.84 121.6 
λepidemic 1.27 1.005 3.19 

Table 2: Endemic/epidemic decomposition of λ 
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