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Abstract 

We present and analyze the data collected during a severe epidemic of 

foot-and-mouth disease (FMD) that has occurred, between July and 

September 2000, in a region of northeastern Greece with strategic 

importance since it represents the southeastern border of Europe and 

Asia. We implement generic Bayesian methodology, which offers 

flexibility in the ability to fit several realistically complex models that 

simultaneously captures the presence of “excess” zeros, the spatio 

temporal dependence of the cases, assesses the impact of 

environmental noise and controls for multicollinearity issues. Our 

findings suggest that the epidemic was mostly driven by the size and 

the animal type of each farm as well as the distance between farms 
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while environmental and other endemic factors were not important 

during this outbreak. Analyses of this kind may prove useful to 

informing decisions related to optimal control measures for potential 

future FMD outbreaks as well as other acute epidemics such as FMD. 

 Keywords: Bayesian regression models, FMD, Kernels, Type/size of 
farms 

 

1. Introduction 

Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-footed 

animals, responsible for severe epidemics that lead in reduced productivity [1]. 

Animals generally recover from the disease but subsequent milk yields and weight are 

permanently reduced, hence the effects on the livestock industry can be substantial 

[2]. Although Northern Greece is free from FMD, sporadic epidemics may occur.  

The specific region is of strategic importance as it represents the southeastern border 

of Europe and Asia. However, despite the measures taken to prevent the introduction 

of FMD in the region northeastern Greece experienced a severe epidemic, during 

2000. All infected farms detected at the start of the outbreak were in very close 

proximity to the Evros River, bordering Turkey, and the strain of the virus isolated in 

Greece during the 2000 epidemic was found to be identical to the strain isolated in 

Turkey in 1999 and 2000 ([3], accessed January, 2014).  

Recent modeling approaches for the prediction of FMD occurrence during FMD 

epidemics include the development of Bayesian spatio-temporal regression models 

that introduce  - in addition to covariate information – Ornstein-Uhlenbeck stochastic 

components ([4], [5]), or discrete-type distributions suitable for this type of data ([4], 

[6]). However, to the best of our knowledge, there is absence of analysis that 

simultaneously addresses certain characteristics of epidemic data, such as the 
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spatiotemporal dependence, the environmental noise, multicollinearity issues and the 

presence of “excess” zeros. An alternative class of models which have been 

successfully applied to FMD data is based upon suitable extensions of stochastic 

Susceptible-Infectious-Removed (SIR) models, see for example [7] and references 

therein. Although the two model classes share certain characteristics since they are, 

essentially, different versions of a general family of counting processes, there are a 

number of differences; SIR models focus upon detailed and explicit modeling of the 

transmission mechanism at the expense of increased computational cost and complex 

model analysis. On the other hand, our transmission models essentially look at 

discretised (like daily, weekly or monthly) data and in doing so we (i) gain in 

computational simplicity, since the model can be fitted in the WinBUGS software [8], 

and (ii) by creating the (artificial) extra zeros we are able to see which factors (e.g. 

environmental) assist in creating a disease-free environment through the covariates 

linked to the excess zeros. 

The epidemiological objective of this work was to assess the impact of various 

explanatory variables, such as species, environmental factors and the spatial 

component on the spread of the FMD epidemic in this region. To achieve this we 

adopt a Bayesian modeling approach that accounts for the frequently observed non-

occurrence of the disease in time and space, by implementing zero-inflated 

distributions [9]. We further incorporate spatial information associated with the 

locations of infected farms in the form of kernel functions. Multicollinearity issues are 

also addressed by implementing appropriate Bayesian variable selection techniques. 

Finally, the incorporation of an Ornstein-Uhlenbeck (OU) component into our models 

allows for structured, autoregressive-type, stochasticity, vital for temporal epidemic 
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data. We show that the utilization of all the above mentioned modeling strategies has 

a major impact on model fit and the prediction of disease spread. 

 

2.1 Data on the 2000 FMD outbreak 
Between July and September, 2000, Greece experienced a major epidemic of 

FMD. The conducted laboratory tests confirmed the FMD virus, of Asia-1 serotype. 

In total, approximately 5,600 cattle, 4,300 sheep/goats and 360 pigs were culled 

during the course of the outbreak. No vaccination was used to control the outbreak.  

Farm-level data for the 2000 FMD epidemic were provided by the Veterinary 

Directorate of Northern Evros Prefecture (VDNEP). This dataset has not been 

previously presented or analyzed and presents a unique opportunity to give insight 

into the true patterns of behavior of a real epidemic situation of this kind. Figure 1 

shows the temporal progress of the disease in terms of disease occurrence. 

 
INSERT FIGURE 1 APPROXIMATELY HERE 

 
 
2.2 Statistical Analysis 
 
2.2.1 Model structure 

Let iy  denote the number of herds with new FMD infections at time it  where 

{ }0,1,...,72i∈  is ordered chronologically first by month and then by day. We assume 

that: 

( )~ |i i iy g y θ  (1)

with 

 (2)

and 

( ) ( )expi i ihθ λ λ= =
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 (3)

 

where g  denotes the assumed distribution of the data, iλ  is the rate at which new 

infections take place during the progress/spread of the disease,  denotes the standard 

Brownian motion and φ  the reversion parameter (i.e. the rate at which the process 

returns to its long-run mean) of the OU process, which is incorporated into our model 

through equation (3) for capturing distributional deviations in disease occurrence. 

Also,  is a piecewise constant deterministic process given by: 

 

 

(4)

 
with each  corresponding to  ( ) given by: 
 

. 
 

(5)

Here X(i) is the matrix of covariates, and β the vector of the corresponding 

coefficients,τ  is a simple autocorrelation term associated with the influence of the 

number of FMD cases in the previous day 1iy −  on iy . Finally,  is a spatial 

kernel for the incorporation of spatial information associated with the rate  at which 

infection passes from an infected farm  at times )14...,2,1( =− jji , i.e. assuming a 

two-week incubation period [10], to a susceptible farm k at time i , which captures the 

fact that FMD is more likely to spread between farms located nearby than farms 

located more distant apart: 
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where id  denotes the cardinality of id , the term  denotes some specified 

function of the distance between the infected and susceptible farms based upon their 

distance kd  and mind , which is set a priori, restricts the minimum distance over 

which infections do not occur [11]. The functional forms that we tested for K  are 

given in Table 1. Selection of the most appropriate forms was based on a variety of 

relevant functions (e.g. [12], [13], [14]). 

 
INSERT TABLE 1 APPROXIMATELY HERE 

 
The model specified in (1)-(6) can be thought of as an elaborate version of a 

log-linear type of model for the temporal component, with the addition of an 

autoregressive term of order one (the O-U process) and a spatial component captured 

by ( )Kkd Θ,K .  

 

 
2.2.2 Candidate distributions for the epidemic data 

For discrete epidemic data, we initially assumed a Poisson P( iλ ) or a negative 

binomial NB( r , iq ) distribution. That is 

 

log( )i iμ λ=  (7)

 

 

and 

 

( ),kd ΚΘK
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r q
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μ
−

=                                                                (8) 

 

respectively. 

Importantly, in order to account for the presence of excess zeros, often 

occurring in epidemic data, we also considered the zero inflated Poisson (ZIP) and 

zero inflated negative binomial model (ZINB). Previous work (e.g. [15]) has 

demonstrated that capturing the frequently observed non-occurrence of the disease, by 

modeling excess zeros in time and space, can considerably improve model fit. To do 

so, Eq. 1 takes the following form: 

 

( )~ | ;i i i iy g y pθ  (9)

 

 

with 

 (10) 

 

 

Here { }0=ijyI  is an indicator variable for whether or not the FMD cases were 

observed at time i and (0≤ ≤1) the probability of observing excess zeros at time i. 

Finally, the zero-inflated probability  can be linked to covariates through:  

 

( )( ) 1log ,
1

t z z zi
i i i

i

p y K d
p

τ −

⎛ ⎞
= ⋅ + ⋅ +⎜ ⎟−⎝ ⎠

KX β Θ (11)

 

with the superscript z distinguishing the parameters linking covariates with the 

probability of excess zeros from those linked to the infection rate in Eq 5. 

( ) { } ( ) ( )0| ; 1 |
ii i i i i i iyg y p p I p f yθ θ== + −

ip ip

ip
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 Selection of the best between the P, NB, ZIP and ZINB models is not a trivial 

matter since the complexity of those models is unclear. In this paper we resort to 

deviance-based measures due to the well-known equivalence in model selection using 

cross-validation or AIC (see [16]). Given the unknown complexity of the entertained 

models, we chose to perform model selection based upon the mean deviance ( D ) as 

well as the deviance information criterion (DIC), with smaller values for both criteria 

indicating better fit [17]. 

 
 
2.2.3 Screening selection process of the candidate variables. 

Candidate variables for inclusion on the final model contained information on 

several meteorological/environmental predictors as well as size/type of infected 

farms. The specific variables were chosen based on previous research (see e.g. [4], 

[13]). A complete list of all candidate variables along with descriptive statistics can be 

found in the supplement (Table S1). The meteorological data were acquired from the 

Greek National Meteorological Service 

(http://www.hnms.gr/hnms/english/index_html). Initially we selected the best 

distributional form and the best kernel function, according to the D values. Then, 

conditional upon the selection of the best distribution and kernel, we performed a 

backwards elimination variable selection process, eliminating the least significant 

variable (at a 5% significance level) each time.  

 
 
2.2.4 Prior specifications  

For the fixed effects parameters β (accordingly zβ ) we adopt a g-prior type of 

approach for specifying the prior distributions in a way that accounts for potential 

correlations among the explanatory variables. Hence we assumed a multivariate 



9 
 

Gaussian prior density, with zero-mean and a prior variance matrix of the form: 

( )\0
1

\0 \0
tgeβ −
⋅X X , where \0β  is the vector β excluding 0β , \0X  is the data matrix 

without the intercept, and \0e β is a rough estimate of iλ  (for more details see [18] or 

[19]). Finally, a weakly-informative ( )40,10N  prior was used for the intercept 0β  

and the parametersτ , zτ . 

 
2.2.5 Assessing the impact of different parameters in efficacy of control 

An interesting application of the modeling framework adopted in the current 

study relates to an attempt to measure the relative contribution of the parameters fitted 

in the final model. The latter is permitted by the decomposition of the covariates 

included in the final model into two parts: an endemic disease dynamic process, 

originating outside its internal history, which sums up the effects of significant 

covariates like those measuring environmental factors and an epidemic component, 

which summarizes the effects of significant covariates representing the internal 

dynamics like farm-to-farm locations and type/size of farms (see [20]). The latter is 

achieved via the additive decomposition of tμ , the mean driving the log-rate of 

infection tλ through: 

 

endemic epidemictμ μ μ= + , (12)

 
where endemicμ ( epidemicμ ) denotes the time-dependent endemic (epidemic) component-

related parameters. Within this context, we have an indication of the relative 

contribution of each part in the spread of the disease. A large epidemic component 

would suggest imposing restrictions associated with the spatial allocation of farm 

structure in the region of interest, whereas the opposite results may indicate that most 
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of infections are due to external factors and thus are less sensitive to such control 

measures. 

 
 
2.2.6 Posterior predictive model checking 

In order to assess the predictive accuracy of our modeling we compare 

replicated data constructed under the fitted model with the observed data. Hence, 

simulated values rep
iy  are drawn from the posterior predictive distribution of 

replicated data through: 

 
( )~ | ;rep rep

i i i iy g y pθ , (13)

 
and compared to the observed data iy , with similar values between iy  and rep

iy  

indicating a good fit. 

 
 
2.2.7 Bayesian Inference and Convergence Diagnostics 

We have used the WinBUGS software to fit the models. The posterior results 

are obtained after discarding the initial 5,000 iterations, using an additional sample of 

10,000 iterations (using a thinning lag of 10). Concerning the convergence of the 

parameters, examination of history plots indicated no lack of convergence for all 

fitted models. We have also examined for autocorrelation through visual inspection of 

autocorrelation plots for each estimated parameter and found acceptable 

autocorrelation levels for all parameters. The WinBUGS code for the best selected 

model with step by step explanations is available in the supplement. 

 
3. Results 

From the 1st of July 2000 until the 10th of September 2000 a total of 100 farms 

in the region got infected by FMD. The median number of farms that became infected 
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daily was 3 (minimum/maximum farms with infections per day was 1 and 12, 

respectively, excluding days with zero occurrence). For 42 days during this epidemic 

no new farms (zero observations) got infected. 

Due to the presence of the latter one of the models that adjusted for excess 

zeros, the ZIP model, had the best fit to the data. Under this model, the type A 

transmission kernel function had the best fit. For all models incorporation of the 

various spatial kernel functions, which captured the fact that FMD is more likely to 

spread between farms located nearby, considerably improved model fit.  values for 

the four considered distributions and the alternative spatial kernel functions are in 

Table 2. 

 
INSERT TABLE 2 APPROXIMATELY HERE 

 
Under the best model - the ZIP model with the kernel function A - the 

important predictors were those associated with the epidemic component: the 

infection rate is only linked to the spatial kernel, whereas the zero part is linked – in 

addition to the spatial kernel – with the number of cattle and sheep in the farms, 

finding strong indications that the higher the number of animals within each herd the 

more likely that it gets infected. Posterior medians (and the corresponding 95% 

credible intervals) of the statistically significant estimated coefficients are 

summarized in Table 3. In addition to the important predictors associated with 

model’s covariates, we also report parameter φ  of the OU process, which is an 

indicator of the rate at which infections return to the mean infection rate after days 

with large number of cases. The value of 0.035 for the estimated parameter φ  of the 

OU process is low [21] and hence indicative of a slow reduction in the spread of the 

infection and of the inability of control measures taken to reduce the infection spread 

D
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rapidly. This is also expressed by 965.0)exp( =−φ , that resembles the autocorrelation 

parameter of an AR(1) process.  

 
INSERT TABLE 3 APPROXIMATELY HERE 

 
Finally, Figure 2 depicts the temporal endemic/epidemic decomposition of tμ , 

i.e. the contribution of either the epidemic ( ) or endemic ( ) 

component of the model during the 72 days of the epidemic to the number of newly 

infected farms. 

 
INSERT FIGURE 2 APPROXIMATELY HERE 

 
 
3.1 Model posterior predictive checking 

The predictive accuracy of our modeling has been evaluated by comparing the 

predicted IPs obtained by the best selected model specification with the actual IPs. 

The quality of the fit of the best model (ZIP) as suggested by the selection criterion 

was satisfactory, as revealed by Figure 3, where occurrence predicted values are 

plotted along with the observed occurrence data.  

In particular, the distribution of infected cases seems to closely match the 

distribution of predicted occurrences.  

 
INSERT FIGURE 3 APPROXIMATELY HERE 

 

4. Discussion 
FMD is not endemic in Greece. However, the country’s prefecture of Evros 

has been considered as potential gateway of introduction and spread of FMD in 

Europe ([5], [22]) due to its geographical location being the natural border of Europe 

_t endemicμ _t epidemicμ
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with Asia (Turkey). Hence, the need to provide all necessary tools for the effective 

and early control of sporadically occurring epidemics in the region. In this paper we 

propose suitably chosen stochastic spatio-temporal models to describe the spread of 

FMD. Our modeling framework extends similar approaches on analyzing FMD data 

([4], [5], [6]) in various ways. Specifically, we incorporate spatial information in the 

form of kernel functions and we adopt a g-prior approach to cope with potential 

multicollinearity problems associated with correlated predictors frequently met in 

such type of data. We show that utilizing suitable distributions for modeling excess 

zeros considerably improves model fit. Under this framework, the ZIP specification 

enabled the accurate description of the transmission of FMD in 2000 in northeastern 

Greece.  

Few of the candidate variables were important predictors for the occurrence of 

FMD (Table 3). Importantly, none of the considered meteorological covariates was 

included in the final model. Meteorological covariates were also proved in [4] to be 

non-significant for FMD occurrences. This lack of importance for covariates related 

to the airborne spread of the disease suggests that the main route for the epidemic was 

direct contact between animals through short/long distances. Although there are small 

differences in the fit of the models with different kernels, the slightly better 

performance of the fat-tailed kernel (A) indicates that long distance infections are not 

unlikely.  

 Conversely, the parameters accounting for spatial information were 

statistically significant. This result is generally robust, in the sense that sensitivity 

analysis conducted by changing the durations of incubation period (from the 

recommended by the OIE 14day period to 1d) did not show differences in the 

obtained outcomes. Moreover, it has been widely proclaimed in the relevant literature 
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(see [13], [23], [24]) that size of farms is a key factor in the transmission of foot-and-

mouth disease as is the type of farm (e.g. cattle, sheep or mixed). The analysis of the 

current FMD epidemic data confirms this evidence and both the size and type of 

farms were important. Indeed, cattle (and, to a lesser extent, sheep) density is a 

statistically important predictor for the excess zero occurrence of the disease in 

agreement with the findings of [13], [25] and [26], who have shown that 

infectiousness increases as the number of animals (cattle) in the infected farms 

increase. Further, in line with our findings [7] reported that individual cows were 

more likely to transmit FMD and also likely to be more susceptible to FMD than 

individual sheep. 

The increased significance of cattle in FMD spread, when compared to small 

ruminants such as sheep/goats can be attributed to several reasons. Clinical signs of 

FMD are more easily detectable to cattle than sheep, where signs of the disease are 

very difficult to be detected [27]. Generally, the dairy breeds of Europe, such as those 

of Evros prefecture, are characterized by severe clinical signs after infection with 

FMD virus, contrary to the typical breeds in Asia or Africa, where the signs are less 

obvious. Also, most frequent clinical examinations on organized cattle farms or the 

larger quantities of virus shed by cattle in their close environment may be associated 

with the relative importance of cattle in terms of spreading the disease, in comparison 

to sheep/goat farms. [28] stresses the high infectiousness of cattle during the 2000 

epidemic in Evros accompanied by the fast transmission of disease from animal to 

animal. Another characteristic of the specific Evros epidemic, is that signs of foot-and 

mouth infections were mostly detected in cattle. Only a few cases of infections on 

sheep have been reported to the authorities. Hence, this specific outbreak was mainly 

driven by epidemic rather than endemic factors as is generally expected for the FMD 
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case. The latter implies that the disease transmission occurred mainly due to animal-

to-animal contacts rather than survival of FMD virus in contaminated environments 

and spread of the infection through indirect contact. From Fig. 2 it is clear that the 

course of the infection rate is almost similar to the epidemic part indicating the trivial 

contribution of the endemic part. 

 

 
5. Conclusion 

We proposed a stochastic spatio-temporal modelling approach that extends 

existing approaches in various ways, by accounting for the “excess zeros”, 

incorporating spatial information and autoregressive-type stochasticity and addressing 

multicollinearity in the covariates. Our modeling framework considerably improved 

model fit on the FMD data in comparison to the previous approaches. The association 

between FMD occurrence and covariates suggests that farm locations, as well as the 

type and size of the infected farms (epidemic component) is significant for the spread 

of an FMD epidemic rather than meteorological covariates (endemic component). Our 

modeling approach could be readily applied to other infectious diseases, thus 

providing insights to government agencies, and all those involved in the livestock 

industry for the prevention for acute epidemics such as FMD. 
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Tables 

 

Table 1. Summary of spatial kernels  included in spatio-temporal models. 
NOTATION  Reference 
A 

 
 

Chis-Ster and Ferguson 
(2007) 

B 
 Keeling et al. (2001) 

C 
 Diggle (2006) 

D  Szmaragd et al. (2009) 
E 

 Szmaragd et al. (2009) 

F 
 Szmaragd et al. (2009) 

 

 

Table 2. Mean deviance ( ) for the various fitted models, and mean deviance ( D′ ) 
for the models that do not include spatial kernels (DIC in the parentheses). 
Kernel Distribution 

P NB ZIP ZINB 
A 144.1 

(169.6) 
146 

(170.7) 
119.5 

--- 
122 
--- 

B 146 
(170.8) 

149.3 
(176.2) 

121.3 
--- 

124.7 
--- 

C 147.5 
(171.8) 

151.4 
(177.8) 

120.2 
--- 

123.1 
--- 

D 144.2 
(169.8) 

150.8 
(177.5) 

127.6 
--- 

132.5 
--- 

E 143 
(167.5) 

148.7 
(174.6) 

128.7 
--- 

132.1 
--- 

F 144.2 
(168.7) 

148.3 
(175.8) 

128.4 
--- 

131.5 
--- 

D′  (w/o 
kernel) 

154 
(179.4) 

171.86 
(197.3) 

143.3 168.6 
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Table 3. Posterior medians and corresponding 95% credible intervals of parameters 
(ZIP model). 

Parameter Infection rate 
part Zero part 

(kernel parameter) 1.549 
(0.06, 6.308) 

2.509 
(0.286, 7.191) 

c (kernel parameter) 2.982 
(0.413-7.683) 

2.454 
(0.519-6.436) 

number of cattle --- -6.66 
(-10.63, -3.605) 

number of sheep --- -1.576 
(-3.9, -0.395) 

φ (rate of OU 
process) 

0.035 
(0.011, 0.241) 

--- 

 

 
 

 

 

Figure 1.Temporal incidence of Foot-and-Mouth disease outbreaks in 2000 in Evros 
Prefecture, Greece. 

α



22 
 

 
Figure 2.Temporal evolution of tμ ,  and  during the 2000 FMD 
outbreak. 
 
 

 
Figure 3.Predicted vs observed counts for the ZIP model (•, observed; - - - - -, 95% 
probability intervals; _____, predicted). 
 
 
 
 
 
 
 
 
 
 
 
 

_t endemicμ _t epidemicμ
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Supplementary Material  
 

 

 

Table S1. Summary of candidate variables for inclusion on the final model. 

Covariates*  min median max 
average temperature 
(°C)  16.15 26.35 32.2 
average maximum 
temperature (°C)  21.6 31.5 39.8 
average minimum 
temperature (°C)  8.8 17.5 28.4 
average relative 
humidity (%)  32.67 48.835 82 
average wind speed 
(knots)  2.63 5.315 11.63 
average soil 
temperature (at a 10 
cm depth) (°C)  21.15 28.85 39.25 
number of cattle  0 10 532 
number of sheep  0 0 471 
(*) Source: Greek National Meteorological Service 
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The WinBUGS program for the best selected model (ZIP model with g- 
prior, SM-OU specification, kernel (A)) 
 

 
model{ 
 
O[1] ~ dpois(lambda[1]) 
u[1] ~ dbern(p[1]) 
lambda[1] <- (1 - u[1]) * mu[1] 
log(mu[1]) <- s + b[9]*(pow((1+(x9[1]/b[10])),-b[11])) 
logit(p[1]) <-s + c[7]*x7[1]+c[8]*x8[1]+c[9]*(pow((1+(x9[1]/c[10])),-
c[11])) 
 
for(k in 2:3129) { 
D1[k]<-pow((1+(x9[k]/b[10])),-b[11]) 
D2[k]<-pow((1+(x9[k]/c[10])),-c[11]) 
   } 
for(i in 2:72){     
V1[i]<-sum(D1[startinds[i]:endinds[i]]) 
V2[i]<-sum(D2[startinds[i]:endinds[i]]) 
                         
N1[i]<-sum(x7[startindn[i]:endindn[i]]) 
N2[i]<-sum(x8[startindn[i]:endindn[i]]) 
 
O[i] ~ dpois(lambda[i]) 
u[i] ~ dbern(p[i]) 
lambda[i] <- (1 - u[i]) * mu[i] 
log(mu[i]) <-mu1[i] 
mu1[i] ~ dnorm(M[i],U) 
C[i]<- s + b[9]*V1[i]+ gam1*O[i-1] 
M[i]<-C[i] + (log(mu[i-1])- C[i])*exp(-phi) 
logit(p[i]) <-s + c[7]*N1[i]+c[8]*N2[i]+c[9]*V2[i]+gam2*O[i-1] 
 
 } 
 
U<-(2*phi)/(1-exp(-2*phi)) 
 
lamda<-exp(s) 
 
for (k in 7:9) {b[k] ~ dnorm( 0, 0.0001)} 
for (k in 7:9) {c[k] ~ dnorm( 0, 0.0001)} 
 
for (k in 10:11) {b[k] ~ dnorm( 0, 0.0001)I(0,)} 
for (k in 10:11) {c[k] ~ dnorm( 0, 0.0001)I(0,)} 
 
gam1 ~ dnorm(0, 0.0001) 
gam2 ~ dnorm(0, 0.0001) 
 
 
for (i in 1:6) 

{ 
 for (j in 1:6) 
  { 
inverse.V[i , j]<-inprod(x[ , i] , x[ , j]) 
       } 
      } 
 
for (i in 1:6) 
     { 

Incorporation of 
spatial kernel 

Ornstein‐Uhlenbeck process

Incorporation of g‐prior distribution
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 for (j in 1:6) 
  { 
prior.T[i , j]<-inverse.V[i , j]*lamda/(K/(1-K)) 
  } 
      } 
 
s~ dnorm( 0, 0.1) 
 
b[1:6] ~ dmnorm( mu.beta[ ], prior.T[ , ]) 
 
for (j in 1:6) 
 {mu.beta[j]<-0.0} 
 
c[1:6] ~ dmnorm( mu.c[ ], prior.T[ , ]) 
 
for (j in 1:6) 
 {mu.c[j]<-0.0} 
 
K~dbeta(1,1) 
   
phi<-exp(theta) 
theta ~ dnorm( 0, 0.1) 
                          
 for (i in 1:72){  
 x0[i]<-x[i,1] 
 x1[i]<-x[i,2]  
 x2[i]<-x[i,3]  
 x3[i]<-x[i,4]  
 x4[i]<-x[i,5]  
 x5[i]<-x[i,6]  
 x6[i]<-x[i,7]}   
 
} 
 

Incorporation of g‐prior distribution

Ornstein‐Uhlenbeck process


