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ABSTRACT

Chrisovaladis Malesios

MODELS FOR THE ANALYSIS OF CONTINUOUS
OUTCOME LONGITUDINAL DATA WITH SPECIAL
EMPHASIS ON MIXED MODELS

March 2003

The aim of the present thesis is to provide a comprehensive review of
the existing work on the statistical analysis of continuous outcome
longitudinal data. In particular, we provide in detail, an extensive and
unified overview of all available modelling strategies and inferential
procedures for the statistical analysis of continuous response longitudinal
data. We begin by reviewing approaches that are considered to be
classical approaches to longitudinal data modelling, namely univariate
analysis of variance (ANOVA) and multivariate analysis of variance
(MANOVA) for longitudinal data, and then proceed to more recently
developed approaches for the modelling of (continuous-type) longitudinal
data.

One of the newest developments is the incorporation of mixed models
to longitudinal data analysis. This is based on the mixed model
methodology initially developed in the animal breeding field, and results
in very general and flexible models for handling continuous-type
longitudinal data. We illustrate in as much detail as possible the
implementation of the general linear mixed model (GLMM) in
longitudinal data analysis, by reviewing a great part of the existing

literature on the subject. Besides the important issue of parameter



estimation (for both fixed and random parameters of the model), we treat
the question of modeling of the covariance/correlation structure of
longitudinal data and discuss the ways that have been considered in the
literature on how the latter may be incorporated into the analysis by
means of the GLMM. Special emphasis is put on describing the various
computational procedures existing in the literature, for estimating the
unknown variance parameters of the model (e.g. iterative algorithms such
as Newton-Raphson and Expectation-Maximization).

While the majority of work on methods for analysis of continuous
longitudinal data has been focused on response data that are linear in their
parameters, a significant number of applications required utilization of
Non-linear Mixed Effects (NLME) models. Here, we review the proposed
methodology for analysing longitudinal data via NLME models, and
present the most important and widely applied estimation procedures.

Finally, we provide a review on the most popular plotting techniques
for representing longitudinal data (e.g. parallel plot, Draftman’s display),
since graphical representations may assist significantly in statistical

modeling analysis by revealing useful features of the data.
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HEPIAHYH

Xpvoofardving MaAiéciog

MONTEAA I'TA THN ANAAYXH XYNEXQN
AIAMHKOQN AEAOMENQN ME IAIAITEPH EM®AXH
XTA MIKTA MONTEAA

Maptiog 2003

Yxomdg g mapovoag STpPric eival va OMCEL IO TEPLEKTIKT
TOPOVCINCT) TOV VIAPYOVTOG £PYOV TAV® OTN) GTUTICTIKT AVAALOT TOV
oLVVEXDV SPUNKOV dedopuévev. ZUYKEKPIEVA, TOPEYETAL LLidt EKTEVIG KoL
EVOTOWUEVT] GOVOYT] TOV OBECIUOV CTPATNYIKAV LOVTEAOTOINGNG Kol
TOV S00IKUGIOV CUUTEPUCHOTOAOYIOG YO TN OTATIOTIKN AVAALOT| TV
OLPNK®OV O0ESOUEVEOV GLVEXOVS ATOKPIOTIC. ZEKIVOVTAS LE TNV avaAvon
TPOCEYYIoEWV Ol OTOileg BEPOVVTUL KAUCGIKES Yol TN LOVIEAOTOINGT
Swpunkodv dedoptvav, dnradn TN HoVOUETABANTH aVAALGY| SLUKOUAVOTIC
(ANOVA) kar ™ moAvpetafAnt) avaivon dwaxvpavons (MANOVA),
TPOYWPOVUE OTNV TOPOVGIOCT] TEPLCCOTEPO TPACPATOV TPOCEYYICEWV
Yl TN LOVIEAOTOINGT TV CLVEY®V SIOUN KOV dedouévav.

M ano TG vedtepeg avanTiEES elval 1 eveoudtoon Tov Miktov
poviélmv otV avédivon tev dwaunkev dedopévov. Avt Baciletar o
pebodoroyio twv Miktdv povtédmv, 1 onoia avartiydnke apyikag 6To
nedio g {OWwMNG avamapay®yns, Kot i omoia £Xel G OMOTEAECHA TOAD
YEVIKG kol €LEAIKTA UHOVIEAM OcOovV a@opd TN Oluyeipion ocvvey®v
Slpnkov dedopévev. Alvetal g aVOAVTIKY TEPLYPOUQPT TNG VAOTOINGNG
o 'evikob I'pappikod Miktov Moviéhov (GLMM) omv avdivon

SLUNK®V SEFOUEVDV KOAVTITOVTOS £VO LEYAAO LEPOG TNG VTAPYOVGOG

Vil



PiBAoypapiog maveo oto Béua. [Mé€pav tov onuavtikov {NTMHATOG TNG
EKTipnong tov mapauftpov (otabepov Kot Tuyoimv), acyoAiovueda
eniong pe tn povrelomoinom g OOUNSG TNG CLVOLLGTOPAS/ GLGYETIOEMS
TOV OUNK®V EFOUEVOV KOt TOVG TPOTOVS LE TOVG OTOIOVS T} Soun avTn
umopel va evroyfel omv avdivomn, péoo tov GLMM. EmnpdcHeta,
wiaitepn époaon €xel d00el  otnv  mepypapn TV S0QOp®V
VIOAOYICTIKOV Owdikacidv (m.y. emavainmrikol adydpiduotr Omwg ot
alyopiBuor Newton-Raphson xor Expectation-Maximization), ywo v
EKTIUNON TOV AYVAOOTOV TAPUUETPOV OLOKVUAVOTIS TOV LOVTEALOUL.

[Topott n TAgovOTNG TOL €pyov TTAve oe HeBOSOLG Yo TV avaAvon
cuveydv Srapnkdv dedopévav £xel eotiacel oe dedopévo ta onola sival
YPORUIKA OGOV apopd TG TAPAUETPOVS TOVS, EVOG CTUAVTIKOS aplOpog
gpappoymv arnaitnoe n ypnoonoinon poviédov Mn Tpappikaov
Mwtodv Tapaydvrev (NLME). Edd, kaidmtovue v péypt onuepa
mpotabeica peBodoroyia ywo tnv avaivon dwunkwv dedouévev pécw
t@v NLME povtéhmv, kat tapovcidlovpe Tig To CUOVTIKEG KAl EVPEMG
epappdoiueg dadikoocies ektipnong.

Télog, avapepduacte oTic Mo ONUOPIAElG TeEYVIKES GYeEdaoLOD Yia
owpunkm osdopéva (m.y. parallel plot, Draftman’s display), Adyo g
onuavtiknig fonbeiag mov AUTA TA YPAPNUATA TPOCPEPOLY  OTN
OTATIOTIKY] OVAALCT] OTOKOAVTTOVIOG YPNOWO YUPUKTIPLOTIKA TOV

OedoUEVOV.
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Chapter 1

Introduction

Longitudinal data is a special type of multivariate data, consisting of time sequences of
measurements (usually called repeated measurements), counts or categorical responses
taken from one or more experimental units or subjects. In recent years, statisticians have
put a great amount of effort into developing suitable statistical models for the analysis
of this type of data. One of the main reasons for such a wide interest on studying
longitudinal data in the last years is partially due to the fact that the modern technology
and the recent developments of statistical software have greatly reduced cost and effort.

Over the years, a number of various approaches for representing longitudinal data in
terms of a statistical model have been developed. Specifically, for discrete-type data such
as binary and count data Generalized Estimating Equations (GEE) models are mainly
implemented, while for continuous responses that are assumed to be normally distributed
usually ones uses analysis of variance (ANOVA) for repeated measurements, multivariate
analysis of variance (MANOVA) for repeated measurements or mixed model methodology
for longitudinal data.

The aim of this thesis is to provide a comprehensive review of the existing work on
the statistical analysis of continuous outcome longitudinal data, giving enough detail to
serve as a useful reference to the interested reader. The material of the thesis is organized

in six Chapters, the first of which is a short introduction and overview of the remaining

chapters.



Chapter 2 introduces the reader to the nature of longitudinal data as well as of re-
peated measures data, two terms closely related to each other (Section 2.2) and discusses
their main differences with more general types of data associated with them, such as
general multivariate data or time series data (Section 2.3).

One of the basic and distinguishing characteristics of longitudinal data is that of
covariance, especially exhibited by data on a specific unit. As is explained, this is quite
natural to occur since longitudinal data consist of repeated measurements on the same
units over time, and therefore it is expected to have covariation between the data collected
on the same unit (Section 2.4). A detailed presentation of two classical methods used for
the analysis of longitudinal data, the classical univariate analysis of variance (ANOVA)
and the multivariate analysis of variance (MANOVA) is also made (Sections 2.5.1 and
2.5.2).

In particular, as concerns the ANOVA method, we present the ANOVA table and the
F-tests based on that table for testing significance of fixed/random effects of the model,
a method to estimate the fixed effects parameters, as well as a routine way to estimate
the variance components of the ANOVA model. Of particular interest is the issue of
advantages and most importantly the disadvantages of the above methods. The main
disadvantage of these two methods (ANOVA, MANOVA) in the case of longitudinal
studies is that they can be applied only under extremely special circumstances. For
instance, the ANOVA method can be implemented only in balanced longitudinal designs
(where we have same number of measurements for all units, taken at exactly the same
times). Furthermore, in order for this method to provide valid inferences a very restrictive
structure for the variance-covariance matrix of the within-units observations must be
assumed (the compound symmetric structure). A discussion on this issue is presented in
section 2.5.1.

On the other hand, MANOVA models do not require a specific (hence restrictive)
structure for the within-units variance-covariance matrix, but instead assume a complete

arbitrary structure. This turns out to be undesirable and unattractive too since, al-



though one can cope with the problem of assuming the specific (and rather unrealistic
for longitudinal data) structure of compound symmetry, one faces the additional problem
of estimating a large number of unknown parameters (the variance components of the
unstructured variance-covariance matrix of within-units observations).

For the latter reasons more recent approaches for the modelling of (continuous-type)
longitudinal data have been developed, with most popular among them the general linear
mized effects model for longitudinal data [Laird and Ware (1982), Harville (1977)], which
is based on the theory of the general linear mixed model. Due to the latter relation, a
review of the general linear mixed model (GLMM) theory is made in Chapter 3. In
particular, a presentation of the general linear model (GLM) theory (Section 3.2) is
made with specific emphasis on parameter estimation, i.e. ML, least squares and best
linear unbiased estimation (BLUE) of the fixed effects of the model. The GLMM can be
considered as an extension of the GLM, that introduces another source of randomness
in the model except the random error, namely that of the random effects. Hence, a
comparison between the two models (GLM and GLMM) is quite useful, especially in
showing how the method of best linear unbiased estimation (BLUE) is extended to the
so called method of best linear unbiased prediction (BLUP) in the case of estimating
random effects of the model. It should be noted that again BLUP concerns estimators of
the (realized values of) random effects, but according to a convention that has somehow
been developed, the statistics estimating fixed effects are referred to as estimators, while
those estimating random effects are referred to as predictors.

Section 3.3.1 presents the GLMM, and Section 3.3.3 gives the estimators of fixed
effects and random effects of the model (BLUE and BLUP respectively). The mixed
model equations (Section 3.3.4), due to Henderson (1950), are of great importance since
they provide the above mentioned BLUE and BLUP with less computational efforts,
compared to classical methods of derivation, as the one of Section 3.3.1. In what follows,
we calculate the solutions of Henderson'’s mixed model equations (MME in abbreviation),

and prove that indeed these two solutions are equivalent to BLUE and BLUP. In the



sequel, we concentrate our attention on the estimation of the variance components (or
variance parameters) of the GLMM. (Section 3.3.4). Two close-related methods are
considered, maximum likelihood (ML) and restricted maximum likelihood (REML) since
both methods are very popular in the field of variance component estimation. REML is
usually preferred over ML mainly due to that the former corrects the drawback of the
latter to produce biased (downwards) estimates of variance components, by maximizing
(with respect to the variance components) only the portion of the likelihood that does
not depend on the fixed effects (Section 3.3.4.2).

The subject of Chapter 4 is exploratory data analysis, where we attempt to review the
basic plots and graphical procedures used in longitudinal data analysis. The most popular
plot for representing longitudinal data is the parallel plot (Section 4.2). The necessity
that led statisticians to adopt the parallel plot as a visualization tool for longitudinal data
is mainly the insufficiency of other classical graphical techniques such as the scatterplot
to present multivariate data (in fact, the usefulness of scatterplots proves significant only
in two-dimensional planes). Since longitudinal data usually consist of (a large number)
of repeated measurements on different units, each set of repeated measures of each unit
can be considered to be a high-dimensional point. Thus, in essence, the presentation of
longitudinal data is the plotting of those high-dimensional points corresponding to each
unit in a single plot. The scatterplot, as previously noted, is effective mostly in presenting
2-dimensional data points. The main difference between the scatterplot and the parallel
plot, is that while the scatterplot preserves orthogonality between axes, in the parallel
plot the axes are drawn parallel to each other. Of interest is the relation between the two
plots, proven to be a geometrical coordinate transformation, in the context of projective
geometry (Section 4.2.1). The utility of the parallel plot in the statistical field, as a tool
for displaying and revealing useful information about longitudinal data and repeated
measures data is demonstrated in section 4.2.2.

Chapter 4 concludes with another practical and useful exploratory graphical tool for

longitudinal data, the so called Draftman’s display (Section 4.3). The Draftman’s display



is the most common way for checking visually the, within-subject, covariance structure
of a typical balanced longitudinal data set.

Chapter 5 is devoted to the presentation of the General Linear Mixed Model (GLMM)
for longitudinal data, also known and as the ‘Laird-Ware’ model. In sections 5.2.1 and
5.2.2 the ‘Laird-Ware’ model is defined and the various forms under which it is met in the
statistical literature are presented. Estimation methodology for the fixed-effects vector
of the model as well as available methods for predicting its random effects are the subject
of section 5.3.

An important advantage of mixed-model methodology is that it permits the (pos-
sible) covariation between measures on the same unit/subject to be incorporated into
the statistical model. Various covariance structures can be adopted in order to model
this, possibly existing, covariation of each subject’s response vector. Section 5.4 focuses
on this issue, and thoroughly reviews the most representative covariance structures, by
covering a wide range of the available choices from a completely unstructured covariance
pattern to more complex covariance patterns borrowed from time series analysis.

The issue of estimating the model’s (unknown) variance components (already consid-
ered in Chapter 4) is again discussed, this time for the specific case of the ‘Laird-ware’
model (Section 5.5). An inherent difficulty with the estimation of both fixed-effects pa-
rameters and variance components in mixed model methodology (and accordingly with
the Laird-Ware model), is the insufficiency to come up with closed-form solutions for
the estimators of fixed effects and variance components since expressions for fixed effects
estimates involve the unknown variance components and vice-versa. To this end, numer-
ical iterative techniques [such as the expectation-maximization (EM) algorithm (Section
5.5.1) or the Newton-Raphson (NR) algorithm and variations (Section 5.5.3)], must be
employed in order to overcome this problem. The implementation of iterative schemes
such as the above provides us with estimates of fixed-effects parameters and variance
parameters simultaneously, using a unified procedure. In both cases, the procedure re-

quires initial values of the parameters and using information on the slope of the likelihood



surface the current estimates are moved in a direction that increases the log-likelihood
of the data. The iterations continue until a satisfactory degree of convergence is reached.
Our review on the specific subject includes ML,/REML estimation via the EM algorithm
(Sections 5.5.2.1 and 5.5.2.3, respectively), as well as ML,/REML estimation via the NR
algorithm (Sections 5.5.5.1 and 5.5.5.2, respectively). Also section 5.5.6 provides a de-
scription of a variant of NR, namely the Fisher scoring algorithm, very often used to
compute estimates of fixed-effects and variance components of the Laird-Ware model.
Moreover, the comparison of the two principal numerical algorithms (i.e., the EM and
the Newton-Raphson algorithms) is attempted in subsection 5.5.7. Tests of hypotheses
associated with the fixed-effects are of great practical importance in mixed-model analy-
sis longitudinal data. Section 5.6 focuses on the presentation of the most commpnly
used tests, namely the Wald test statistic (subsection 5.6.1), the likelihood ratio test
(subsection 5.6.2) and the F-test (subsection 5.6.3).

A slightly modified approach to mixed-effects modeling of longitudinal and repeated
measures data came from Diggle (1988) who developed a parametric model that suggests
an alternative specification for the (within-subject) error term’s variance-covariance ma-
trix compared to the Laird-Ware model, and in this sense may be viewed as an extension
of the GLMM for longitudinal data (cf. Section 5.7). The semivariogram (Matheron,
1963%), a very important graphical technique for visualization and validation of the co-
variance structure of the within-subject data, devised by Diggle (1988) is the topic of
subsection 5.7.2. Finally, some remarks on available software for the statistical analysis
of longitudinal data via linear mixed model methodology are offered in section 5.8.

While most of the developed theory on mixed effects modeling of (continuous) longi-
tudinal data has focused on data where each subject’s response is assumed to be linear
in both the fixed effects and the random effects (GLMM for longitudinal data), there
are often situations where longitudinal data are inherently nonlinear with respect to
a given response function, say f(-). Data of this type are common in many applica-

tions, for example, pharmacokinetic and pharmacodynamic studies. As a consequence,



the general linear mixed model does not seem appropriate enough to describe the rela-
tionship between individual response vectors and the unknown parameters of interest.
Thus, naturally, the need for developing more general models that allow for the mean
response function to be nonlinear in the parameters became apparent. To this end, a
great deal of attention (parallely to the GLMM) has also been given to nonlinear mixed
effects models for longitudinal and repeated measures data. In Chapter 6, we present an
overview of nonlinear mixed effects (NLME in abbreviation) models and the associated
estimation procedures currently used for the analysis of continuous response longitudinal
data. A very important statistical challenge in the developing of nonlinear mixed model
methodology is to circumvent the problem caused by the fact that random effects enter
the model in a nonlinear fashion, making hence the evaluation of the full data likelihood
function an extremely difficult task. To date, several methods have been developed in
dealing with this significant statistical challenge. While nonparametric, semiparametric
and Bayesian methods have been proposed, the principal approach until now has been
the approximation of the likelihood in a fully parametric context. Special emphasis is
placed on describing in as much detail the most salient of these methods, appeared in the
literature. In particular, Chapter 6 is organized as follows. Section 6.1 consists of a brief
introduction to NLME models. In section 6.2 we present the NLME model. Section 6.3
presents the widely-used approximation method of Sheiner and Beal (1980), based on
a first-order Taylor series expansion. Ideas similar to the approach of Sheiner and Beal
have been used by Lindstrom and Bates (1990) (cf. Section 6.4) In the sequel (Section
6.5), the Laplacian approximation method, which has proven to be close-connected to
the Lindstrom and Bates approximate estimation method is treated. Approximations to
the log-likelihood function based on Gaussian quadrature rules are discussed in section
6.6. We then address nonlinear model formulation and parameter estimation in a non-
and semi-parametric framework (Section 6.7 ). The considerable literature on Bayesian
approaches for treating nonlinear models for longitudinal data is the topic of section

6.8. Finally, available commercial packages for the implementation of NLME models are



discussed in section 6.9.




Chapter 2

Longitudinal Data

2.1 Introduction

One of the main interests of statistical science is to draw conclusions for some population,
finite or infinite. (In most occasions the populations are finite, except for some situations
where we are confronted with finite populations of very large number of elements, or
situations where for the convenience of the statistical inference we assume that the pop-
ulation is infinite). The best way to derive information about the population of interest
would of course be the collection and examination of the entire set of elements of the
specific population. Of course, in practice this is not always feasible. Very often data
are only available for a subset of the population, or the collection of the elements of the
entire population is simply impossible due to the large size of the specific population. In
such cases; the practicing stat.istician collects information, by using only this small group
(or subset) of the complete population, so that the desired conclusions can be sufficient
and representative of the population under study. Such a given subset of population
elements is generally called a sample, and the methods and principles for the collection
and analysis of data of (finite) populations constitute the branch of Statistics known as:
‘Sample Survey Methods’, or ‘Sampling’. Sample Surveys are nowadays widely accepted

as a means of providing (statistical) data on an extensive range of subjects for both re-



search and administrative purposes, and have become a powerful tool for research in a
wide area of applications, such as industry, education, social psychology, sociology and
many more.

The objective of sample design is how to select the part of the population to be in-
cluded in the survey. For this purpose, various techniques have been developed, each
subject to the specific population and its associated characteristics (e.g. simple random
sampling, systematic sampling, stratified sampling, multistage sampling, cluster sam-
pling etcetera). The need for sampling from larger and more widespread populations led
statisticians to move from relatively simple techniques (e.g. simple random sampling),
towards more complex techniques. The most commonly applied types of survey designs
are listed below:

e Simple cross-sectional: Cross-sectional is the design in which each subject is mea-

sured or evaluated on only one occasion. Thus, we have only one round of data, collected
at a specific time point. The cross-sectional design may be regarded as the simplest
survey design, lacking however the availability to investigate and evaluate changes over
time.

e Stratified: The entire population is categorized into subgroups (strata) and a ran-
dom selection is made within each of the strata. The number and categories (or strata)
selected, depend on the needs of the survey. This design provides greater assurance that
each type of category is adequately represented and can be analyzed.

o Multi-subject: Data are collected using the same sample on the same survey on a
number of different topics. In this design, the survey results are added on to a survey
that has already been designed and whose sa.mplé has already been selected. Designs
of this nature find practical application in cases for example where we have only a few
questions to ask, and therefore it could be appropriate to include these questions in an
already existing survey. The great disadvantage of a multi-subject design is that by using
it we are lacking the opportunity to select a survey design that fits exactly to our needs.

e Longitudinal: In general terms, a longitudinal design is a design in which each
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subject (or unit) is measured (or observed) on multiple occasions over a period of time.
The specific design allows the tracking, and analysis of changes over a period of time.
Longitudinal studies have gained a great interest in the social sciences, such as sociology,
psychology and medical science. One of the main reasoning for this vast interest on
longitudinal studies in the last years is partially due to that the modern technology and
recent developments of statistical software has greatly reduced the cost and effort. Three

are the basic types of longitudinal survey, namely:

e Trend studies
e Cohort studies

e Panel studies

Trend studies formulate a type of longitudinal survey that uses different individuals
in order to conduct a study over time; a cohort study on the other hand, while still uses
different individuals over time, is focusing on the same group of people. By definition, it
is a study that uses the same specific population each time, but uses different samples.
Finally, a panel study is a type of longitudinal survey that studies the same people over
time.

The purpose of the current thesis is to review, in an extensive manner, the literature
associated with the statistical analyses of (continuous response) longitudinal data of panel
forms. Data of this type have proven to be very important in medical research and in
many other disciplines, and various techniques have been devised for their analysis. Our
intention is to provide a coverage of all available approaches for handling and analyzing
such data, ranging from classical (ef. univariate analysis of variance; multivariate analysis

of variance) to more recently developed (cf. mixed model methodology).
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2.2 Longitudinal Data/Repeated Measures Data

By the term ‘repeated measures’, we refer to data with multiple observations on the
same sample element (or unit). Essentially, data of this kind are Panel Designs where
the data are collected for the same sampled elements on each round, and are in contrast
to cross-sectional panels where observations are taken at only one fixed point in time.

In most cases, the multiple observations are taken over time, but they could be over
space for example. Exactly this essence of the repeated measurement occasion (e.g.
time or space), defines a slightly departure between these two terms; longitudinal and
repeated measures data. So, we can define longitudinal data, as data in which the
repeated measurement occasion is strictly time. That is, although repeated measurement
most often takes place over time, this is not the only way measurements may be taken
repeatedly on the same unit. In other words, longitudinal data consist of time sequences
of measurements, counts or categorical responses taken from one or more experimental
units or subjects. In this manner, longitudinal data can be viewed as a subset of repeated
measures data.

Any data set in which subjects are measured repeatedly over time can be described as
longitudinal data. Seeking for a more formal and a firmer statistically based definition,
we have:

Definition 2.1: Longitudinal data (and consequently repeated measures data),
are multivariate observations on m units (or elements), with n; (repeated) measure-
ments on the ith unit and total number of measurements for all units: n = inz
Vi = (Yi1, Yizy -oeery ymi)t is the (n; x 1) vector of the repeated observations on subject ;?land
observations y;; on each subject i, are taken at times t;; with t;; = (ta,ti2, ..., tmi)t. The

vector y = (¥1,¥2, ey ym)t represents the entire set of measurements on the m units.

It is a straightforward consequence of the above definition that:
Yi; = the jth measurement taken on unit ¢

and also:
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tij = the time at which the jth measurement on unit i was taken

This vector notation has been proven quite helpful, since by this way we can refer
and also manipulate the entire set of the repeated measurements of a single unit as a
unique mathematical entity and consequently summarize and display in an elegant form
observations on each unit. In fact, it is standard in longitudinal studies to think of all
the data from a particular unit together, so that the complex relationships over time
may be summarized. It is worth noting that vector notation and more generally matrix
notation is very popular for summarizing longitudinal data. This is indeed the case in
the literature, particularly when discussing some of the newer methods, where matrix
algebra is a basic tool not only for the presentation of longitudinal data but also in the
development and analysis of the various statistical models available until now, which try
to describe these data.

The number of measurements on each unit 7 is denoted by n;. This implies that
one can have different numbers of observations on the various units. Quite often on
the other hand, especially for designed experiments, each subject has the same number
of observations taken at the same set of time points. Thus, for this special case we
have n; = n for all ¢ and t;; = ¢t; for all s and j = 1,2,.....,n. Such data is generally
referred to as balanced longitudinal data. Otherwise the data are unbalanced. It happens
that although balanced data is usually the aim, unbalanced longitudinal data do arise
for a variety of reasons; occasionally the data are unbalanced or incomplete by design;
in general however, the main reason for unbalanced data in a longitudinal study is the
occurrence of missing values, in the sense that intended measurements are not taken, are

lost or are otherwise unavailable.
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2.3 Longitudinal Data and Associations with other

types of Multivariate Data

2.3.1 Longitudinal Data/Multivariate Data

Longitudinal data can be considered without question as multivariate data. In fact,
they are a special form of multivariate data, in the sense that by their definition, cer-
tain restrictions are introduced in the collection of such data, restrictions that are not
incorporated in the general multivariate data definition.

To be more specific, Multivariate data refers to the case where the same unit is
measured on more than one outcome variable, for example one variable could be the
height of an individual, another the weight or blood-pressure, all of them measured at the
same time on each individual in the study. By considering the repeated measurements on
each subject as response vectors, the first noticeable difference in compare to longitudinal
data, is that here the vectors consist of measures on different variables, and consequently
the measurements are incomparable to each other.

Longitudinal responses on the other hand, are quite different. Here, the response
vector y; = (i1, Yiz, - Yin, )’ Of the ith unit consists of repeatedly measuring the same

quantity (same variable), hence only a single variable is measured.

2.3.2 Longitudinal Data/Time Series

A question that naturally arises from the definition of longitudinal data is whether such
data relate to the familiar time series data. Indeed, such kind of data contain elements of
multivariate data and time series data. In fact, it is not easy to draw a distinct boundary
between longitudinal data and time series data. In general, time series methods are more
appropriate to analyze long series of data. A single time series consists of one variable
measured for one object on at least say twenty and often many more occasions (e.g.

consecutive years), whereas longitudinal data rarely contain ten observations per subject
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but consist of many subjects.
The distinction between these two data types relates more to the analysis methods,
with forecasting and eponometric methods applied to time series data and multivariate,

categorical and cross sectional analyses for longitudinal data, as Kloesgen (1999) notices.

2.4 Covariance: The Distinguishable Feature of Lon-
gitudinal Data

The primary distinguishing feature of longitudinal data is the assumption/restriction
of covariance incorporated in the within-subject observations. Hence, in the statistical
analysis of longitudinal data is addressed the issue of covariation between the repeated
measures on the same unit. But what exactly has driven statisticians to introduce this
restriction in the analysis of longitudinal data? The answer is quite simple; if we consider
as ¥i = (Ya1, Yi2y ----- ,y,-ni)t the vector of responses for unit ¢, collected over time, it is
natural to be concerned about the possibility of correlation existing among them.

For example, consider a clinical trial, where repeated measurements (most often with
respect to time) are collected from patients in order to examine the effect of a new
treatment on a disease process over time. This is a typical example of longitudinal data
where the units are the individuals (patients) who participate in the study, and the data
consist of measurements of some characteristic of the patients taken at multiple time
points (a period or a visit). Unquestionably, it is much more realistic to assume that
the measurements on the same patient are more or less related to each other, than to
consider otherwise.

In other words, it is rather plausible to expect for two consecutive measurements of
the same individual to ‘vary’ together. Hence, a large for example value for the one
measurement suggests that the other value could be large too. Respectively, small values
of the first measurement suggests small value for the second, too. As is well known,

a measure of how two random variables ‘vary’ together is the covariance. Formally, if

15



Yi, y; are two random variables that follow probability distributions with means u;, p;

respectively, then we define the covariance between y; and y; as:

Cov (yi,y;) = E [(% — 1) (w5 — 15)] - (2.1)

Since the repeated measurements y;; of longitudinal data and the way they occur,
is attributed to some probability model, they can be regarded as random variables, and
consequently a measure of association between them, such as the covariance, can be
defined.

As mentioned previously, if we denote by v;, 4, (j # j ) the measurements within
the same individual 7, it is reasonable to think of some association (dependence) between
them. Hence, we believe that these measurements tend to ‘vary’ together, or in other
words they are positive together or negative together, and as a consequence of this, the
product (yi; — ;) (¥i;7 — sy7) in the covariance formula will be positive for most pairs

of values. Thus we expect:

Cov (ys;, yij/) # 0. (2.2)

In an analogous manner, we have no reason to expect any kind of association between
measurements of two different subjects. For convenience, we will denote as y;;, ¥y
(i 44,5 j') two random measurements of two different individuals. If y;; and y;
are considered unrelated, then ‘large’ y;; are very likely to happen with ‘small’ y,
and vice versa. This means that the deviations (y;; — ;) and (ys; — pyy) will be
positive and negative in no real systematic way. As a consequence of this, the product
(i — ms;) (v — pe;) may be negative or positive with no special tendency, and the
average E [(yi; — py;) (yj — my )] is likely to be zero. So we expect that if y; is an
observation from individual (patient) ¢, and y;  is an observation from individual i i,
then:

Cov (yij, ;) = 0. (2.3)
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2.5 Statistical Modeling in Longitudinal Data

There are a number of various approaches for representing longitudinal data in terms of a
statistical model, with the characteristic of most of them being regression-based models.
In thick lines we can distinguish the statistical modeling analysis of longitudinal data in

the following major categories:

e analysis of variance (ANOVA) for repeated measurements
e multivariate analysis of variance (MANOVA) for repeated measurements
e generalized estimating equation (GEE) models?

e mixed-effects models

While GEE and mixed-effects models are considered as recent developments, ANOVA
and MANOVA models are considered to be classical approaches for analyzing longitudinal
data, since the first analyses of such data were based upon these models. As a consequence
of the long-term implementation and application of these models, and also due to the
simplicity and connection with the familiar analysis of variance techniques, anova and
manova methods and models for longitudinal data have become quite popular, and are
often adopted by default, sometimes even without proper attention to the validity of the
assumptions that these models take in account. In the following lines, we present briefly
the outlying principles of the two methods and right afterwards their advantages and

disadvantages are discussed in detail.

2.5.1 Univariate Analysis of Variance

The analysis of variance method for longitudinal data is applicable only in the special

case where the data are under the restrictive balanced form; that is, where the vector of

!GEE models (initially developed for longitudinal data), provide a regression framework for analyzing
correlated data that are not necessarily assumed to be normal, instead are usually correlated discrete-

type data such as binary and count data.

17



the ith subject’s measurements is given by y; = (i1, Yizs «-eer) yin)t, hence the responses
of each individual (unit) occur at the same n times t = (¢;, to, ...,tn)t for all units, with
no deviations from these times or missing values for any unit. This specific structure of
the data, where we have m units and n measurements on these units, with each round of
measurements collected at the same time, resembles that of a randomized block design.
The role of factors here are played by the individual and time effects, considered random
and fixed respectively. The levels of the individual factor are the individuals taken part
in the longitudinal study, and correspondingly the levels of the time factor are the specific
time points that the responses were obtained. Thus a classical analysis of variance model
seems as a plausible way to proceed with the analysis (in fact the analysis of longitudinal
data via the analysis of variance model is identical to the analysis of the split-plot design,
considering the particular in this occasion, respect to time structure).

A common analysis of variance (ANOVA) model is described formally, by the following
equation:

y¢j=,u+Tj+b,~+eij (izl, ..... ,m),(j=1, ..... ,n) (24)

where:

yi;: 1s the jth observation on the ith unit (response)
w: is the overall mean

7,: is the time effect

b;: is the individual effect, and

€ij: i1s a random error.

Examining the terms placed on the right hand side of the previous stated model
(i.e. p,7j,bi,€45), we deduce that we have a model containing both fixed effects ( 7;),
and random effects ( b;,¢€;;). This classification of effects as either fixed or random [see,
e.g. Searle (1971) for a thorough discussion on fixed/random effects|, appears to be a
straightforward decision, due to the following reasoning; first of all, the individuals (sub-
jects) considered in longitudinal studies, in an analogous way to every other statistical

modeling procedure,are treated as a random sample from the (entire) population of sub-
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jects. The population is assumed to have zero mean and constant variance, say o2. The
zero mean value is assumed for simplicity, and is a standard issue for analysis of variance
models, since by using a linear transformation, we could define: p* = p + E (b;) and

by = b, — E (b;). Then we can write the model (2.4) as:
yij=,Lb*+b:+’7’j+&'ijE/.L+bi+7'j+€,'j (2.5)

where now for the equivalent model (2.5), we have E (b}) = 0. Consequently, the b;’s
which denote the effect (deviation from the overall mean) on the response y;; due to
the ith individual, are considered to be random variables from the same population.
Moreover, especially in the case where the responses y;; are continuous, the normal
(Gaussian) distribution is often the most suitable one for modeling the components of
the analysis of variance model. Thus, for the random effect b; , representing the deviation
caused by the fact that y;; measurement is measured on the ith particular subject, we

may assume:

bi ~ N (0,07) (2.6)

Consider now the model term ¢;;. As previously noted, €;; represents an error term
that serves the purpose of measuring the within-units variation, since responses vary not
only between individuals but also because of variation within each individual, for example
due to measurement error. In a similar way to the random effect b;, we may think that
measurement errors €;; come from a population of all possible measurement errors, and
consequently can be thought of as random variables following a normal distribution with

zero mean and variance o2. Thus, we may write:
eij ~ N (0,02) (2.7)

Assumption (2.7) indicates constant variance for the random term e;; of model (2.4)

and can be considered as a special case of the more general assumption e;; ~ N (0, 02;)
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(by Var (e;;) = o2; we assume different variances at each time point j), but since (2.7)
is the most commonly applied case, we use this instead.

Worthwhile mentioning is the fact that we used different names to describe the two
random terms in the model; random effect for the individual effect b;, and random
error for the measurement effect €;;. This was done on purpose, since in analysis of
variance models, the term random effect is customary to describe a model component
that addresses the among-unit variation, while the term random error is usually used to
describe the model component that addresses the within-unit variation (Davidian, 2000).

The time effect 7; on the other hand, denotes the effect of the jth time point (5 =
1,.....,n) on the response y;;. This effect of time is considered to be fixed, since the
measurements are collected at specific time points and the researchers’ concentration
is fixed upon just these times (the specific factor levels included in the study), and no
others, meaning that inferences to be drawn are about the specific times that the data
are collected.

Finally, random terms b; and ¢;; are assumed to all be mutually independent (this
represents the view that errors in taking measurements are of similar magnitude, regard-
less of the magnitudes of the individual deviations b; associated with the units on which
the observations are made). Furthermore, b;’s are assumed independent to each other,

and the same stands for the fixed parameters ;.

2.5.1.1 The Covariance Matrix V of the Observations y;;

The analysis of variance model (2.4) finds application to balanced data, where each
subject ¢ (¢ = 1,.....,m) is measured at occasions j (j = 1,.....,n). Due to this, we have
m-n as the total number of observations. In the current section we are going to determine
the covariance matrix, denoted by V, of the total mn observations y;;. More specific,
we will show that V|, is in general, a block-diagonal matrix (i.e. a matrix that its off
diagonal elements are zero, and its diagonal elements are submatrices), with a particular

feature shared by these submatrices, that of having a specific form, known as compound
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symmetric form.
As an initial step, let us define the variance-covariance matrix (some authors use the

term covariance matrix), of a random vector (a vector where its elements are random

Y1
variables) y = y_2 = (41,2, - Yn)'- (the superscript ¢ denotes the transpose).
Yn
Definition 2.2: For a random vector y = (y1,%2, ..., ¥n)’ we define as variance

matrix or variance-covariance matrix V of y the matriz:

V=Var(y)=E{(y—n)(y—n)'}=

E (g — py)? E(y1— 1) (Y2 = pg)  eooene E (y1 — 1) (¥n — &)
| Ee-m i -n) E-w) E(y2— pa) (Yo — 1) |
E(Yn— o) W1 = £1) E W~ o) (2 = Ba)  <ooem. E (yn — tn)’
0-% 012 O1n
On1 On2 a?
where:
E (yl) 251
E (92) Mo
“ - - — re—
E (yn) fhn

and for j,k =1,....,n we define: Var (y;) = 02 and Cov (y;,Yx) = 0.
As already mentioned in Section 2.3, the covariance between different measurements
of the same subject is considered in general, non zero, while we assume that observations

from different subjects have no apparent associations and therefore their covariance is
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taken to be zero.

We will see that this general principle is conveyed successively into the analysis of
variance model (2.4), considering of course the model assumptions already stated. Before
proceeding with the determination of the covariance matrix of the m - n (balanced)
observations of the longitudinal study, we remind the analysis of variance model, which

is expressed as :
y1]=/~l‘+7-]+bl+€l.7 ('L:l, ..... ,m),(j=17 ..... ,n)

where: b; ~ N (0,02) and &;; ~ N (0, 0%) constitute the random terms of the model, and

7, is considered fixed. Data of this balanced longitudinal model consist of m vectors

Ui
t Yi2 . . .
Vi =y, Yoy L ym) B _ , where each vector y; is of (n x 1) dimension,
Yin
including the measurements on subject 7, (i = 1, .....,m) . By stacking together all the y;

vectors, one on top of the other, a single (nm x 1) vector, say y, is formed which contains

the entire set of all repeated measurements on all subjects i. Hence,
( yn
Y12

Yin
Y21

) Y22
Y2 i
y= == Y2n
Ym
Ym1
Ym?2

\yin)

Essentially, and in accordance to Definition 2.2, we have to determine the variance-
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covariance matrix of vector y, and this is achieved by finding the elements of V, that is
the variances as long as the covariances between all the y;; measurements. To begin with,
the variance of all y,; measurements is the same across all subjects and is calculated as
follows:

Var (y;;) = Cov (35, ;)

= F {(yij — Myij)z] PR El(p+bi+7j+e;—p— Tj)z] (2.8)

=F (b12 +E?j + 2bi5ij) = O'g -+ O'Z.

[In the above calculations we used E (b7) = Var (b;) = o, E (%) = Var (e;;) = o?
since E (b;) =0, E (e;;) = 0 and E (b;e;;) = 0, since b;, €;; are independent].

While the variance of each measurement y;; is constant for all subjects, this is not the
case for the covariances between the measurements of vector y. The between-subjects
measurements covariances differentiate from the within-subjects measurements covari-

ances. For a formal verification, take yi;;, y,; to be two measurements on the same

subject 7. Then:

Cov (yij,yijl) =
= L [(bz + Ty S Eij) (bz + Tj/ + €ij’)] - F (bz =+ Tj + 6ij) E (b1 + 'T']./ + 51.3.,) (29)
..... = E (b3) + 7,77 — 1575 = E (%) = o2

[We have substituted y;; and 3, by y:;; — p and y,;» — p since

Cov (yi;,y;7) = Couv (yij — 4,y — 1) as a consequence of the known covariance
property:

Cov (aX + b,cY 4+ d) = acCov (X,Y) where a,b, c,d are constant real numbers and
X,Y are random variables|. In an analogous way, the covariance between two measure-
ments y; and y,; that belong to two different subjects i, i’ is calculated and can be

shown that:

Cov (35, 3;) = 0 (2.10)

Alternatively, we can summarize the above calculations in a unified manner, by using
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the Kronecker delta 6,5, taking values 61-1- = 1for: = j and O for ¢ # j. If y;; and y,

denote two measurements on different individuals 4,1 at different time points j,j , then:

Cov (yij,9¢7) =

E[(bi+7j+ey) (by +7y +epp)] —Elbi+7+5) E(by +7y +esy)
= .. = E(bby)+ E (c'ijE,-'j’) = (5“.:0% + O, ‘5_1]"‘75 =

. N4 i g
02402, fori=1i,j=j

o, fori=d,j#7
08 or ¥FE T, J = 5t

Equations (2.8), (2.9), (2.10) provide us with all the necessary information needed to
construct the variance-covariance matrix, V;, of the ith subject’s vector y; = (i1, Uiz, ----, Yin)

and also the variance-covariance matrix V =Var (y) of vector y of all measurements

which is:
oZ+al o} 0 0 0 0 0 0
0 0 0 0 0 0
o2 o2+a? 0 0 0 0 0 0
0 0 0 oZ+o2 o 0 0 0
0 0 0 : . : 0 0 " 0
V = . (2.11)

0 0 0 o? : oZ+o? - 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 | o¥+o? o2

0 0 0 0 0 0 0 o? - olto?

To comment on the structure of variance-covariance matrix V, we can say that consists
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of a diagonal series of m in total blocks (submatrices) of order (n x n):

F+ol o o o
2 2 2 2
o or +o0 g
b b b
V,.=Var(y:) = . (2.12)
2 2 2 2
Ub O'b s O-b +U€

corresponding to the variance-covariance matrix of y;, the vector of measurements on
each subject 7 (i = 1, .....,m), each one of which has o2 + 02 as its diagonal elements and
o? as its off-diagonal elements. Observing the form of the submatrices, we notice that
its main diagonal elements are equal to each other, and additionally its off-diagonal are
also equal. This specific structure possessed by a variance-covariance matrix is known
as compound-symmetry structure and correspondingly the matrix of this form is called
a compound symmetric matrix.

Dividing each element of variance-covariance matrix V; by the product of the square
roots of the corresponding diagonal elements, in this case o7 + o2, we obtain the corre-

sponding correlation matrix of V;:

L Host - clhp
1 ...
R, = ’.)_ '.) . (2.13)
pp -1

where p = 0%/ 0% + o2, (Observing correlation matrix R; one can easily deduce that it
also has equal diagonal elements as well as equal off-diagonal elements, hence is also a
compound symmetric matrix). Correlation coefficient p of R;, as a correlation between
different measurements on the same individual, is called the intraclass correlation
coefficient [see, e.g., Hand and Crowder (1990), page 27]. It ranges from 0 to 1, taking
the value p = 0 if and only if 02 = 0 ,corresponding to the null hypothesis Hp of (2.17)

described in the next section, indicating that no individual effects are present. If this is
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the case, random term b; can be omitted from model (2.4). The case of p = 1 occurs
when o2 = 0. This case does not occur in practice since it implies that there is no
random (measurement) error and no intrasubject variability; however, it is possible for
the intraclass correlation to be close to 1 indicating that the within-subject variation o2
is very small compared to the between-subject variation o2.

Finally notice that each of the V; submatrices can be rewritten as:

oigrod " opT e 1%k PR P—— Tuw@3 1935m O
0‘3 U§+a£ UE 1 1 1 \ 0 1 0
. = Oy + o, =
ag Ug ai-}—az 1 1 1 0 0 1
1 1 0 - 0
It Obsall ==1:mQ
= O'g ) ( 1 ]_ 0o 1 > +O'z . ) . ) :Uglnli-}-o'z:[n:
1 0 0 - 1
= O'Z‘Jn + JzIn, (214)

where 1, is a vector consisting of n 1’s, I, is a (n x n) identity matrix and J, is a (n x n)
matrix of 1’s. The benefit of this alternative notation will become evident later on, in
the compound symmetry and sphericity section. A direct consequence of (2.14) is that

the variance-covariance matrix V of vector y can now take the form

V. 0 --- 0 aan—FagIn 0 0

0o VvV, --- 0 0 W Ol S 0
Vi = Ty . O -

Ok On EELIOVE, 0 0 aan—i-UgIn

26



2.5.1.2 The Analysis of Variance Procedure

The analysis of variance procedure for a (balanced) longitudinal study, from a com-
putational point of view, is similar to that of a two-factor ANOVA experiment. As a
consequence, under the assumptions that model (2.4) is correct and that the observations
are normally distributed, it is possible to show that the usual F-ratios (also called Mean
Square ratios) constructed using the principles of analysis of variance in order to test
hypotheses on the parameters of the model, are still valid. Validity, as is well known,
implies that these F'-ratios have sampling distributions that are exact F distributions,
central if the null hypotheses discussed above are true. The request of a correct model
basically concerns the compound symmetry assumption presented in the previous section,
yielding that each data vector y; = (Yi1, Ui, -...., Yin) €xhibits the compound symmetry
covariance structure of (2.12) (in fact, as it will be shown later on, the F-ratios are valid,
under an even more general covariance structure of y;, the type H covariance structure).

The analysis of variance procedure is summarized in the following table, known as

analysis of variance table.

Table 2.1
Analysis of Variance for a Balanced Longitudinal Study

source of d.f. sum of mean squares exp ected mean
variation squares(SS) (MS) squares
m
subject m—1 SSp=n Zﬁi'—i,f MSp=SSg,/m—1 E(MSg)=02+no?
=1
n
time n=1 SSp=m ¥ (7;-9.)" MSp=SSr/n—1 B(MSr)=
5,=L =o2+m} r2/n-1
error (m—1)(n—1) | BREENSSES , MSe=8Sp/(m-1)(n-1) E(MSg)=0?
=3 3 (wi—7:.-7;+7..)

m n
total mn—1 SSTotal=z > (¥ii-7. )2

In the above table, y represents the grand total of all the measurements y;;, and ¥
represent the grand mean of all y;;. Similarly, y; represent the total of the measurements

under the ith subject and 7; is the average of the n measurements under the ith subject.
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Symbolically, we have:

y. = Y. > wjondy = r%ﬁ

i=1 j=1

~ - Yi.
O Zyij and y; = 5=
J=1

m _ y. .
y; = Y wjondy,;= EJ

1]

Two are the hypotheses of main interest in model (2.4). One of the them is the
hypothesis of zero time effects, that can be stated formally via the following hypothesis
testing:

Hy: 1,=0 forallj
vs (2.15)
H, : at least one 7; #0

An equivalent way to write the above hypothesis is in terms of the n time means y;

(j =1,.....,n). We are interested in testing the equality of the n means, that is:

Hy: py=py=..=pu, forall j
vs (2.16)

Hy: p; # py for at least one pair (j,j’)

In order to test the null hypothesis Hp, the ratio (test statistic) Fr = —ﬁ—gﬁ is calcu-
lated. By Cochran’s theorem |[see, e.g., Montgomery (1997)], the sums of squares SSr,
SSp, SSE, and SSt.. are independently distributed chi-square random variables with
n—1,m-1, (n—1)(m—1) and nm — 1 degrees of freedom respectively. Thus the
ratio Frp,under the null hypothesis follows an F' (snedecor) distribution with n — 1 and
(n — 1) (m — 1) degrees of freedom. Observing the expected mean squares of Table 2.1,
one can see that M Sg is an unbiased estimator of o2, since E (M Sg) = o2. Also, un-

der the null hypothesis, M Sr is an unbiased estimator of o2, too. However, if the null
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hypothesis is false, the expected value of M.Sy, E (MSr) is greater than o2. So, under
the alternative hypothesis, the expected value of the numerator of the test statistic is
greater than the expected value of the denominator and this suggests the rejection of Hy
on values of the test statistic t}‘lat are too large.

The critical region K, that leads to the rejection of the null hypothesis at a significance
level « is given by:

K: Fr> Fn—l,(n—l)(m—l) (a) )

or equivalently using the p-value approach, if the probability of observing a value of
the test statistic large or larger than the estimated Fr is less than o, we are led to the
rejection of Hy.

Similarly working, we are in position to conduct another useful test, the one that
checks the importance of the main effects of subjects. As in the case of every other
random effect, testing hypotheses concern the effects of the specific subjects participating

in the study, is meaningless, so instead we test the following hypothesis:

vs (2.17)

H1:02>0

The appropriate test statistic now is the ratio Fg = %’g% , distributed as F' with
m—1 and (m — 1)(n — 1) degrees of freedom, under the null hypothesis. Thus, the null

hypothesis Hj is rejected, at a (predetermined) significance level a, if:

g > Fm—l,(n—l)(m—-l) (a) )

or equivalently, if the probability that one would observe a value of the test statistic as

large or larger than the estimated Fp if Hy were true, is less than o, Hj is rejected.
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2.5.1.3 Estimation of Fixed Effect Parameters T;

Thus far, we have being mostly occupied with the statistical analysis of variance model
(2.4) and the associated hypotheses, concerning the significances of fixed effects of time
(1) and individual random effects (b;). The specific hypotheses were made possible to
check by forming each time appropriate F-tests. Later on, we are going to see that as
long as the assumptions about the distributional form and variance-covariance structure
of each subject’s i data vector y; = (¥i1, Yi2, ... ,ym)t [that y; ~ N, (w;,V;) and V; =
02J, + 021,] hold, then the F-ratios constructed to perform the tests will indeed have
sampling distributions that are F-distributions under the null hypotheses of concern,
and consequently the F-tests will provide valid inferences. Another important issue, of
analogous interest as with the fixed and random effects F-tests, is that of estimating the
fixed effects parameters, 7, of the univariate analysis of variance model (2.4).

The estimation of 7;’s may be performed using standard estimating procedures of the
general linear model theory (see Section 3.2), and one of these standard approaches is

illustrated in the following lines. For this, we consider again the ANOVA model:
Yij=p+71i+bit+e;  (Gi=1...,m),(j=1,..,n).
The above model can be written in the alternative form:
Yi = B+ 75 + wi, (2.18)

where the term wu,; comprises both random effects b, and random error ¢;;, ‘cov-
ering’ in this way all sources of random variation. Now, let u; denoting the vector
u, = (us1, Ui, ..., uin)t, and as already given, let y; = (i1, Uiz, -+ ym)t be the vector of re-
peated measurements on subject 7. One can easily prove (working similarly to 2.8 and 2.9
equations) that the variance-covariance matrix of y; has again the same compound sym-
metric structure of (2.12) and the vector of all measurements y has variance-covariance

matrix given by (2.11). Following Hand and Crowder (1996), observe that model (2.18)
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can be written in the matrix form:
y=X7+u, (2.19)

where y is, as before, denotes the (nm x 1) vector of all measurements, X is the (nm x n)
design matrix, T = (71, Tg, ...,7)" is the vector of fixed parameters that must be esti-
mated and finally u = (uf,u, ..., u%,) is the (nm x 1) vector of random terms. Since,
the variance-covariance matrix of vector y is the unknown block diagonal matrix V, of
(2.11) (the elements of V consist of the unknown variances ¢}, 02), if we denote by V
the estimated matrix V, then by using one of the well-known estimation methods of gen-

eralized linear models, (e.g. generalized least squares, maximum likelihood) we obtain

the parameter estimates

7= (XVX) T XUy, (2.20)

2.5.1.4 Estimation of the Variance Components of V

Along with the estimation of the parameters in univariate analysis of variance models,
i.e. the estimation of the (fixed) parameters 7, of model (2.4), we are usually interested
in estimating the variance components of the model (being ¢ and o2 for the particular
model). Further, in deriving the estimators of time effects 7;, given in a vector form
F= (Xt\hf‘lX)—1 XtV -1y, we have already emphasized that due to the fact that the

variance-covariance matrix V is unknown (V is formed from zeros and the unknown

2
e

variances o7, 02), we are urged to replace it by an estimate of V, say V. Henceforth,
what remains in suspense is the estimation of V and in particular the estimation of
variances o2 and o2, usually referred to as the variance components.

Generally, the feature that differentiates the estimation of variance components is
the form of the longitudinal design of interest. More specific, the chosen method of
variance component estimation is depending upon whether the design is balanced or

unbalanced. For balanced designs, like the ANOVA model of (2.4), the estimation relies

31



almost exclusively on one method (contrary to unbalanced data models, such as the
linear mixed effects model discussed in Chapter 3, where there have been developed
several methods for variance component estimation). The general outline of the method
is, after calculating the mean squares (M.S) of the model and deriving the expected
values of the mean squares [E (MS)], to equate these expected mean squares to their
calculated (observed) values. Since the obtained equations will always be linear functions
of the variance components, then solving for the latter we are in position to derive the
corresponding estimators.

This method of estimating variance components (for balanced data) is known as the
‘analysis of variance method’, because it makes use of the lines in the analysis of variance
Table. Concentrating on the specific ANOVA model y;; = p+ 7; + b; + €;; , and its
corresponding analysis of variance Table (Table 2.1), the estimated variances &7 and
&% are calculated by equating the (observed) mean squares to their expected values,

obtaining the two equations

MSg = E (MSg)
MSg = E (MSs)

(2.21)

Now, E (MSg) = o? simply tells us that M Sg is an (unbiased) estimator of o2

, hence
we can write 62 = MSg. In a similar way, it is 6% + néz = MSp, and system (2.21)

becomes
MSg = &2
) )
MSp =0, +nd,

2

e’

The solutions to the above system are simply the estimators &2, 62 of the variance

components o2 , of, given by



Remark 2.1: Although in the analysis of variance procedures involving the calcula-
tions of F-tests, the use of those tests was founded upon normality assumptions, this is
not the case with the analysis of variance method for estimating variance components,
since the expected values of mean squares do not use these normality assumptions (this
is because the expected values apply to any distributions that have zero means and ﬁm’te
variances, hence the analysis of variance method of estimation can therefore be used re-
gardless of distributional properties). Furthermore, estimators of variance components
derived by the analysis of variance method for balanced data (as the above &% and &%),
are always unbiased (for proof see Searle, 1971). In addition, as it has been showed by
Graybill and Hultquist (1961), these estimators are also minimum variance quadratic un-
biased. This means that among all estimators of a variance component, say o, which are
both quadratic functions of the observations and unbiased, those derived by the analysts of
variance method have the smallest variance. In spite of those ‘good’ properties, ANOVA
method for variance components estimation suffers from an important disadvantage; esti-
mates obtained by the analysis of variance method can unfortunately take negative values.
When this happens, several possibilities for dealing with this issue have been proposed, no
one of them being quite satisfactory though. There is the option to accept the obtained
negative estimate as an evidence that the true value of the corresponding component is
zero, hence one can just replace the negative estimate unth zero. Interpreting a negative
estimate as indication of a wrong model is another possible course of action. Finally,
there is the option of using, instead of ANOVA method for balanced data, other estima-
tion procedures, e.g. Bayes estimators [for more on this subject see Tiao and Box (1967),

Federer (1968), Hill (1965,1967)].

2.5.1.5 Compound Symmetry and Sphericity

In previous sections, we saw how the univariate analysis of variance procedure is applied
to longitudinal studies. Also, by using the familiar variance-covariance matrix nota-

tion, we defined the covariance structure of both within and between subjects’ repeated




measurements in (2.11), making a special reference to the specific structure that each
submatrix V; of V shares, known as compound symmetric structure.
Each (sub)matrix V; stands for the variance-covariance matrix of the within-subjects

measurements and as already demonstrated is of the form:

2 2 2 2

Oy i1 O} o

Gin o402 ... ol
o'g 0% o§+a§

This compound symmetry assumption is a straightforward consequence of the fact
that for two measurements y;;,; on the same subject 7 (within unit measurements), it

is easily proved that:

Cov (yijayij’) = o}

Vg (G#7)- (2.22)
Var (y;) = o} + o7

The significance of the compound symmetry structure is implied by the fact that
under this (rather restrictive) assumption, the F-tests (for the time-related terms) in the
univariate analysis of variance procedure are valid. In fact, compound symmetry can be
considered as a special case of a more general condition, called ‘sphericity’ or ‘circularity’,
which still has the advantage of providing valid F-tests if we assume that the within-
subjects covariance matrices share the sphericity property. Sphericity (denoted by £ and
sometimes referred to as circularity), is one of the few distinguishable assumptions of
repeated measures ANOVA in comparison to the classical analysis of variance, and the
need for its introduction was caused by the special feature of longitudinal data, where
the dependence of the within-subjects observations must be taken in account.

It is well known that in classical analysis of variance with fixed effects, two are the

basic assumptions that must be satisfied in order to obtain valid inferences concerning
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model parameters via the F-tests. Specifically, the assumptions are that the errors are
normally and independently distributed, with zero mean and constant variance 2. As a

consequence, the variance-covariance matrix of all observations is a diagonal matrix, with

2
=5

its main diagonal consisting of constant variances o;. Similarly, in experiments where
additionally to the random error term ¢;;, another source of variation (random factor)
is considered, the assumption of constant variance is modified and hence rather than
assuming constant variances o2 for all measurements y;; of the experiment, we assume
equality of variances between all levels of the random factor. It is common to refer to
this constant variances assumption as the homogeneity of variance assumption. In
analysis of variance applied to repeated measures data (and consequently to longitudinal
data), although variance-covariance matrix V is no longer diagonal, the usual F-tests
are still valid under the compound symmetry condition assumed for the within-subject

variance-covariance matrix V;.

In what follows we illustrate in detail exactly why the compound symmetric structure
of V; is a sufficient (but not necessary) condition for the validity of the F-tests for
mean comparisons (associated with the levels of the time-related factors) in analysis of
variance for longitudinal data. In order to demonstrate the previous claim, the necessity
of reminding some basic ideas of the classical experimental design analysis of variance
arises.

Many important comparisons in analysis of variance, between level means of a factor
may be made using contrasts (see, e.g. Montgomery, 1997). Consider for example
model (2.4), and assume that, the relative to this model, null hypothesis (2.15), of equal
time-factor means is rejected. Rejection of this hypothesis indicates that some (or even
all) of the means p; are different from the others, but exactly which pairs of means are
different (or equal) is not a provided information from the specific hypothesis testing. For
circumstances like this, where we seek to make comparisons of pairs of means, or other
partial comparisons of interest to the researcher, implementation of contrasts comes to

our rescue.
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In general, contrasts are linear combinations formed by the multiplication of suitable
chosen vectors with vectors consisting of the level totals of the specific factor of interest.
More specific, consider a factor with o different levels, each level consisting of n measure-
ments. A contrast, concerning level means of the factor, is the product of the transpose
of a suitably chosen vector ¢ = (c,¢z, .....,Ca)’ and the vector Y = (Y1, Y2y -eer Yau) s
where the elements y;. of y denote the summation of all measurements within the ith

level of the factor. The contrast is thus:

Y1
Y2 -
cty = (cla C2y wuine ) ca) ) = Z Cili. (223)
: =]
Ya-

(a1
with the restriction that ) ¢; = 0. The elements ¢; of vector ¢ are called coefficients.
=1

The sum of squares for any contrast is:

o 2
(Z Cil/i-)
SScontrast = %_, (224)

and has a single degree of freedom. In the case of an unbalanced design, that is a design
where the number of measurements is not the same for each level of the factor, the

contrast sum of squares of (2.24) becomes:

a 2
(Z Ciyi->
SScontra.st . L

. (2.25)
=1

where n; denotes the number of measurements within the ith level (i = 1,2,

Generally, a contrast is tested by comparing its sum of squares to the error mean square.
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The statistic (essentially the ratio of contrast sum of squares and error mean square)
would be distributed as F with 1 and a (n — 1) degrees of freedom.

A very important special case of the above defined contrast, is that of the orthogonal
contrasts. Two contrasts, cty, d'y, with ¢ = (c;,¢a, ..., ca)" and d = (dy, dy, ..., dg)"

respectively, are called orthogonal if:

cld=0« Y adi=0. (2.26)
i=1

The importance of orthogonal contrasts lies on the fact that tests performed on or-
thogonal contrasts are independent.

In order to outline the construction of a contrast, the well known test for the equality
of means between two independent populations, by its familiarity and simplicity, proves
to be a suitable example. Suppose we have two independent samples: yi,ys, ....., ¥, and
Yra1, Yra2s ooy Ys, cOming from the two corresponding populations, and let 7, 7, be the
two sample means. For convenience in the calculations we consider the simplest case,
where the two samples come from a N (u;,0?) and N (u,, 02) distribution, respectively.

2 2 2

Moreover a common known variance o° = ¢{ = o3 is assumed for the two samples.

Applying the test (usually called z-test), we are able to test the null hypothesis:
Ho @ py =y (2.27)

of the equality of the two population means, 1, and p,, against the (two-sided) alternative

hypothesis:
Hi @ py # o (2.28)
For this purpose the z-statistic:
25 Y1~ Y2
N
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is computed, where 7, s denote the sample sizes. The null hypothesis (2.27) is rejected,

in a (predetermined) confidence level ¢, if:

20 < —2a,2 OT 202> Za/2)

where, in general, z, is a value defined such that: Pr(Z > z,) = a. Z denotes the
standard normal distribution [The motivation for constructing zo is directly related to
the following: since y, ~ N (/1,1, "72) yYg~ N (uz, ‘—’;), then due to the independence of
the two populations, J; — Jp ~ N [p; — pig,02 (2 + 2)] and consequently if Ho : py = py

T

were true, J; — g ~ N (0,02 (2 +1)) or 2z, N(0,1)].

4 ;1,+
Let us see now, how the above hypothesis (2.27) can be recomposed, in an alternative

i

form. First, observe that the null hypothesis (2.27) is equivalent to:
Hy: p,— py=0. (2.29)

Now, let us consider the vectors p = (u;1%, u,1%)" and ¢t = (21¢,-11!) | where
1, = (1,1,....,1)" is a vector consisting of r 1%, and 1, = (1,1,....,1)* is a vector
consisting of s 1’s. The product cx produces a scalar, since ¢* and p are of 1 x (7 + s)

and (r + s) x 1 dimensions, respectively. More specifically:

1 1 1 1,
eu=( 1= 1) (uttmtd) = (1t -21t) [
T s r 7 s ¢
tu‘2ls
11, 11, T

3 . S_
= T e = s = s = — . (2.30)

As an obvious result, the hypothesis Hy : ¢’y =0 is an equivalent representation of
hypothesis (2.27). In order to construct a statistic for this hypothesis equivalent to the
statistic zp, this time by forming a suitable contrast, we proceed as follows. Initially,

consider the (scalar) product c'y, where y = (Y1, Y2, oor Yry Yrs1, ooy ys)‘ denotes the vector
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that comprises all measurements from both samples. This product gives:

( Yl ( [ A

1 1 r 1 1 1 1 T
cly = <—1£,——1§> Y - <—. ; .—,———....,——) Y
T S r r S s

Yr+1 Yr41

Ys Ys

nityt..tY%  YrprF Y2t FYs
. - . =71 — Yo (2.31)

Thus ¢’y is an alternative way of writing the difference of sample means, J; — J,. As
a next step, we have to find an alternative presentation of the variance of the sample

mean difference p; — o, 02 (2 + 1). Working similarly to the above calculations, we can

T

easily verify that:

1 1 lli 1 1
c'c (—15, - 12) ' = =171, + 511,

1 ' 1

1 1 1 11

= 2(1,1, ..... ,1) +?(1 1, ..... ,1) —7:-2-7'-}-323

1 1

1 1 1 1

S Rl (' o ‘) ' (2.32)

T S r s

Combining (2.30), (2.31) and (2.32) we finally arrive at the position to reformulate the

previous stated assumption J; — Jp ~ N (pg — pip, 02 (£ + 1)) as ¢’y ~ N (c'u,o%c’c).

T b

Hence, under H, (c‘u = 0), it is:

cly

)1/2

c'y ~ N (0,0%c’c) =
(o2ctc

~N(0,1) =
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(y)" X2, (2.33)

oictc

[for the above, we have used that if X ~ N (u,0?) 2 normal random variable, then
Z =%+t~ N(0,1)and Z? = (X—;ﬁ)2 ~ z? | where z? denotes the chi-square distribution
with 1 degree of freedom)].

Summarizing, so far we have shown that an alternative way of expressing the null
hypothesis Hp : u4; = p, is via the hypothesis H, : ¢’y = 0, and also that an alternative
to Yy — Yo ~ N (i — g, 0% (2 + 1)) which has been used for the construction of z-
statistic is given by cty ~ N (ctu,c?ctc). The issue that remains in suspense is the
one of showing that this alternative representation discussed so far is in the form of a

contrast. Indeed, since cty can be rewritten as:

ol N
1 1 r 1 1 1 1 r
oy = (-t) | v |- (enbel D)
T S Yri1 r r S S Yri)
Ys Ys

i+ ooty Yttty 1 1
i - = =Y. — —Y2. = 1. + C2Y2.
r s r s

2
= S aw (2.34)
=1

where ¢; = %, Cy = —% are the contrast coefficients, then in accordance to (2.23), c'y
constitutes a contrast. If we consider the two-sample comparison as a special case of

an unbalanced design, the corresponding sum of squares of contrast c'y is, according to
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(2.25):

2 2
(Z Ci%) N2 b N2
SScontrast — sl = (C y) — (C y)

i nic? T rc? 4 sc TS+ ss%
i
il

(cty)” (cty)?

- ” . (2.35)

1,1 t
=+ < (221) cfc

As mentioned previously, a contrast is tested by forming the ratio %, which

under the null hypothesis is distributed as an F' with 1 and « (n — 1) degrees of freedom.
cty)? ..
Combining

. . (cty
these results it seems rather reasonable to use as the numerator of %ﬁ;;‘mﬂ the ratio 55
TToTr

. . !c‘y !2
The calculations given above, showed that 55 ~ 2% and SS onirast = S
since not only includes the SScontrast DUt additiorially follows a chi-square distribution
with 1 degree of freedom.
A natural extension of the hypothesis (2.27) that compares the two population means

1, and p, could be a hypothesis that involves more than one comparison, such as:
Ho:py = py = pig (2.36)

that involves three samples of r,s and [ sizes corresponding to the three populations.
Testing the above hypothesis by the formulation of a contrast proves to be a little more
complex task compared to the previous example. Working similarly to the pairwise

comparison Hy : p; = po it can be shown that (2.36) is equivalent to
Hy:cip=chu =0, (2.37)

where ¢;, ¢, are suitable chosen vectors and g = (1,12, up1%, p31%)". In order to con-
struct a combined F-test, that will test both of the partial hypotheses ¢t p =0, cipu =0
simultaneously, we have to form a ratio with the numerator being a sum (with suitable

weights) of the contrasts squares (ciy)® and (cty)?. One basic restriction that arises now
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is that the contrasts cly, ciy must satisfy the orthogonality condition (2.26) since by
this way we achieve the required independence between the partial comparisons. Hence,
the contrast vectors ¢, ¢; must be chosen such that c{cy = 0. The above considerations
can be extended out in the general case. Suppose that the hypothesis to be tested is
expressed as

Hy : c;u=0f0rj=1, ..... , V.

Then, assuming that the c;’s have been orthonormalized (by this is meant that c;’s
have been modified, if necessary, to be mutually orthogonal, that is cic; = 0 for &k # 7,
and moreover are normalized satisfying cic; = 1 Vj).

At last now, having illustrated the concept of a contrast through the relatively simple
examples such the ones of comparing two and three population means respectively, we
are ready to proceed (taking advantage of the contrast notion discussed above) with
showing that assuming a compound symmetric form for the variance-covariance matrix
V,; of the within-subjects measurements is a sufficient condition for the validity of the
analysis of variance F-tests. For this reason, let y = (v1,¥2, .- ,yn)t be the vector of n
measurements on a subject and furthermore assume that the (within-subjects) variance-

covariance matrix V; of y can be written as:
Var (y) = V, = 021,1¢ 4 0%I, = 023, + 0’1, (2.38)

where J,, is a n X n matrix of 1’s and I, is a (n X n) identity matrix. Thus, accord-
ing to (2.14), V, is a compound symmetric matrix. Consider now a hypothesis about
p=E(y)=(E{),E W), EUn)) = (11, ko, ---» 4y,). As already described, by using
a standard procedure, it is possible to express the specific hypothesis as H : c§ p =0 for
j =1,.....,v. As previously, we think of forming a ratio of which both numerator (the
combined contrast’s sum of squares) and denominator will follow a chi-square distrib-
ution (F-ratio). More specific, for the F-numerator, the (combined) sum of squares is

constructed by adding the (weighted) (cly) ? and as in the example of the comparison of
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three means, we need independent chi-squares. Independence of contrasts cjy and cly V

ke {1,...,v}, (I # k) is obtained if?:

Cov (cly, cty) = 0= cjCov(y,y) ck = 0 =
clv G=0=>cTic, =0 =
Var (y) ck 144iCk from (2.34)
¢ (02Jn+ 021,) ¢k = 0= cf (071,1, + 021,) cp = 0 =
o; (¢f1,) (1hek) + o2 (cjex) =0 =

ot (cfln) (cfcln) + o2 (cfck) =0 =

; 2
since 02,02>0

R

cicy = 0 and at least one of cj1,,ci1, = 0.

Hence, in words, if V; is a compound symmetric matrix (i.e. the n repeated measure-
ments exhibit equal variances and have equal covariances) and the c;y’s are orthogonal
contrasts (cjcy = 0), then the cty’s are independent N (c§ p,0%) (since due to the nor-
malization: c?cj = 1) and consequently the F-numerator for testing H can be validly
constructed, producing a valid F-ratio as Hand and Crowder (1990) point out.

The following definitions will assist our efforts in explaining as well as possible the
concept of sphericity and its association with compound symmetry.

Definition 2.3: The variance-covariance matriz 'V of a (random) vector

Y = (11,92, .-, Yn)t following a n-variate normal distribution, is said to satisfy the

sphericity (or ctrcularity) condition if-f is of the form:
V= 0'2V0,

where Vy is a fired (known) positive definite matriz® and o? unknown.

Remark 2.2: Assuming a variance-covariance matriz to be of the form V = a2V, is

2We know that if X,Y independent random variables, then Cov(X,Y)=0 (due to Cov(X,Y)=E(XY)-
E(X)E(Y)). In the special case of the normal distribution the converse is also true, that is if X,Y
uncorrelated then X,Y are independent.

3Suppose A is a square symmetric matrix and x is a non-zero column vector. Then x'Ax is called a
quadratic form. The quadratic form and the matrix A are defined to be positive definite if x*’Ax > 0.
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equivalent to assume that V = o1 (with 1 being an identity matriz) as we can transform
Y1y Y2y ooy Yn L0 21, 29, weney 20 bY 2; = Gz; where G s a matriz such that GV G* = 1.
Hence, V = 02V is equivalent to assume that we have a set of n independent random
variables z1, zs, ....., 2o With a common variance o2. Thus:

Definition 2.4: The variance-covariance matriz V of a (random) vector Y =(y1,ya, ...
following a n-variate normal distribution, s said to satisfy the sphericity condition if-f
is of the form:

V = o2,

where 1 is a (n x n) identity matriz and o? unknown.
Definition 2.5: A (n x n) matric M is said to be of Type H if it may be written

in the following form:

A+ 207 ar+ay - o)+ ap
g+ A+2a -0 ay+ oy

M=| T : (2.39)
oan+ar aptay - A+ 20,

where A and o's are constant numbers.

It may be shown (see Huynh and Feldt, 1970), that as long as (within-subject)
variance-covariance matrix V; of each ith subject’s data vector y; = (yi1, yi2, ooy Uiy )
shares the above so-called Type H form, the ANOVA F-tests already discussed are valid.
The Type H condition required for the validity of the univariate ANOVA tests is also
known as the Huynh-Feldt (H-F) condition, and is mathematically less stringent
compared to the compound-symmetry condition (i.e. equal variances and covariances of
within-subject variance-covariance matrix).

Observe that Type H structure implies equality of variances of differences for all pairs
of responses assumed to be correlated (i.e. the within-subject responses). Indeed, let us

assume a response vector y; that summarizes the measurements for the ith subject, and
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exhibits a variance-covariance matrix of Type H such as the one given in (2.39). Then,
all possible differences y;; — v, (j # j') are equally variable, since:
Var (yi; — yij’) = Var (y;) + Var (y,-j/) ~2Cov (ys; ’yz'j’) (2.39)
= A+205+ A+ 20y — 2(aj+aj/)

= 2\ = constant.

The importance of a variance-covariance matrix of a multivariate response vector y;
of Type H lies in the fact that, whenever the response vector follows a (multivariate)
normal distribution, sphericity is equivalent to equality of variances of differences of the
components of the vector, a property shared by matrices of Type H as already shown.
Thus, as long as data vectors y;, (¢ = 1,2, ...,m) are multivariate normal with common
variance-covariance matrix of the form (2.39), sphericity condition is satisfied and the
usual analysis of variance F-tests are valid.

In the above, we emphasized the importance of the sphericity condition as a necessary
and sufficient condition for providing valid F-tests in the univariate analysis of variance
for balanced longitudinal studies. It is, thus, of great interest to be able to test whether
or not variance-covariance matrices of response vectors in ANOVA analyses satisfy the
sphericity condition (or alternatively, under the normality assumption, the Type H con-
dition). A test of the hypothesis that a matrix satisfies the sphericity condition was
derived by Mauchly (1940), and is henceforth known as the Mauchly’s test of sphericity.
It is based on a statistic of the following form (see, e.g. Hand and Crowder; 1996):

B |ICV,.CY|
C tr (CV,Ct) /n— 1~V

where V, denotes the pooled within-subject sample variance-covariance matrix, C de-
notes a matrix of n — 1 orthogonal contrasts, and n is the number of the repeated obser-
vations on each subject (7 = 1,2,..,n). The statistic W (as originally shown by Mauchly,
1940 for n = 2), has approximately a z? with (n — 2) (n + 1) /2 degrees of freedom.
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Further contributions in connection to the W criterion are given by Nagarsenker and
Pillai (1972, 1973); Mathai and Rathie (1970) and Khatri and Srivastava (1971) among

others.

2.5.2 Multivariate Analysis of Variance

Multivariate analysis of variance [see, e.g. Johnson and Wichern (1992)], in simple
words, is just an analysis of variance (ANOVA) with several dependent variables. Equiv-
alently, we can say that it is a multivariate method that extends univariate methods in
cases where the response is not just a scalar, but is considered to be a vector. In such
circumstances, univariate hypotheses testings for comparisons, as the familiar t-test for
a single comparison, or the one-way ANOVA for multiple comparisons, have no practical
usage, and generalizations of those methods known as multivariate analysis of variance
(MANOVA) methods have developed. The key concept of those methods is that they
consider an observation to be an entire vector, instead of a single scalar response.

At this point, we have to note that in general, multivariate analysis of variance meth-
ods were created with the scope of analyzing a broader category of data than longitudinal
data, namely multivariate data, where the responses are not necessarily come from the
same variable. However, since longitudinal data can be viewed as a special case of mul-
tivariate data , where the measurements y;; of each subject i refer to the same unique
variable, the general theory of multivariate analysis of variance is easily conveyed to
longitudinal studies.

Before turning our attention on how MANOVA is adjusted and fitted in the longitudi-
nal studies analyses, it would be useful to present the basic features of the method in the
situation of implementation to a general multivariate problem. In multivariate analysis
of variance (MANOVA), unlike univariate analysis of variance (ANOVA), the responses
are not measurements on the same single variable, but instead could come from multiple
dependent interval variables. Essentially, it is a ‘generalized’ ANOVA where now the

place of the single dependent variable is occupied by two or more dependent variables.
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Hence, while ANOVA is testing for differences in means of the (single) interval depen-
dent variable for various categories of the categorical independent variables, MANOVA
tests for differences in the vector of means of the multiple interval dependents for various
categories of the independents.

Multiple dependent variables make MANOVA much more complicated to perform
compared to ANOVA, due to the fact that multiple dependent variables are usually not
independent of each other. As a consequence, the multivariate analysis of variance tests
can no longer based only on the sum of squares between and within groups, as in ANOVA.
In fact, the sums of squares for between and within for the one dependent variable in
the ANOVA case must be replaced now with a matrix containing the sums of squares
for each one of the dependent variables as well as their cross-products. Determinants of
those matrices are then used as measures of the overall variance in each matrix.

To illustrate implementation of MANOVA in the longitudinal data setting let us now
consider the following situation; suppose we have a collection of repeated measurements
on i subjects (i =1,2,...,m), collected at times j (j =1,2,...,n). We should remind
here that this setting corresponds to a collection of balanced longitudinal data. Further
suppose that the m subjects are randomized into k different groups (k = 1,2, ...,q). By
denoting yu = (Yi1k, Yizk, ...,y,-nk)t the data vector that contains all observations on the

1th subject that belongs in the kth group, we can construct the following model:
Yik = T + Vi + €ik, (7' i 11 21 am) ) (k e 1727 aq) ’ (240)

where
o 7 =(71,T2,...,Tn)" is the (n x 1) vector associated with time,

e v, is the (n x 1) vector effect for the population from which the kth group of

subjects was drawn, and

e g is a (n x 1) vector of errors.
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Under normality assumptions, we can assume the response y;; (which is now a vector,

rather than a scalar) to satisfy:

Yie ~ NTL (#k)vl) 9 (241)

where p, is the mean response vector for group k£ and V; is the variance-covariance
matrix of vector y;, assumed to be the same for each group. The essential difference
now, in comparison to a ANOVA model, is that the variance-covariance matrix V; is not
of a particular structure (e.g. the compound symmetric structure assumed by ANOVA
methods), but instead is assumed to be completely unstructured which means that the

only knowledge we have about V; is that it is a (n X n) symmetric matrix of the form:

2
g1 J12 ... Oip

V= | § w1 . (2.42)

30

On1 On2 ... o

Thus, while ANOVA assumes the very restrictive compound symmetric structure,
multivariate analysis of variance takes the entirely opposite direction assuming very little
about the nature of the covariance structure of the data vector y;.

In the sequel we will concentrate on how we can utilize multivariate analysis of vari-
ance theory to test hypotheses of interest, associated with the above model. For instance,
the interest could be focused on comparing the different groups. Let us suppose that we
have a null hypothesis stating that there is no difference in the means of the dependent
variables (this reduces to only one variable in the longitudinal data situation) for the

different groups. Formally, this is equivalent to testing the following (null) hypothesis:
Hy:py = py=...=p, foreveryk=12,..q (2.43)

against the alternative hypothesis H; which states that Hj is not true. To test the above
hypothesis, what is required is the construction of a table (usually called the MANOVA
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table), essentially being a straightforward generalization of the univariate analysis of
variance table. The only complication is that the entries of the MANOVA table, due
to that there are more th;in one variables now present, can no longer be single sums of
squares as was the case with the entries of a univariate analysis of variance table. In fact,
we also have to take into account the sums of products between the different variables. To
comprise both sums of squares and sums of products between variables, we use as entries
in the MANOVA table matrices whose rows and columns are indexed by the variables.
For example, the (i7)th element of such matrix would be the sum of products relating to
the ith and jth variables. Similarly, the ith diagonal element of the matrix would be the
sum of squares for the ith variable. Matrices of this form are usually called the sums of
squares and cross-products matrices (SS&CP), and their purpose in the MANOVA
table is similar to that. of the (scalar) sums of squares in the ANOVA table. Table 2.2
corresponds to the MANOVA table, associated with hypothesis (2.43).

Table 2.2

Multivariate Analysis of Variance for a Balanced Longitudinal Study

source of variation SS&CP d.f.
7
among groups Qo =Y mp (T, —-7.)Tx—7.) q—1
k=1
g ™
within groups Qe=Y. > (Vi = Fu) (Yix = F0)° m—q
k=1i=1
g ™y

total Qu + Qg Y Yk = 7.) (Yie — y-)t m =1
1i=1

k

Observe that the entries in the MANOVA table are now matrices, and not scalars as
in a usual ANOVA table. Specifically, matrix Qg stands for the between groups SS&CP
matrix, and accordingly Qg for the within groups SS&CP matrix. Matrices Qg, Qg in-
volve except from the already defined data vector yy, the vectors ¥, = (.14, Tk -+ Uomk )
which comprises all sample means 7 (j = 1,2,..n), and ¥. = (7.,.,7 2, ey T )" which
stands for the vector that comprises all §,.’s (7 = 1,2,...n). Further, m; denotes the

subjects belonging in group k. Due to that the MANOVA table consists entirely of ma-
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trices, it is no longer possible to construct a simple F-ratio based only on the sum of
squares between and within groups (as is usual in ANOVA procedures) to test for group
differences. Hence, to test Hy other alternative statistics have been proposed, statistics
that are mainly based on comparing the ‘magnitude’ of the SS&CP matrices, namely
Qg and Qg. Among them, three are the most widely applied; Wilks’ lambda, Pillai’s
trace and Roy’s greatest root.

Wilks’ lambda is the most common, traditional multivariate test where there are
more than two groups formed. As already stated, the proposed statistic is a measure of
the difference between the groups means, and for the specific hypothesis is given by the

following:

o | Qe |
Wilks' lambda = ———————. 2.44
Qu + Q5] 244)

As one notices, the statistic is making use of the determinants of Qg and Qg rather
than the SS&CP matrices themselves, reducing in this way the matrices to single scalars.
One rejects Hy for small values of lambda. Roy’s greatest root (or Roy’s largest eigen-
value) on the other hand, is described as being the largest eigenvalue of matrix Qz Qg
(i.e. the largest root of | QyQz' — AI |= 0). Finally, the Pillai’s trace (or the Pillai-
Bartlett trace) is defined to be the trace of matrix Qy (Qg + Qz) ™"

Although Pillai’s trace has been found to be the most robust among the three tests
(see Olson, 1976), in general none of the above statistics been shown to be significantly
superior to the others. In fact, many software packages for MANOVA provide all three

of the statistics, leaving the user to choose among them.

2.5.3 Advantages/Disadvantages of Classical Methods for Lon-

gitudinal Data

ANOVA and MANOVA models for longitudinal data, share specific advantages, as well as
important disadvantages; in favor of them is the fact that the specific methods are based

on well-understood and well-developed methods, hence have become more approachable
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to the average practicing statistician and to the researchers of other disciplines, compared
to other, relatively recent modeling techniques which are still under continuous develop-
ment and modifications. Furthermore, almost all of the widely used statistical packages
contain facilities for the implementation of those methods, by this way freeing the hands
of practitioners and providing them with software tools that have become standard and
commonly available.

Certain disadvantages of these methods on the other hand, are equally important
and reduce their applicability and validity on longitudinal data models. First of all, the
ANOVA model for longitudinal data requires a very restrictive assumption about the
associations (correlation) among observations on the same unit (or individual). To be
more specific, it assumes a compound symmetric variance-covariance matrix V; for the
vector y; = (Yi1, Yz, ooy y,-n)t of responses within each individual i. If this assumption
is correct then the ANOVA method will provide valid inferences. However if the as-
sumption of compound symmetry does not hold, application of ANOVA method may
lead to erroneous conclusions. The problem about the compound symmetric form of the
variance-covariance matrix assumed by ANOVA, is that in fact compound symmetry is
not at all a realistic structure for covariance modeling of longitudinal data. MANOVA
models on the other hand, in contrast to the ANOVA models, do not assume a specific
structure for the covariance matrix, such as the compound symmetric form, but instead
use an arbitrary covariance matrix, of a completely unstructured form. That is, the only

knowledge we have about V; is that is of the form:

Vigs | BB w3 . (2.45)

ps ]

Opnl On2 ... a

and is the same for all subjects . Thus, the advantage of not assuming a specific co-
variance structure in fact turns out to become a drawback for the analysis, since the

number of parameters to be estimated increases significantly. In summary, when the
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covariance matrix was assumed to have the compound symmetric structure, the entire
matrix depended on only two parameters. In contrast, in the MANOVA model, where
no structure is assumed, the matrix depends on 1‘1’12—4’—11 parameters. Unfortunately now,
under this consideration, a great many more parameters are required to describe how
observations within the vector y; = (%i1, Uiz, -...., )", vary and covary.

In addition to the restrictions that the two methods impose as concerns the modeling
of data’s covariance structure, another major disadvantage shared by both ANOVA and
MANOVA methods is their failure to handle unbalanced longitudinal data. When the
data are unbalanced with possibly different numbers of observations of each subject i, it
is not possible to think in terms of ANOVA or MANOVA analysis. These deficiencies
of classical methods inevitably forced statisticians to turn their attention towards other,
newer methods, with less restrictive assumptions. An interesting and challenging problem
was to find more realistic statistical models, models that do not rely on the assumption of
compound symmetry, but can handle different covariance structures, each time depending
on the specific problem and data under study. One of these models is the General Linear
Mized-Effects model for longitudinal data.

Concluding however, it should be noted that despite the development of new ap-
proaches both univariate and multivariate analysis of variance have been and still are
very popular to analyzing repeated measures and longitudinal data, in some disciplines.
Behavioural sciences and Psychology in particular have made extensive use of the ANOVA
and MANOVA. There is a large number of articles and books appeared in the literature
that discuss extensively the implementation of the latter approaches to repeated mea-
sures data. Representative examples are Hand and Crowder (1990), Hand and Crowder
(1996), Rouanet and Lepine (1970), O’Brien and Kaiser (1985), Hertzog and Rovine
(1985), and Hand and Taylor (1986).

52



Chapter 3

The General Linear Mixed Model

3.1 Introduction

Linear models have received great attention both in theory and in practice. From the
theoretical point of view they are mathematically tractable, and in practical applications
of wide variety they have proved to be of great value. The techniques of linear regression
analysis find applications in almost every field of study, including social sciences, physical
and biological sciences, business and technology, and the humanities.

Most types of statistical analysis based on linear models of single variables are included

in the following categories:

e Simple and multiple linear regression
e Analysis of variance (ANOVA)
e Analysis of covariance (ANCOVA)

e Mixed model analysis of variance

The first three categories of the above linear models are considered as special cases of

the General Linear Model (GLM in abbreviation) since all these can be written in the
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form of GLM [see, e.g. Nelder and Wedderburn (1972)]. In fact, every fixed-effects model
that is linear in the parameters is called a general linear model. Its great importance lies
in its broadness, since that within the GLM theory the whole spectrum of methods for
analyzing one continuous response variable (Y) and multiple explanatory variables (X;)
is covered.

On the other hand, Mixed model analysis is a relatively recent type of statistical
analysis, based on linear regression models. In particular, it applies to research involving
factors whose levels can be controlled by the researcher (fixed) as well as factors whose
levels are beyond the researcher’s control (random effects). The “mized Model” term
is attributed to Fisenhart (1947), who codified much of the material relating to linear
models into three models. His Model I (fixed effects) and Model IT (random effects) were
given at that time extensive discussion. The mixed model, which was a combination (a
mixture) of Model I and Model IT was introduced as well, but was given relatively little
discussion. These three models-Model I, Model IT and the Mixed model-have generally
provided the framework within which the bulk of applied linear model methods have been
developed. Nowadays, it is established to refer to Model I as the fixed effects model and
Model II as the random effects model. The genetics was the science field on which the
first steps for the development of mixed model analysis were based. Especially in animal
breeding, where the prediction and estimation of unobservable genetic parameters is an
issue of great significance, mixed model analysis and especially mixed linear models have
found the suitable soil for their implementation. This was mainly due to the fact that
data arising in animal genetics are usually not balanced, henceforth methods developed
for balanced data (as the ANOVA method described in Chapter 2), were not suitable any
more. The basic challenge of genetics and animal breeding data was not only the formu-
lation of a suitable model for such data (a linear model with many fixed environmental
and many random genetic factors), but also the estimation of the associated variance
components arising from such models. Animal breeding scientists, and especially Hen-

derson C.R., developed the initial results of mixed linear models, results that proved to
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be the foundation for nearly all applications of analyses for mixed linear models.

3.2 The General Linear Model (GLM)

The above discussion shows that the General Linear Mixed Model (GLMM) is not
directly related to the GLM. In fact, the GLMM can be considered as an extension of the
GLM viewed from the perspective that GLM is essentially a fixed effects model (contains
only the vector of fixed parameters, b), while GLMM, as already stated, contains both
fixed and random effects.

Nevertheless, we present in the following lines the basic results of GLM theory (es-
pecially, the results associated with the estimation of b) not only for the purpose of a
complete and adequate illustration of GLM model, but mainly due to the fact that a par-
allel comparison of both GLM and GLMM results will be quite enlightening in detecting
the similarities as well as the differences between the two models.

The general linear model is described by the equation:
y = Xb +¢, (3.1)

where

e yis a (n x 1) vector of responses y;
e X is a (n X p) known matrix (design matrix, incidence matrix or model matrix)
e bisa (p x 1) vector of all the unknown populations parameters b; (j = 1,...,p)

e ¢ is a (n x 1) vector that contains the random errors ¢; (i =1,...,n)

Generally, it is assumed that € follows a n-variate normal distribution (n is the total
number of observations) with zero mean vector and variance-covariance matrix V| i.e.

e ~N, (0,V).

%)



Remark 3.1: The feature that distinguishes the general linear model y = Xb + ¢
for the various special cases of linear models analysis (i.e. ANOVA, ANCOVA, simple
and multiple linear regression) is in essence the type of matriz X. Indeed, an ANOVA
model can be constructed by using as elements of X dummy variables so that the X;
ezxplanatory variables represent the model’s factors and interactions. When X consists
of observed values of the X;’s we fall in the simple and multiple linear regression model.
Finally, the case where some of the elements of matrix X are observed X;’s and others
are dummy vartables, hence representing a model that combines both regression (simple
or multiple) as well as linear models involving factors and interactions is the generally

known covariance analysis.

3.2.1 Estimation of Fixed Effects b

Three are the most commonly used approaches to the statistical estimation of parameters

(b) for the GLM, namely:

e the Method of Least Squares
e the Method of Maximum Likelihood and

e the best linear unbiased estimator of b (BLUE)

An important distinction between the methods of least squares and maximum like-
lihood is that the former can be used without making any assumptions about the dis-
tribution of the response vector y, beyond specifying its expectation and possibly its
variance-covariance matrix. On the contrary, it is not possible to derive maximum likeli-
hood (ML) estimators without first specifying the distribution of the response vector y,
since ML method requires the knowledge of the probability function of y. In summary,
the basic results of the two methods as weil as the derivation of BLUE are shown below

(the notation of estimators is according to Searle, 1971).
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3.2.1.1 The Least Squares Method

Two are the most popular and familiar variations of this estimation procedure. Both of
them are based upon the general idea of minimizing sums of squares, with the distin-
guishing feature between them being the variance-covariance structure of the vector of

responses, y.

Ordinary Least Squares: As already stated, in order to derive least squares estima-
tors all that one needs is vector’s y expected value and variance-covariance matrix. The
ordinary least squares method is based on the rather simple assumption that € has zero
mean [E () = 0], and all the elements of € are uncorrelated with one another with the

same variance, o2, so that the variance-covariance matrix of € is:
2
Var (e) = o1,

with I, the (n x n) identity matrix. Thus, in accordance we have E (y) = Xb+E (¢) =
Xb, and Var(y) = 0°I,. The ordinary least squares (OLS) estimator of b, usually
denoted by be, is chosen to be the value of b that minimizes the sum of squares of

observations from their expected values, that is the sum of squares of the error terms:

n

Se? =Y [y—Ew)]? =3 (% — ) (where n denotes again the total number of
i=1 i=1

i=1

responses). Notice that > (y; — ,u.,-)2 can be equivalently rewritten in matrix notation as:
i=1

(3 — )" = (1 — )+ oo+ (g — )"
=1
h— W= {4y Y1 =
= (Y1 = L1y s Y — ) : 2 : _
Yn ™ Ha Yn = Hn Yn =
= y-E®) ly-E ()] = (y — Xb)' (y — Xb) = €€,
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where y = (y1,%2, ... ¥n)" the response vector, and E (y) = (uy, fhg. ..., i)’ Hence the
OLS estimator of b can be equivalently obtained by the minimization of the vector
product ete = (y — Xb)' (y — Xb). To achieve minimization we differentiate e'e with
respect to the elements of b and equate @ (e'e) /0b to zero. The resulting equations
obtained are:

X'Xb® = X'y. (3.2)

Equations (3.2) are known as the Normal Equations. When matrix X*X is nonsin-
gular!, thus securing the existence of the inverse (XtX)_l, the symbol b is used in place

of b?, and the solution to the normal equations (OLS estimator) is given by:
bors = (X*X) ™' Xty. (3.3)

In the case where XX is not of full column rank, hence singular and its inverse does
not exist, the generalized inverse of X'X, namely (X'X)™ is used instead satisfying

XX (X!X) X!X = X*'X. Then the corresponding solution of the normal equations is:
b° = (X'X)” Xty. (3.4)

The notation b°, instead of b, in the above equation is used in order to emphasize
that b® is only a solution to normal equations and not an (OLS) estimator of b. This is
because although b is an estimator of some expression (not b), this expression depends
entirely upon which generalized inverse (X*X) is used in obtaining b.

Remark 3.2: The generalized inverse (or g-inverse) of a (m x n) matriz A, denoted

as A, is every (n x m) matriz satisfying the relation

AAA=A. (3.5)

YA square matrix A is said to be nonsingular ér regular if | A [# 0. Otherwise A is said to be
singular. The following are equivalent: A nonsingular<s| A |# 0 < A~ exists.
(=] O q g
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The generalized inverse of a given matriz A is not unique. There is an infinite number
of matrices that satisfy (3.5). Generalized inverse finds applications in cases where the
(regular) inverse A~' of A cannot be defined. This is the case where either m # n
hence A is not a square matriz, or m = n but | A |= 0 (since OLS estimator requires
the inverse of matriz X*X which is a (p x p) square matriz, the inverse (X!X)™" may
not always erist, e.g. when | X!'X |= 0, and the only way to come up with an OLS
estimator is by using a generalized inverse ).

The problem that arises now is due to the foct that although the generalized inverse

(X*X) of XX always ezists, as mentioned above is not unique and as a consequence the

OLS estimator b°® depends clearly upon the specific choice of (X!X).

Generalized Least Squares: The ordinary least squares estimators of (3.3) was based
on the assumption Var (¢) = o2I,. If instead of assuming this special variance-covariance

structure for € we consider the more general situation of
Var(e) =V

for some positive definite symmetric matrix V, then the generalized least squares (G.L.S.)

estimator of b (also known as weighted least squares estimator), is obtained by minimiz-
Ing:
y-E)]' V' y-E ()= (y - Xb)' V7 (y — Xb), (36)

with respect to b. Minimization of (3.6) yields the generalized least squares equa-

tions

X'V-1Xb = XtVly, (3.7)

with the solution
boLs = (XPVIX) T XtV-ly, (3.8)

being the generalized least squares (GLS) estimator of b.
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3.2.1.2 The Method of Maximum Likelihood

For obtaining the above (ordinary and generalized) least squares estimators of fixed
effects vector b, no specific assumption was made about the form of the distribution
of the vector of random errors €, and consequently about the distributional form of
the response vector y. Yet, for the maximum likelihood estimator of b it is necessary
to make some assumption about the distribution. Most times this assumption states
that € is normally distributed, with zero mean and variance-covariance matrix V, i.e.,

e ~N, (0, V). As a consequence the response vector y is distributed as:
y ~N, (Xb, V).

The corresponding probability density function (p.d.f.) of the normally distributed

vector y is well-known to be:

1 1 bret (e
f (y, Xb, V) = W exp {—'5 (y - Xb) Vv (y Xb)} . (39)

To derive the M.L. estimator of b, the likelihood of the sample of observations must
be maximized with respect to b. Now, for vector y the likelihood function L (Xb, V;y)
is algebraically the same as the p.d.f. f(y;Xb,V) in (3.9) (the change in the sequence
of symbols between f and L is made to emphasize that while the weight in f is on the
response variable vector y, the emphasis in L is on the parameters considering the y to
be the fixed observations).

Maximizing L (Xb, V;y) with respect to b is equivalent, due to that In is an increasing
function, to maximizing In L (Xb, V;y). For this reason the equation d(In L) /0b =0

is solved and the solution, which is the M.L. estimator of b is:
b= (XVIX) ' XtVly, (3.10)
the same as the generalized least squares estimator. By assuming now (as in the OLS
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estimation) a less general covariance structure for €, i.e. V =021, then the ML estimator

of b simplifies to
b= (X'X)™ X'y,

the ordinary least squares estimator. The only difference now, is the distributional as-

sumption of & which is considered to be multivariate normal, hence € ~N,, (0,02L,).

3.2.1.3 The Best Linear Unbiased Estimator (BLUE)

In the situation of least squares estimation of the fixed effects b, the estimators bors
and bgrg were derived by making specific assumptions about the expected value and
variance-covariance matrix of €. Furthermore, on assuming normality for ¢ it was made
possible to obtain the maximum likelihood estimators b (identical to boLs and bg Ls).- In
this section, we will present an estimator-known as best linear unbiased estimator-that
does not require any assumptions at all about the moments of € or its distributional
form. Instead, two of the most widely applied criteria on the investigation of estimators
in mathematical statistics are utilized: the unbiasedness criterion and the criterion of
minimum variance of the estimator. The specific estimation procedure is based upon
the Gauss-Laplace-Markov theory of linear estimation, using a generalized version of the
Gauss-Markov theorem (for more details on the topic we refer to Haruville, 1976). By this
approach, it is possible to estimate not just the fixed effects vector b, but in general any
linear function of b, t‘b with t any column vector [the only restriction about the vector
t is on its dimension, that has to be in compliance with the dimension of b. Hence, since
vector b was chosen to be of (p x 1) dimension, t must be also a (p x 1) vector, resulting
a well-defined scalar t'b].

The three characteristics (with the two of them essentially being criteria for obtaining
an optimum estimator) of the estimator, described in its definition, lead to its derivation.
We now describe analytically how this derivation is accomplished. The technique of b.l.u.
estimation proceeds as follows: Initially, we take the estimator of t'b to be the linear

function Ay, of the vector of observations y (this is where the term linear in the b.l.u.e.
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definition corresponds). As a next step, we restrict the set of estimators of the form X'y,
by imposing the unbiasedness-criterion for A'y. The estimator A’y of t'b, is said to be

an unbiased estimator if-f:

E(Ny)=tb=XE(y)=tD

= A'Xb=1t'b Vb= A'X =t
E(y)=Xb

(3.11)

Taking transposes on both sides of A*X = t¢, for reasons that will become evident in

a while, we obtain

XA =t (3.12)

Having in mind (3.12), we additionally require of A’y to be the ‘best’ estimator of
t'b; ‘best’ means that in the class of linear, unbiased estimators of t‘b, the best is to
be the one that has minimum variance [i.e. a minimum variance unbiased estimator
(M.V.U.E.), being linear at the same time]. This criterion will assist in deriving the A’

of estimator A'y. Indeed, let Var (y) = V. Then,
Var (/\ty) = AVar (y) A = X'V,

and in order for A’y to be ‘best’, that is to have the minimum variance between all
unbiased linear estimators A’y, A’V must be minimum. This minimization is well-
executed using the Lagrangian technique?, taking 26° as a vector of lagrange multipliers

and X*A — t of (3.12) to be the constraint. Hence, we minimize the quantity

Q = A'VA-26" (X'A — t)

2A technique, devised by the French mathematician J.L. Lagrange, for calculating the optimal value
of a variable, subject to some constraint, in order to maximize or minimize another variable.
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with respect to the elements of A* and 6. This is accomplished by solving the system:

el

2 -0
0

K¥—-0 ;. (3.13)
XA =t

Solving Q06 = 0 we get X'\ = t, [note that X*\ = t is equivalent to A*'X = t’
since X!A =t & (X!A)" = t'e A'X = tf]. Furthermore, QX = 0 gives VA = X8,
or after solving for A, A = V™'X86. Taking transposes on both sides, it is A! = #*XtV -1
(V1) = V-1 since (V™1)" = (V*)™' and V* = V]. Substituting A’ to A'X =t¢, we
obtain 8'X'V-1X = tt = 6' = t! (X*V-!X)~'. Now, replacing 6 in A' = 6'X*V-! we
can derive a solution for the Af, of the estimator A'y, that does not contain any more

the unknown vector @, and is:
A=t (XVIX) T XV L (3.14)
Hence, the b.l.u.e. of t'b, Ay is given by
Ay = ¢! (XPVIX) T XV, (3.15)

It can be shown using (3.15) (for the proof see, e.g. Searle, 1971) that the b.l.u.e. of
fixed effects vector b,denoted by bgryE, is:

bprue = (XtV*lX)_l X'Vv-ly, (3.16)

identical to the generalized least squares and maximum likelihood estimators, respectively

[assuming € ~ N, (0, V)].
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3.3 General Linear Mixed Model (GLMM)

In spite of its great popularity and applicability, the already discussed GLM of equation
(3.1) has also an important disadvantage; the problem is that this model allows only
one source of randomness, the random error term €. The general linear mixed model
(GLMM) removes this restriction, by allowing for other error structures except €, error
structures that are popularly known as ‘random effects’ factors or simply random effects.
Under this perspective, GLMM can be considered of being an extension of GLM. This
model has received increasing attention, mainly due to its wide applicability and ease of
interpretation. Within this framework, one is generally interested in inference procedures
and estimation of the parameters of the GLMM. There is a considerable literature on the
subject of estimation, which is usually based on maximum likelihood or restricted maxi-
mum likelihood (Patterson and Thompson, 1971) for the fixed effects and the variance
parameters, with best linear unbiased prediction (BLUP) for the random effects of the

model.

3.3.1 The Model Equation

The General Linear Mized Effects Model is described by the following equation (see, e.g.
Haruville, 1977):
y =Xb+ Zu+e, (3.17)

where

e yis a (n x 1) vector of random variables whose observed realizations are the re-

sponses
e X is a (n x p) matrix of known coeflicients that relates observations to fixed effects

e bis a (p x 1) vector of unobservable parameters (the fixed effects)
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e Z is a (n x g) matrix of known coefficients that relates observations to random

effects
e uis a (g x 1) vector of unobservable parameters (the random effects) and finally

e £ is a (n x 1) vector of unobservable random errors

By definition we take the random terms u, € of the above model to have zero expec-

tations:

E(u)=0, E(e)=0 (3.18)

and variance-covariance matrices:

Var (u) =D, Var (¢) = R, (3.19)

where D, R are considered known, positive definite matrices. Further, we also define:

u D 0O
Var = . (3.20)
€ 0 R

From this assumption it follows that the random vectors u and € are independent.
Taking advantage of (3.18), (3.19), (3.20) we can easily determine the expectation and the

variance-covariance matrix of the third random term of the model, the response vector

y. We have:
E(y) = E(Xb+Zu+e¢€)=E(Xb)+ E(Zu) + E (¢)
= Xb+ZE(u)+E(e)=Xb+Z0+0
= Xb (3.21)
and

Var(y) = V=Var(Xb+ Zu+¢)=Var(Zu+¢)
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= ZVar (u)Z'+ Var(e) + ZCov (u,€) + Cov (¢, u) Z*
= ZDZ'+R. (3.22)

3.3.2 Estimation of Fixed Effects/Prediction of Random Effects

All estimation methods of section 3.2.1 (Least squares, maximum likelihood, best linear
unbiased estimation via the Gauss-Markov theorem), were concerned with the estimation
of b, a (vector) parameter that comprises all fixed effects of the GLM: y = Xb + €. For
the more complex mixed-effects model y = Xb + Zu + € the issue of estimation becomes
somewhat more complicated, due to the extra random parameter u introduced into the
model.

While, at least from a statistical point of view, estimating fixed effects b (or func-
tions of b) is considered to be a problem of major importance, in contrast the problem of
making inferences about a realized or sample value of random vector u did not received
analogous attention from statisticians. The reasons that lead statisticians to “neglect”
estimation of u (and estimation of random effects, in general), are obvious in a way;
for the classical (frequentist) statistical school of thought, the main distinction between
fixed and random effects lied on the fact that the effects are random when we are not
interested in their specific individual values. Hence, estimation of random effects never
seemed to be of any practical usefulness. Instead, what has been established as a stan-
dard procedure is the estimation of variance components, i.e. the elements (variances
and covariances) of the random term’s variance-covariance matrices. Motivation for this
is simple; rather than making inferences about specific realized values of a random vari-
able, which essentially are just a small sample from a (finite or most usually infinite)
population, it is much more useful to direct the efforts in drawing conclusions about the
population’s variation.

In specific situations though, realized values of u are important; such situations often
occur in animal breeding applications, where (linear) combinations of b and u correspond

to the breeding values of individual animals, and the primary objective of the statistical
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analysis is to evaluate these same animals as candidates for some future breeding program.
In this context, estimates of u has been used extensively in order to decide which animals
are best, in some sense.

As concern terminology now, it is of interest to note that it is typical in the literature
to meet the term “predictor”, rather than “estimator”, when referring to random effects.
It has become common practice to estimate fixed effects and to predict random effects.
Although not of much practical importance, this terminology issue has gone under long
discussion, and the question of which of the two terms is the correct one is still under
debate (see Robinson, 1991). Nevertheless, from now on we are going to use the term
prediction when referring to the estimation of random effects u. Finally, note that for
deriving the following results, model’s y = Xb + Zu + € variance-covariance structure is

considered to be known (i.e. D, R and consequently V are known).

3.3.2.1 Estimation of Fixed Effects b

The methods used for deriving estimates for the fixed-effects parameter vector b of the
GLM y = Xb + €, apply also for the estimation of b in the GLMM. Hence, once
again, widely applied procedures such as maximum likelihood and best linear unbiased
estimation are considered to be the most suitable in order to form adequate expressions
for the estimates of b. Consequently, the analytic expressions of both the ML and the
best linear unbiased estimator (BLUE) of the fixed effects vector b for the GLMM are

exactly identical to those presented in section 3.2.1, concerning the GLM, thus:
b= (XVv7X)' X'Vly, (3.23)
expresses the ML estimator of b, and is identical to the best linear unbiased estimator:

bprye = (X(VIX) 7 XV-ly, (3.24)
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3.3.2.2 Prediction of Random Effects u

Estimation of fixed effects involves various estimation methods of equal importance and
applicability (Least squares, maximum likelihood, BLUE). In contrast, for the prediction
of the random effects u (partially due to the non-acceptance of the frequentists), there
has not been shown an early analogous interest for developing an estimation method. But
what mainly animal breeders needed were predictors of random effects, such as breeding
values. The answer to their problem was best linear unbiased prediction® (BLUP), which
until now remains the most widely used procedure for random-effects prediction in mixed
model analysis. It should be mentioned at this point, that as was the case with best
linear unbiased estimation of fixed effects, the results concerning BLUP estimates are
also obtained by use of the Gauss-Markov theorem (Harville, 1976, 1977) this time

extended to include the estimation of random effects.

The Best Linear Unbiased Predictor (BLUP): The current subsection deals with
methods associated with the derivation of best linear unbiased predictors for the random
effects vector u. We have already stated that best linear unbiased prediction (or BLUP),
is in general a method of estimating random effects, originally developed for ranking and
selection in the contexts of animal breeding and genetics. A vast literature on the deriva-
tion of BLUP estimates for the random effects vector u, (denoted similarly to the BLUE
notation as ugryp), in the general linear mixed model exists since a large number of sta-
tisticians, most usual of different statistical wiewpoints (i.e. Classical or Bayesian schools
of thought), have been concentrated on this issue. Among them, Henderson (1949,1950),
Goldberger (1962) and Searle (1971, 1995) have contributed the most elegant and ap-
plicable derivations of BLUP, from a Classical perspective, while Bayesian derivations of
BLUP were given by Dempfle (1977) and Lindley and Smith (1972). One of the most
popular derivations is presented below, a relatively recent derivation provided by Searle

(1995), which is very similar to that of bg g of the fixed effects vector b, in the general

3The best linear unbiased predictors are also known as empirical Bayes estimators.
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linear model (3.1). Before proceed in presenting the method, it should be noticed that
it is a rather general procedure, estimating not just u, but linear combinations of u and
Xb, namely of the form

w =t!Xb + tiu, (3.25)

yielding ugryp of u as a special case. Also, similarly to BLUE, no distributional as-

sumptions concerning the random parts of the model are required.

Deriving the BLUP in a Manner Similar to Deriving the BLUE: As already
mentioned, we want to predict the function w = t:Xb + tiu, involving both b and u.
First of all, we take the estimator of w to be linear in y, i.e. to be of the form A'y. Now,
as in the best linear unbiased estimator case, we take advantage of the same criteria used

there, the one of unbiasedness and minimum variance. As so, we have (for unbiasedness

to hold):

E(Ay) =t{Xb+tiu=E (A'y — t{Xb — tju) =0

= AE (y) — t{Xb — t}E (u) = 0 = A*Xb — t{ Xb =0

= A'Xb = t!Xb = (A'Xb)" = (t:Xb)’ = b'X'A = b'X't, V b
= X\ = X't;.

(3.26)

Next, we choose A to minimize (for the ‘best’ to hold):

Var (A'y — t{Xb — tiu) = Var (A'y — thu)

= Var (X'y) + Var (tiu) — Cov (A'y, thu) — Cov (thu, X'y)

= AVar (y) A+ tiVar (u)ty — XCov (y,u) t; — tiCov (u,y) A
= AV 4 tiDty — A’Cov (y, u) t — t5Cov (u,y) A.

Since Cov (y,u) = Cov (Xb + Zu + €,u) = Cov (Zu,u) = ZCov (u,u) = ZVar (u) =
ZD and similarly Cov (u,y) = ... = Cov(u,Zu) = Cov(u,u)Z* = Var(u)Z' =
DZ', the above becomes [taking advantage of the fact that t;DZ’A is a scalar, hence

./A\
P
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(t5DZA)" = t5DZEN):

AV + 5Dty — A'ZDt, — tiDZIA
= A'V A + t5Dt;, — A'ZDt; — (t,DZEA)’
= A"V + tiDty — A'ZDt, — A'ZD't,

KR AV + tiDty — 2A'ZDt,.

To minimize the latter, we once again implement the Lagrange theory, taking 26° to

be a vector of lagrange multipliers, and (3.26) to be the constraint. Thus, we minimize:
Q = X'V + 3Dty — 2X'ZDt; + 26" (XA — X'ty) .

Working similarly to the derivation of bgyyg for the GLM, after the calculations this

minimization yields:

(41Xb + t3u) 5y = A'y
=t X (XPV-1X) T XV -1y + tiDZIV ! [I ~ X (XtV-1X) ! Xtv—l] vy (3.27)

The above identity for (t!Xb + tju) is true for any t¢, t;. Therefore, by taking

BLUP
t! = 0 and t} to be successive rows of I, (for u having g elements) we are able to obtain
the upryp as a special case of (3.27) given by:

or due to the equivalence between bg;yr and B,

upLyp = DZtV- (y - XB) .

The obtained best linear unbiased predictors ug,yp are best in the sense that they
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minimize the sampling variance, linear in the sense that they are linear functions of vector

y, and unbiased in the sense that £ (ugryp) = u holds.

3.3.3 Henderson’s Mixed Model Equations

The calculation of the bpryr and ug.yp solutions of equations (3.24) and (3.28) re-
spectively, requires the inverse of the variance-covariance matrix of the responses vector
y, namely V. Generally, this is a matrix of order equal to the number of elements in y,
hence for the GLMM of equation (3.17) since y is a (n x 1) vector, consequently V is a
(n x n) matrix. An obvious problem with these solutions is that in most linear mixed
model, unbalanced data situations, with the number pf elements in y being very large
(y could contain many hundreds or even thousands of observations), the computation of
the inverse of V, V™! can be quite difficult.

For this kind of situations, other methods for the derivation of BLUE and BLUP
of fixed and random effects had to be developed, methods that would not require the
inversion of the dispersion matrix V. Henderson (1949, 1950) and Henderson et al.
(1959), were the first who solved this problem, by developing a set of two equations,

defined as: _
XR™'Xb + X'R™1Zia = X!*Rly

- (3.29)
Z'R~'Xb + (Z'R'Z+ D) d = ZRly

The above equations are Henderson’s Mixed Model Equations (usually mentioned
under the acronym MME), and b and @ obtained by solving these equations are referred
to as the ‘mixed model solutions’. In fact, as it will be shown in the sequel, the ‘mixed
model solutions’ B, i1 of MME are identical to the by g, uprLyp, thus what essentially
MME offer is a practical method of obtaining b = bgryr and @ = ugryp. In other
words, although MME are nothing more than just one of several computing tools for
the derivation of bgryg and ugryp, they proved to be the most useful among these
computing algorithms, having the advantage of requiring the less possible computational

efforts..
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Notice that the MME equations can be alternatively written in a matrix form, as the

single equation:

Tt

XR'X X‘R™1Z
Z'R7'X Z'R7'Z+D™!

XtR—ly
(3.30)
ZtR—ly

o=t

Notably, MME are most frequently presented by the matrix form of (3.30), since
this matrix representation provides us with a method of jointly obtaining b and #, by
calculating the vector (f), ﬁ)t. The basic advantage of MME when compared with other
methods for deriving b and 1 is, as noted previously, the absence of V™! within them.
On the other hand, one might argue that there is now real gain, since we still have to
calculate two inverses, R™! and D! in order to get the estimates. This is not right
though, since R™! and D~! are much easier to obtain, compared with V=!. To see
that let us consider the dimensionality of the dispersion matrices R and D, compared
to the dimensionality of V. Recall that X and Z are of dimensions (n x p) and (n X q)
respectively. Consequently, X'R™1X is a (p x p) matrix, X*R™1Z is a (p x ¢) matrix,
Z!R"'X is a (¢ x p) matrix and Z!R™'Z + D! a (¢ x ¢) matrix. Hence, the matrix

XR1X X'R71Z
Z'R'X Z'R'Z+D7?

(often called coefficient matrix), is a (p + ¢) X (p + ¢) dimensional matrix and to obtain
(B, ﬁ)t estimates requires finding the inverse (or generalized inverse, in case the regular
inverse does not exist) of this (p + ¢) X (p + ¢) matrix. The latter task is much easier than
finding the inverse of an (n x n) matrix, such as V, since p and ¢ are the number of fixed
and random effects parameters and usually it is p < n and ¢ < n. This suggests that the
coefficient matrix is of considerably less order than V, and therefore less computational

efforts are required for its inversion, compared to the inversion of V.
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3.3.3.1 The Derivation of the MME

Henderson (1950) described the estimates obtained from the MME (3.29) as being “joint
maximum likelihood estimates”. Only later though, he discovered [see Henderson (1973)]
that what he actually did was not a maximum likelihood estimation, but a joint proba-
bility density function (pdf) maximization, instead.

In this context, Henderson assumed that u and € are normally distributed vectors,
with u ~N, (0,D) and € ~N, (0, R), where u, ¢ are once again the random terms of the
GLMM:

y=Xb+Zu+e.

Consequently to the above assumptions, we have that the response vector y is distrib-
uted as y ~N,, (Xb, V), with V = ZDZ'+R. being the dispersion matrix of y. Henderson
derived the MME, not by maximizing the likelihood function of the data vector y:

O S V-l (v
L(Xb,V,Y)—(%)%lVI%exp{ 2(y Xb)' V7 (y Xb)},

but instead he maximized the joint density of y and u, f(y,u), which can be written

with the aid of the definition of conditional distribution as

fly,w)=f)fylu). (3.31)

Now, since the probability density function f (u) of u ~N, (0,D) is given by

1
T exp {—autD_lu} :

u;O,D =T g T 1
a ) (2m)2 | D |2

and the probability density function f (y | u) of y | u ~N, (Xb + Zu, R) is given by

1 1 t -1
u; Xb + Zu,R =——,.———Texp{——(y—Xb—Zu)R (y — Xb Zu)}.
fly ) eI R} 5
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then, using (3.31), the function f (y,u) being maximized is succinctly written as:

flyiy=Ffu)f(ylu)=

1 1
- - _exp{ —= [u'D'ut (y = Xb = Zu)'R7! (y = Xb — Zu)] ¢ .
(2r)2 (|D||R|)? { 5 | ]}

As usual, instead of maximizing f (y, u), we equivalently maximize In f (y, u), given

by:

Inf(y,u) =
23D in(2m) - 3 In(|D | RY) — gD (v~ Xb - Zu) R (y - Xb -7

In order to obtain the MME, what remains is to take the partial derivatives of
In f (y,u) with respect to b, u and equate them to zero. For the calculations of the
first-order partial derivatives that follow we are making use of the general result of ma-
trix derivation? (see, e.g. Harville, 1997), stating that:

0 (x'Ax)

T = 2Ax, (3.32)

where x a random vector and A known, symmetric matrix.

Hence, regarding (3.32) and since differentiating the first three parts of In f (y,u)

with respect to b gives zero, it is:

Olnf(y,u) 19 [(y = Xb - Zu)'R™! (y — Xb — Zu)]
ob 2 ob
- _.;. [~2X'R} (y — Xb — Zu)] = X'R" (y — Xb — Zu)

= X'Rly - X'R™'Xb - X'R™!Zu,

iFor A a general known matrix, the partial derivative of the quadratic form x*Ax with respect to x
is given in matrix notation by 8 (x*Ax) /8x = (A + A*) x. In the special case where A is symmetric,
the above result simplifies to result 3.31.
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and equating to zero we get

XRly — X'R-1Xb — X'R~1Zu = 0
= X'R-1Xb + X'R~1Zu = X'R"y.

This last equation as we easily notice is the first of the mixed model equations of
(3.29). To obtain the second mixed model equation we simply have to calculate the
partial derivative of In f (y,u) with respect to the random vector u, and equate the

result to zero. Indeed,

Olnf(y,u) = 10(u'D'u) 19 [((y —Xb—Zu)'R™! (y — Xb - Zu))

Ou 2 Ou 2 Ou
1, 1 .
= = (2D 'u) — o [-2Z°R™! (y — Xb — Zu)]
~-D'u+ Z'R7! (y — Xb — Zu)
= -D'u+Z'R 'y - Z'R'Xb — Z'R"!Zu.

Equating now the last term to zero, results to the second MME:

Z'R 'y - D lu—-Z'R"'Xb—- Z'R"1Zu =0
= Z'R"1Xb+ Z'R"'Zu+ D lu = Z'R 'y
= Z'R7'Xb+ (Z'R7'Z+D ') u= Z'R'y.

Thus far, we have stated the form of Henderson’s mixed model equations, and pre-
sented a method for deriving them. What remains in suspense, is to calculate the esti-
mates 5, 1 of MME and moreover to verify that indeed these estimates are the bg yg

and upgryp, respectively. The above is the subject of the following section.

3.3.3.2 Estimates b, @i of Mixed Model Equations

To obtain the mixed model solution @ of the random vector u, one simply has to take

the second equation of (3.29) (the second mixed model equation), and solve with respect
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to u as follows:
Z' R 'Xb + (ZtR“lz + D“l) i=Z7ZR"1y

= (Z'RZ+ D) it = Z'R! (y : XB)
== (ZR'Z+D") " ZR (y - Xb)
= G = TZ'R™! (y = Xf)) ,

(3.33)

where T = (Z'R™'Z+D™) !, Accordingly, the MM solution b of b, can be found by
replacing in the first mixed model equation the obtained estimate 1 of (3.33), and solving

for b, as shown below:

X!R™1Xb + X!R™1Zia = X!R™ly
= X'R™Xb + X'R~1Z [TZtR‘l (y . XB)] = X'R-ly
= X'R-1Xb + X'R-1Z (TZtR‘ly . TZtR‘le)) — X'R-ly (3.34)
= X'R™'Xb + X'R"!1ZTZ'R 'y — X'R"1ZTZ'RXb = X'R"ly
= X! (R™! ~R™1ZTZ'R™) Xb= X' (R - R"1ZTZ'R ) y.
Assuming that the inverse of matrix X (R™ — R™!ZTZ'R™!) X exists, the MM

solution is given by:
b= [X!(R!-RIZTZ'R™) X] " X' (R - RIZTZ'R)y.

3.3.3.3 Equivalence of MME Estimates and BLUE/BLUP

For the general linear mixed model y = Xb + Zu + €, the BLUE of b and BLUP of u
were shown to be:

bsrve = (XIVIX) T XV ly

and

upvp = DZ'V ' (y = Xbgyg) -

The mixed model solutions, b and @ of mixed model equations, however, are given
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b=[X'(R'-R'ZIZ'R)X] 'X' (R - R'ZTZR)y

and
i = TZ'R™! (y - XB) .

Comparing the above equations, we notice that equivalence between the mixed model

solution b and b BLUE 1s obtained if the identity:
VI=R!-R1ZTZ'R! (3.35)

is true, where T = (Z'R™'Z + D"l)—l. [The proof of -this result is due to Henderson
(1963), but a similar proof was also given by Woodbury M.A. in 1950, in an unpublished
paper, though)].

To prove that identity (3.35) is true, that is the inverse of variance-covariance matrix
V=2ZDZ'+Ris V! =R ! —R'ZTZ'R, it suffices to show that VV ™! =T, with
I being the identity matrix. Indeed,

Vv~ = (ZDZ'+R)(R™' - R'ZTZ'R™)
= ZDZ'R™' - ZDZ'R7ZTZR™' + RR™' —RRT'ZTZR™ -
= ZDZ'R™' - ZDZ'R'ZTZ'R™ +1- ZTZ'R™!
= I+ (ZDT™' - ZDZ'R™'Z - Z) TZ'R™' e
I+ [ZD (Z'R7'Z + D) — ZDZ'R™'Z - Z] TZ'R ™
= I+(ZDZ'R7'Z +ZDD™' - ZDZ'R™'Z - Z) TZ'R™"
I+ (ZDZ'R™'Z+ Z - ZDZ'R™'Z - Z) TZ'R™!

= I+0TZ'R'=1L

Now, as concerns the equivalence of mixed model solution &t = TZ'R™* (y,— XB)

and the BLUP formula ugzyp = DZ'V~! (y — Xbp, ) = DZ'V-! (y - XB), since

7



y — Xb is common to both formulas, we only have to show that:
TZ'R™' = DZ'V~! (3.36)
where T = (ZtR_IZ + D‘l) !, The above equality is true, since:

DZ'V~! = DZ'(R™' - R'ZTZ'R™)
use (3.35
= DZ'R™' - DZ'R'ZTZ'R™!
= (DT'-DZ'R'Z)TZ'R! =
replace T—1
= [D(Z'R7'Z+D7!) - DZ'R'Z] TZ'R™!
= (DZ'R™'Z+DD™' - DZ'R™'Z) TZ'R™'

= ITZ'R™'=TZ'R™.

3.3.4 Variance Component Estimation

Up to this point, both fixed effects b and random effects u estimators of the GLMM
(3.17) were obtained upon the assumption that the variance-covariance matrices of the
latter model, D, R and accordingly V = ZDZ’ + R are known, (positive definite)
matrices. Equivalently, this means that the elements of D and R (usually called variance
components or variance parameters), are known. In practice however, the assumption
of known variance components almost never holds. If by 8 = (6,05, ..., Gq)t we denote
the parameter vector that comprises all the unknown variance components, say ¢ in
total, included in V = ZDZ! + R, then clearly mixed model analysis involves two,
complementary to each other, estimation issues:

(a) The estimation of the vectors of fixed and random effects, b and u

and

(b) The estimation of the unknown variance components 6, included in D, R.

Thus in consequence, prior to the estimation of fixed and random vectors, b and u

respectively (e.g. by using ML or BLUE/BLUP theory), the variance components 8 need
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to be estimated. The general procedure is to obtain estimates of the variance components
by one of the usual variance component estimation methods, and then replace the variance
parameters of D and R with these estimates, in order to proceed with the estimation of
fixed and random effects. Consequently, once the variance components are estimated, [let
D,Rand V = YAVYA + R denote the estimated variance-covariance matrices obtained
by replacing their elements (the variance components ) with its estimations], then the
ML (or BLUE, or GLS) estimate of the fixed effects vector b would be simply given by
replacing the estimated V in place of V in equation (3.23), hence:

b= (X‘V—lx)_1 XtV -ly. (3.37)

The above described two-stage procedure for the estimation of variance components is
one possible course of action. Nowadays however, much of the attention has been focused
into methods that provide us with estimations of fixed effects and variance components
simultaneously, using one unified procedure.

Estimation of variance components is a very extensive topic, and various estimation
methods have developed for the specific subject [notice the difference with the estimation
of variance components of models concerning balanced data (ANOVA type models, Chap-
ter 2), which rests almost entirEfy upon one method, the so-called analysis of >variance
method, consisting of equating mean squares to their expected values]. A vast literature
on the issue of variance component estimation exists. For a comprehensive review on this
extensive subject we refer to Searle et al. (1992).

The main methods for estimating the variance components of the GLMM in a single
stage, found in the literature are: maximum likelihood (ML) estimation, restricted max-
imum likelihood (REML) estimation, and minimum norm quadratic unbiased estimation
(MINQUE) (Rao, 1971), with the first two (close related to each other) methods being the
most often met. The basic feature that distinguishes ML/REML and MINQUE method
is that the minimum norm quadratic unbiased estimation, unlike ML and REML, has

been developed to estimate variance components without relying on any distributional
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assumptions. On the other hand though, MINQUE imposes some restrictions on the
variance-covariance structure of vector y. In what follows we attempt a description of
ML and REML methods, not in full extension though, since that we will return on the
specific subject of ML and REML estimation of variance components in Chapter 5, where

we discuss the implementation of the GLMM on longitudinal data.

3.3.4.1 Maximum Likelihood Estimation of Variance Components

The maximum likelihood method for variance-component estimation was formally intro-
duced by Hartley and Rao (1967). [A first, informal suggestion though, of the method
has already been discussed in Crump (1951)]. In their article, Hartley and Rao discuss

the ML (variance-components) estimation of the generalized GLMM:

k
y=Xb+Y Zu +e, (3.38)

=1

which contains, as one can observe, more than one random effects term, compared to the
GLMM y = Xb+Zu+e¢, and under this notion is considered to be a generalization of the
latter model. In spite of presenting thoroughly the work of Hartley and Rao, it would
be more constructive to sketch the basic steps of variance components estimation by
maximum likelihood of the GLMM: y = Xb + Zu+ €. To begin with, let us consider the
previous GLMM, and additionally, as regard the distributional behavior of the random
terms of the model, let us take u and € to be multivariate normal random variables, such

that:

u ~ N,(0,D)
and

e ~ N,(0,R).

Obviously, the variance components that we seek to estimate are embedded within
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the variance-covariance matrices D, R. Now, to avoid very complicated computations, as
well as for presentational purposes it is convenient to assume that D =0?A and R =021,
where A known matrix and I the identity matrix [in this way we assume that the model
contains only two variance components,namely 8 = (o2, 02)"].

The estimation procedure in general, is very similar to the ML estimation of the fixed-
effects vector b. In order to derive the ML estimator b of b, one has to equate to zero
the partial derivative with respect to b of the (n x 1) response vector y log-likelihood
[0 (In L) /8b = 0]. Similarly, to obtain the ML estimates of the variances o2, o2 (say

62, 62), the standard procedure is to solve:

8o T

(3.39)
o(nL) __ 0

802 T
The likelihood function of the (normaly, multivariate distributed) response vector
y ~N, (Xb, V), is given by:

L (y —Xb)Vl(y - Xb)} , (3.40)

1
L(Xb,V;y) = ———ex
Ko VoY) = T v p{ 2

and accordingly the log-likelihood A is:

A(Xb,Viy) = InL
1
—g—ln(2ﬂ') —5n| V| —--;- (y = Xb)' V7! (y - Xb)

1
2

1
= constant — zIn| V| -5 (y = Xb)’'V7l (y = Xb). (341

In addition, due to the fact that D =c?A and R =¢21, the variance-covariance matrix

V is written as:
V =ZDZ' + R =0"ZAZ' + o1
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To start with the % estimator, we have to calculate d),/9c2. To this end:

0(InL) 0 n 1 1
R R S A
,_lom|V] 19

2  fo? 2002

(y = Xb)* V™! (y — Xb)

[(y = Xb)' V7! (y — Xb)].

At this point, we can take advantage of the following general results of matrix theory
(see, e.g. Haruville, 1997) concerning first-order partial derivatives of determinants and
inverse matrices:

Let M be a square matrix whose elements are functions of a scalar variable x. Then,

if M is nonsingular and continuously differentiable the following holds:

M| L, OM
5 = M| (M o ) , (3.42)
oM OM_
= -MI==ML A
. M Z=M (3.43)

In addition to the above results, by applying the well-known chain rule to the function
In | M |, and using (3.42), (3.43) we find that if M is continuously differentiable (at all

points in its domain), then In | M | is continuously differentiable and the following holds:

Oln | M| M
o = tr (M = ) . (3.44)

Implementing the above results in the current context of ML estimation of o2 and o2,

(since the elements of the variance-covariance matrix V are functions of the variances

81nlvl—tr(V 1&/’_)

o?, O’Z), we have:

Oo? Oo?
as well as
ov-1 ov
— __V -1 ——V -1
Oo? Oo? ’
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and consequently, 8\ /802 becomes:

OX 1 L0VY 1 ov

s = —§T(V 82>—-2—(y-Xb)t o7 (y Xb)
1 CAAYE t OV
= 2tr<V = )+2( Xb) V725V (y — Xb),

and by considering that 0V /90? = 0 (0*ZAZ' + 021) /00% = ZAZ', we get:

aA 1 -1 t ]- t = =
B2 —itr (VT'ZAZY) + 3 (y —Xb)'VT1ZAZ'V™! (y — Xb).
As regards now the estimation of the remaining variance component o2, calculation of
9/ 8c? is similar to the above, using though that V /902 = 8 (c*ZAZ" + ¢21) /802 =
I. Thus, it is:

A 1
oA _ ~5tr (V7)) + % (y - Xb)' VIV~ (y — Xb).

e

Having obtained the above formulas for  (InL) /802 and 8 (InL) /dc?, what re-
mains to derive the ML estimators 62, &2 is to solve system (3.39), which now has

become:

(y = Xb)! V-1ZAZ!V-1(y — Xb) =0
(y = Xb)'V-IV-1(y — Xb) =0

—Ltr (VT1ZAZY) +

1
2
—%tr (V) + %

But there are certain difficulties we are confronted with, in order to solve the above
system; first of all, as one may observe, the two equations contain the (unknown) fixed
parameter b. Hence, it is evident that in order to proceed with the estimation of the
variance components, it is necessary for b to be replaced by one of its estimators, e.g.
the ML estimator, (which in fact also corresponds to the generalized least squares and
best linear unbiased estimator), b = <X‘V‘1X)—1 X'V -ly, where V = 6?ZAZ' + 6’1

Trying to summarize all the above, we can state that to acquire estimates for the

variance components (o2, 02), one has to proceed solving the system of three equations
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(known and as ML equations):

o (V1) = (y - xs)tv—lv—l (v - xb)
( 1ZAZ‘) (y - XB)t V-1ZAZV ! (y _ XB)
b= (Xf\“f—lx) T Xy

The motivation behind this system is simple; while the first two equations provide the
estimates of the variance components (contained within the variance-covariance matrix
V), unfortunately they also include the (unknown) fixed parameter b. Hence, naturally
this leads to introducing the third equation into the system, which provides us with the
ML estimator of b, b. Substituting this estimate in the first two equations enables us
to obtain 6%and 2. The inherent difficulty that arises is that the ML estimator bisa
function of V, and thus previously to obtaining b, estimators of the variance components
are required. Due to this, it is evident that to solve the set of these equations, there is no

closed form solution for any of b, o2,

o2. As a consequence, there is no simple one-step
solution for the above system.

In general, to handle situations like this, where no theoretical solution of the ML
equations can be obtained, we have no other alternative but to resort to numerical op-
timization techniques. By this we refer to algorithms, iterative in nature, developed for
solving theoretical problems through numerical analysis. Among a wide variety of itera-
tive numerical procedures for solving ML equations and obtaining maximum likelihood
estimates (MLEs) of the variance components, two are the most popular; the Newton-
Raphson (NR) algorithm and the Ezpectation-Mazimization (EM) algorithm [see Demp-
ster et al. (1977)]. These procedures, based on some starting values for the parameters,
iteratively update the estimates until sufficient convergence has been obtained. Since a
detailed description of both algorithms, as well as their implementation on the General

Linear Mixed Model (GLMM) for longitudinal data are a basic subject of Chapter 5, we

will avoid to pursue here a further discussion on these iterative algorithms.
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3.3.4.2 Restricted Maximum Likelihood Estimation of Variance Components

Despite the fact that the method of maximum likelihood (ML) has become one of the
most popular techniques for the estimation of variance components, unfortunately there
exists a serious drawback that produces a negative effect on the latter estimates. More
specific, the ML estimators of variance components fail to take into account the degrees
of freedom lost in estimating the fixed effects b, and are thus biased (generally, they tend
to be downwardly biased).

In simpler words, to perform variance-component ML estimation, all fixed effects are
assumed to be known (constants), without error. However, in practice this is rarely true,
and consequently estimations of the fixed effects are used instead. This results in losing
one degree of freedom each time a fixed effect parameter is estimated. Exactly that loss
in the degrees of freedom ML method fails to take into account, producing downward bias
in the maximum likelihood estimators of variance components. This results in variance
estimates that are generally too small, suggesting more precision than we actually have.

Having recognized the bias problem, much research attention focused in finding ways
to tackle it sufficiently. In order to overcome it, Patterson and Thompson (1971) pro-
posed the restricted (also called residual) maximum likelihood (REML) approach, which
is essentially based upon a modification of the well-known maximum likelihood method.
It is worth noting though, that the first suggestions of REML go back in early sixties,
where initially Thompson (1962) introduced the idea of REML for the purpose of ob-
taining unbiased estimates of variances and avoiding negative estimates of variances, and
later Patterson (1964) utilized the same ideas in a components-of-variance problem aris-
ing in the analysis of rotation experiments. These two papers however did not pursue
thoroughly the detailed discussion of REML since it was not of primary concern. The

model Patterson and Thompson considered for the demonstration of their “modified”
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ML method was the general linear model (GLM) of the form?:
y=Xb+e,

where, as usual, y represents a (n x 1) vector of responses, b is a (p x 1) vector of
treatment parameters (the fixed-effects), and finally & corresponds to the random vector
of order (n x 1), which is normally distributed with zero mean and variance-covariance
matrix V, i.e. € ~N, (0, V). Further, they assumed Var (¢) = ¢*H, with H = ZDZ' +
I. As a result, the response vector y is also assumed to be normally distributed with
y ~N, (Xb, V). The main task was the estimation of the fixed vector b, as well as the
estimation of o2 and D. Estimation of variance parameters o2 and D via ML makes use
of the likelihood of y, which unfortunately includes b since y ~N, (Xb, V), resulting
to (downward) biassed variance estimates. What Patterson and Thompson thought in
order to resolve the bias problem was that instead of maximizing the “full” data log-
likelihood (as Hartley and Rao did), to use a modified maximum likelihood procedure,
where only the portion of the likelihood that does not depend on the fixed effects vector b
is maximized (this is why Patterson and Thompson found suitable using the terminology
“restricted” to name their method). They accomplished that, by partitioning the (full)
data, contained in y, into two separate parts, so that one of them to be free of the fixed
effects. Maximizing this part yields the variance component estimators, which are called
restricted maximum likelihood (REML) estimators.

Hence, seeking for a suitable set of data that would not depend on the fixed effects,
Patterson and Thompson considered a linear transformed® set of data, say Ky, on the
presumption that the latter does not depend on b any more, as the response vector y
did. [Here, K is taken to be a square matrix of (n x n) order, for the product Ky to be
well-defined].

SHartley and Rao (1967) have also considered the same model, in order to demonstrate the method
of maximum likelihood for variance component estimation.
6 Alternatively, is known as error contrast
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By demanding the linear combination Ky to be independent of the fixed-effects, in
essence we require the distribution of the (random vector) Ky to be free of b. To this
end, matrix K should be chosen such that the mean of Ky will not include b, as was the

case with vector y. Namely:

E(Ky) = 0. (3.45)

Equivalently, this yields:
E(Ky)=0<KE(y) =0 KXb=0 KX =0, (3.46)

since by definition, b is always different from zero. The question now, is to determine a
suitable matrix K, that shares property (3.45). Patterson and Thompson’s proposal was

to take K be of the following form:
K=1I-X(X'X)"X" (3.47)
Indeed, it is easy to show that the specific choice of K verifies (3.45), since:
Ky = {I ~ X (XtX)™" Xt} y=y-X(XX) " Xty,
and thus,

E(Ky) = E(y)-X(X'X)" X'E(y)
= Xb-X(X*X)™' X'Xb
= Xb - XIb=Xb-Xb=0.

Haruville (1977) utilized the ideas of Patterson and Thompson (1971) to extend REML
approach for estimation of variance components in the more general mixed-effects model
(GLMM): y = Xb + Zu + €. He also described justifications for the REML estima-

tion from both Bayesian and Frequentist theory points. Furthermore, Harville claimed,
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through a sufficient argument, that REML approach to variance components estimation
loses no information and thus REML estimates are efficient in the same sense as are ML
estimators. Papers by Harville (1977) and Corbeil and Searle (1976) discuss in detail
REML estimation as well as desirable properties of REML estimates.

Let us see now, how the REML likelihood function of the GLMM: y = Xb + Zu + ¢,
[u~ N, (0,D), e ~N, (0, R)] is derived. Essentially, the latter likelihood is the likelihood
function of the already defined error contrast Ky (which distribution does not depend
on the fixed effects anymore). We denote this likelihood function of Ky by Lgeamy to
avoid confusion with the standard ML function, L. Optimization of this (restricted)
maximum likelihood function yields the REML estimates of the variance components.
We have already seen that the mean of vector Ky is zero, independent of b. Moreover,

its variance-covariance matrix is:
Var (Ky) = KVar (y) K! = KVK,

Thus, by imposing once again a n—variate Normal distribution for the random vector

Ky, we may write:

Ky ~N, (0,KVK'), (3.48)
and consequently, the corresponding likelihood function of Ky will be:

n=r(X) 1 1 _
Lremr = (2m)~ = | KVK* |72 exp {‘5 (Ky)" (KVK') 1 (KY)} , (3.49)

where the matrix K has rank equal to n—r (X) [r (X) is the rank of X]. The log-likelihood

of Lrenmr, denoted by Argamir, is then given by:

Aremr = InLgemr

= __;_ [n —r(X)]ln (27) — %ln | KVK® | _%yth (KVKt)—l Ky
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and since the term —1/2[n — 7 (X)]In (27) is just a constant, we have:

1 1 _
Argmr = const. — - In | KVK' | —-y'K* (KVK) 'Ky. (3.50)
Using now the two important results (Searle, 1979):
In|KVK' |=In|V |+1In| X'VX | (3.51)
tyot £y —1 A =] .
y'K! (KVKY) ' Ky = (y = Xb) \Y (y - Xb) , (3.52)

that hold for any K as long as KX = 0 and r (K) = n — r (X), log-likelihood function

AreMmL can be rewritten as:

AREML =

const. — % (In|V]|+n|XVIX]|) - % (y - Xf))tV“1 (y - Xf))

1 , 1 1 5) ;
== , —— V—l - V| == - ) - - v
const 5 In|X X | S In|V| 5 (y Xb) V (y Xb) G

= const. — %ln | XEVTIX | 42 (XB,V; y) , (3.53)

where b denotes the (ML) estimator of b, b = (X*V-1X) "' XtV -1y, Observing (3.53),
it is evident that the difference between the REML log-likelihood Agrgpr and the ordinary
ML log-likelihood A (given in 3.41) is caused by the extra term:

—%m | XEVIX |

Another interesting point arising from (3.53), is that Agrgasr does not contain b but
instead uses its estimate b. In this way, the REML approach takes into account that b is
a parameter and not a constant (as was the case with maximum likelihood estimation),
and thus the resulting variance component estimates are unbiased.

The appealing feature of REML estimation, is that formulation of REML log-likelihood
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Arenmr does not really require matrix K to be of the specific form (3.47) in order to pro-
duce, via its optimization, the REML estimates of variance components. In fact, it can
be shown that any set of linearly independent error contrasts may be used in place of the
particular error contrast Ky, where K = I — X (X!X)™! X, as long as their expectations
are zero. Thus, the REML estimators of variance components are invariant to the choice
of the specific error contrast. To prove the above claim, (see, e.g. Diggle et al., 1994),

let us consider B to be a n x (n — p) matrix satisfying the following restrictions:
B'B=1, (3.54)

BB' =K. (3.55)

The maximum likelihood estimator of the fixed effects, b is given as we have already

showed (assuming the variance components to be known) by:
b= (XtvX) ' X*V-ly = Gy,

where G = (X'V-1X)™' X*V-1. The probability density function (p.d.f.) of this esti-
mator, since b ~ N, [b, (XtV'1X)_1] , Is expressed as:

f (B) — (21)7% | XtVIX |3 exp{—é (6 = b)t (XtV-IX) (6- b)}. (3.56)

Further, as concern the p.d.f. of the response vector y ~N, (Xb, V), is (as we have

already showed) given by:
=0 Viden{ - o-XBVig-X)). @

If we consider now the linear combination of y, formed this time by multiplying the

(rather arbitrary) [(n — p) x n] matrix B* with y, we are able to show that the following
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result holds:
E (B'y) =0.

Indeed, by observing that:

E(B'y) =B'E(y)=B'Xb_= B'BB'Xb = B'KXb,
BtB=]1 BB!=K

and since:

KX ={I-X (XX) "X} X=X~ X (X'X) ' X'X = X - XI=X-X =0,

it becomes evident that the mean of the error contrast B'y is zero, without doubt.

Moreover, it can be shown that By and the ML estimator b are independent, since:

Cov (Bty,f)) - E [(ny - 0) (B = b)t] LT [Bty (Bt : bt)] =

b=Gy
- E [Bty (tht 1 bt)] =F (Btytht _ Btybt)
= B'E (yy') G' - B'E(y) b,
and using the well-known result-of Multivariate Analysis:
Var (y) = E (yy*) = E(y) E(y)",

we have:

Cou(Bly,b) = B [Var(y)+E(y) E(¥)'] G' ~ B'E(y) b"
B (V e Xbth‘) G! - B'Xbb'

= B'VG'+ B'Xbb'X'G’ - BXbb". (3.58)

The prove that the latter is equal to zero, we only have to show that each term equals
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to zero. Indeed, it is:

X'G' = XIVTIX (XVTIX) T =1,
and

B'VG' = BWVVIX(X'VIX)™

1

B'X (X'V7'X)"' = B'BB'X (X!'VX) -
B!B=I BB!=K
— B'KX (X'V7IX)" = o0
KX=0
Considering the above results, (3.58) becomes:
Cov <Bty, B) — 04 B!Xbb'l - B!Xbbt = 0. (3.59)

Now, due to the independence [since Cov (Bty, B) = 0] of By and b, the p.d.f. of
response vector y that jointly accounts for fixed effects b and variance components 6
can be expressed as the product of the (independent to each other) probability density

functions of b and By, i.e.:

f(yib,8) o f (B;b) x f (B'y;6). (3.60)
Therefore, p.d.f. of Bty is proportional to the following ratio:

f (Bty) o L) (3.61)

£(8)

and considering the expressions for f (B), f (y) given in (3.56) and (3.57), respectively,

the above becomes:

(2m)"2 |V | 2exp{ y — Xb)' V=l (y — Xb)} ‘
(27)"% | XtV-1X |3 exp {—% (b . b) (XtV-1X) (B - b>}

f (B'y) «
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We can make use now of the following standard result of the general linear model

(GLM):
(y — Xb)' V-1 (y — Xb) = (y - XB)tV‘l (y XB) n (B _ b)t (X'VIX) (B - b) ,
that enables us to re-express f (Bl'y) as:

F(BY) o (2m) 7T | V[ 73 X'VIX |73 exp {—% (v- XB)tV“l (v~ xB)} _
(3.62)
The above density function of linear transformation of vector y, By also corresponds
to the likelihood function of By, thus consequently the log-likelihood function of Bty
simply results by taking the logarithm of f (B'y), which yields:

1 1 1 \t )
In f (B'y) o< const. — S In | V | = In | X*'VTIX | — (y—Xb) vl (y—Xb).

Hence, the log-likelihood of Bty is essentially identical to the log-likelihood Agrgar
in (3.53). Therefore, practically any error contrast B'y (where B* a rather arbitrary
matrix, compared to the particular form of matrix K) can be adequately used in place
of error contrast Ky to derive REML estimators of variance components.

As in the case of (full) Maximum Likelihood estimation, the REML estimates for the
fixed effects and the variance components are obtained by maximizing Aggasy given in
equation (3.53) with respect to b and the variance components simultaneously, due to
the no-closed form problem already discussed. Once again, numerical iterative techniques
must be employed to determine the REML estimates for the variance parameters as well
as the ML estimates of the fixed effects. One therefore resorts to general type algorithms,
such as the Expectation-Maximization (EM) and Newton-Raphson (NR) algorithms,

which have proved to be the most popular among various iterative algorithms.
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Chapter 4

Exploratory Longitudinal Data Analysis

4.1 Graphical Illustration of Longitudinal Data

In longitudinal data analysis, as in every other statistical method, we distinguish in gen-
eral two basic, mutually connected to each other, components: ezploratory and confir-
matory analysis. Exploratory analysis is essentially a graphical display analysis, serving
the purpose of visualizing patterns in the data. Confirmatory analysis is a model-based
analysis, drawing inferences on the data by testing statistical hypotheses, thus is consid-
ered the formal component of the analysis. In this Chapter, we will present graphical
plots and methods which have been developed specifically for displaying longitudinal
data, in an effort to make the preliminary graphical investigation (exploratory analysis)
as informative as possible.

To begin with, we have to note that illustrating longitudinal data is a much more
complicated procedure compared to the plotting of classical univariate data. Hence, the
usage of univariate displays used to examine separate variables, such as stem-and-leaf
plots, quantile plots, histograms, box plots etc., is very limited in exploring longitudi-
nal data since they give no (or very little) information about the relationships between

measurements of different subjects.

Furthermore, longitudinal data differ from the classical multivariate data, as it was
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previously discussed, since the former consist of repeated measurements on a single vari-
able, while the latter compares the relation of a series of random variables. This departure
between longitudinal and other multivariate data establishes not only dissimilar statis-
tical methods for the analysis of these data, but also the graphical presentation of these
data has apparent differences. In fact, we will see that longitudinal data share the ad-
vantage of providing interesting graphical ways of data representation, compared to the
general multivariate data; they are a special form of multivariate data that make mul-
tivariate graphics both practical and useful. They can be displayed in graphical plots
which are easily interpretable and most important, indicative of basic features of the data
structure.

This last property of longitudinal data plots, assigns them a more significant role
than just as a tool for visualizing the data. The major features of longitudinal data are
the mean of y; over time, and also the covariance structure of y;. Graphical plots, such
as the parallel axis plot and the Draftman’s display plot that are presented below, can
provide great assistance at understanding these features of the data.

Consider for example the assumption of correlation between the observations within
the ith unit. This assumption requires the definition of a specific covariance structure
for the vector y; = (vi1, %2, ----- ,yini)t. This feature, along with other features of longi-
tudinal data can be explored at a preliminary stage by using the previously mentioned
plots, and this type of preliminary analysis where we use information based on graphical
output rather than formal statistical modeling analysis is usually known as exploratory
(longitudinal) data analysis.

The convenience in using and interpretate such plots is of great importance and lies
in the fact that these plots are constructed without fitting any model, and consequently
provide important assistance in specifying features of the best-suited model for the data,
in an a priori way, without having to fit a large variety of models each of them with a
different structure, and decide a posteriori through the statistical analysis which is the

best among them. In this way, we are avoiding a large amount of numerical calculations
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and time, that could occur when fitting a possibly misspecified or overparameterized
model.

The question that naturally arises, is in what way exactly these graphical techniques
assist in determining either a suitable covariance structure of the within-subject obser-
vations or other useful feature of the data, without using any formal statistical analysis
based on statistical modeling;

The general idea of the whole procedure used to incorporate in the data analysis
the information found in the graphical output is simple and it finds implementation not
just in the modelling of longitudinal data, but also in various fields of data analysis and
modelling. In words, following Weiss (1997), the idea is as follows; initially, we plot the
data e.g. by using the parallel plot. From the plot we-identify any feasible structure
existing in the data. Afterwards, we fit the data using a model that incorporates the
structure we identified in the plots. Now, that we have fitted a specific model, the
advantage of using again graphics, this time not of the ‘raw’ data, but plots based on
the residuals obtained from the fitted model is important. At this stage two alternatives
may occur: either an additional structure can be identified and can be used in building
another model, or no other structure is identifiable. We will demonstrate later how this
general procedure works for each of the presented plots, separately.

In the next sections we present two of the most common plots used for visualizing and
exploring longitudinal data, along with the basic tools that each one of them provides in

the graphical analysis of longitudinal data.

4.2 The ‘Parallel Axis’ Plot

One of the basic and most common ways to visualize longitudinal data is through the
‘parallel axis’ plot or ‘profile’ plot. A parallel plot can be constructed by plotting each
repeated measurement y;; (the jth measurement on the ith unit), against ¢;;, the cor-

responding time that measurement was taken, and then connecting the points at times
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ti(j—1) and t;;.

Specifically, suppose we have n; repeated measurements on subject i. These mea-
surements, in vector notation, are: y; = (Y1, Y2, ----- ,ymi)t . Plotting this n;-dimensional
vector in a parallel axis graph, against the corresponding time points consists of drawing
lines from the values y;; to the values y;;+1) . This means that we connect only two
consecutive points (measurements) in time, and not between other times. So, instead of
just drawing a simple scatterplot of each subjects’ points, we connect them by a solid
line, gaining the advantage of identifying the subjects’ pattern much easier, through the
inspection of a continuous shape that reveals the whole pattern of changes of individual

observations, rather than separate points.
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Figure 4.1 : Parallel plot of orthodontic distance growth for boys and girls

In Figure 4.1, we have a typical example of data plotted in a parallel plot. The data
shown on this plot are a classic longitudinal data set, first presented by Potthoff and Roy
(1964), and come from an orthodontic study of 16 boys and 11 girls between the ages of 8
and 14 years. The response variable is the distance (in millimeters) between the pituitary
and the pterygomaxillary fissure, which was measured at 8,10,12 and 14 years for each boy
and girl. The 4 measurements on each subject i (that is the vector y; = (yi1, ¥i2, i3, y,-4)t),
can be identified as solid (broken) lines connecting only the consecutive measurements

of each individual.
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The numerus lines shown in a parallel plot, as the one in Figure 4.1, have the effect of
causing various problems. Most common problem that appears in such graphical plots is
that in cases of large number of individuals, the plot tends to become dense, with numerus
lines covering one another and consequently difficult to interpretate. This undesirable
feature is also known as ‘overplotting’(exactly this inconvenience of parallel plots has
given them the alternative name of ‘spaghetti’ plots).

The parallel plot is a basic plotting technique for longitudinal data, mainly because
it is a plot that takes advantage of the special structure of such data. By speaking
about special structure, we refer to the difference of longitudinal data in comparison to
multivariate data, since for the former it is feasible to compare two different measurements
Yij» Ys;» Of vector y;, a comparison that in the general multivariate data case is between
measurements of different variables, hence becomes unreasonable and inappropriate.

Later in this section, we are going to concentrate our attention in demonstrating
how effective the parallel plot is, not just as a convenient way of viewing longitudinal
data, but most importantly, we will show the usefulness of these plots in determining the
structure of the data and furthermore how well a particular model fits the data. Before
attempting on this though, it would be useful to give some insight into the particular
interesting issue of the origin of the parallel axis plot and its introduction in statistics as
an exploratory plotting technique.

The first references to the parallel axis plot, as a tool for visualizing statistical multi-
variate data in general, can be found in the articles of Inselberg and Wegman, referring
to it as the ‘parallel coordinate’ plot. Parallel coordinates were originally proposed by In-
selberg (1985) as a new way to represent multidimensional information. While Inselberg
viewed parallel coordinate plot mainly as a device for computational geometry, Wegman
(1990) focuses the attention on statistical basis, explaining the similarities of the parallel
coordinate plot with the conventional scatterplot, and furthermore demonstrating how
simple mathematical properties of parallel plot can be utilized in order to derive useful

statistical interpretations of multivariate data plotted with the aid of such plots.

99



The necessity that urged statisticians to employ the parallel coordinate plot as a
(multidimensional) multivariate visualization technique was in fact caused by the in-
sufficiency of the classic scatterplot (or scatter diagram) beyond the three dimensions.
Parallel (coordinate) plot can be considered as a plotting device for displaying points in
high-dimensional spaces, in particular for dimensions above three. As such it is a graphi-
cal alternative to the scatterplot, in those situations where the latter does not work well.
Visualization of data through a scatterplot has become one of the best and most common
ways to look for relationships and patterns among variables. It is simple to understand,
yet it conveys much information about the data. Unfortunately, its usefulness proves
significant only in two-dimensional planes, where the values of two variables (e.g. X,Y))
are plotted in an orthogonal Cartesian coordinate system, with the two axes correspond-
ing to the two variables. Essentially, this is done by plotting each two-dimensional point
(x,y) of pairs of measurements on the two variables X, Y. The generalization of this
plotting technique, to d-dimensions (even for just d=3, the three axes Cartesian coordi-
nate system in space), makes it problematic as an exploratory tool for detecting existing
patterns by visual inspection, hence the need for alternative methods for displaying mul-
tidimensional data was apparent. Among these alternative methods one can find and
the parallel coordinate plot. Parallel plots allow us to visualize points of three or higher
dimension better than Cartesian scatterplots.

The main difference, is that instead of the scatterplot which tries to preserve orthog-
onality of the d-dimensional coordinate axes, now the axes are drawn parallel to each
other. For example, a d-dimensional vector point y = (y1,¥2, -...., ¥a)’ is plotted by plot-
ting y; on axis 1, y; on axis 2 and so on through y,; on axis d. The points plotted in this
manner are joined by a broken line. Thus, in simple words, what is actually done is a
geometrical coordinate transformation from the standard Cartesian system to the intro-
duced parallel system. By this way, the advantage of being able to view d-dimensional
data (d > 3) using a two-dimensional system is gained.

Such a transformation from Cartesian to parallel coordinates is not a simple task,
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and cannot be easily defined in the framework of the standard Euclidean geometry. An
alternative way to establish mathematically this transformation, is provided by a non-
euclidean geometry, projective geometry'. Thus the transformation from a Cartesian
coordinate system to a parallel coordinate system is accomplished by using basic theory
of projective geometry, and consequently is a projective transformation. In the following
section we explain, not in full detail since this goes us far beyond the statistical content,

how such a projective transformation is possible.

4.2.1 Transforming Cartesian to Parallel Coordinates

In standard euclidean geometry it can be proved that two lines in a 2-dimensional plane
determine a point if the lines intersect, but do not determine a point if the lines are
parallel. This does not hold for projective geometry, where we define that even parallel
lines intersect, with the intersection point being at infinity. As a consequence, a new
point (intersection point of parallel lines) is added to the euclidean plane for each set of
parallel lines. These new points are called ideal points while the original euclidean points
are called ordinary points.

Moving a little further, we are going to present the basic definitions and axioms of
projective geometry that assist in the definition and comprehension of the projective
transformation from Cartesian coordinates to parallel coordinates. Among them is the
fundamental definition of the projective plane that follows immediately.

Definition 4.1: Consider a set P#£(, where its elements are called points, a set
L#0, where its elements are called lines and finally consider I to be a relation between
band L, (I CPxL), which we call incidence.

A projective plane is a triplet (P,L,I) satisfying the following axioms:

e for every points P,Q€P with P#Q, there exists ezactly one line £ €L such that:
(Po)e I, (QU)e .

1Projective geometry is a non-euclidean geometry since that, in contrast to euclidean geometry,
parallel lines are not defined by its theory.
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e for every lines k,€ €L with k # £, there exists exactly one point PEP such that
(P,k)e I, (Pt)c I.

e there exist at least 4 distinct points with every 3 of them to be non-colinear.

Remark 4.1: From the second aziom of the previous definition it follows that two
different lines have always a common point (intersection point). Thus, in the projective
plane, parallelism between lines is not defined.

The following are derived directly from the definition of the projective plane, and
constitute the basic axioms of projective geometry:

1) There exists at least one line

2) On each line there are at least three points

3) Not all points lie on the same line

4) Two distinct points lie on one and only line

5) Two distinct lines meet in one and only one point

6) Through each point there exist at least three lines

7) There is at least one-to-one correspondence between the real numbers and all but

one point on a line

Observing 2 and 6 axioms, we see that one derives from the other if we interchange
the notions point and line. In fact it can been proved that this is a general situation in
projective geometry, since any statement about points and lines is true with the words
points and lines interchanged. This general situation characterizing projective geometry
is known as the duality principle, and is a factor playing a significant role in defining the
transformation from Cartesian to parallel coordinates, as we are going to see briefly.

The idea is to consider both Cartesian and parallel planes to be projective planes. As
a consequence, the transformation from the Cartesian coordinate projective plane into
the parallel coordinate projective plane is thus a transformation from one projective plane
to another (projective transformation). For convenience, we describe the transformation

for d = 2, that is for the two-dimensional plane. Consider the two-dimensional point
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(z1,z2) which determines a point in an orthogonal Cartesian coordinate system. In a
parallel axis system that same point is represented by drawing a straight line between
the value z, on z;—axis and z; on z3—axis. This suggests the interesting duality that
points in the Cartesian plane map into lines in the parallel plane.

Such a point-line duality between (projective) planes is made possible only in the
framework of projective geometry, due to the previously mentioned duality principle.
In projective geometry, according to the duality principle, every conclusion concerning a
projective plane is true also for its dual plane, that is the plane that arises by interchanging
points and lines. More formally, a dual projective plane is defined via the following
proposition as follows.

Proposition 4.1: Consider (P,L,I) to be a projectivé plane, and also consider the
triplet (P*,L*,I*) where b* = L, L* = P and I* is defined such that for (P*¢*)eb*x L*
will be ( P*,¢*)e I* if-f (P)e I. Then (P*,L*,I*) is also a projective plane, and is
called the dual projective plane of (P,L,I).

To demonstrate the framework of this transformation, we describe the procedure for
the two-dimensional case. The task thus is to show how the transformation from an
orthogonal Cartesian zy coordinate system (scatterplot) to a parallel coordinate system
is possible, and furthermore to ensure that this transformation preserves the structures
seen in a scatterplot, hence allowing us to use it in the same manner to the former, for
visual detection and exploration of patterns in (multivariate) data.

In ordinary Euclidean space we have the cartesian coordinates, where each two-
dimensional point is presented by (z,y). Since the transformation will be defined within
the framework of projective geometry, it is necessary to present the (analog to the carte-
sian) projective coordinates called natural homogeneous coordinates. For this purpose,

consider the parallel lines (g;), (£2) presented by the equations:

(61): Az+By+C=0
(e2) : Az + By+C =0
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Trying to solve these equations simultaneously no solution is obtained. However, in
the projective plane the solution of the two equations is the ideal point (intersection point

of two parallel lines). Indeed, observe that we can rewrite the previous equations as:

(61) + Az +By+Cz=0
(e2) : Az 4+ By+C'z2=0

The representation of points in the projective plane is done, using the natural homoge-
neous coordinates, by triples (z,y, z). Now, solving both equations for the common part
Az + By we have: —Cz+ C'z=0= (C~C')z =0 and since C # C' (e1, €2 parallel
lines)= z = 0. Therefore the point (z,y,0) represents an ideal point. Also, for the pre-
sentation of ordinary points we want z = 1 so that the ordinary equation Az+ By+C = 0
holds. Thus the cartesian point (z,y) which corresponds to an ordinary point in natural
homogeneous coordinates is represented? as (z, v, 1).

As a final assistance in defining the (projective) transformation from cartesian to
parallel coordinates, the following proposition is necessary.

Proposition 4.2: A projective transformation has an analytic representation as X =
AX', where A is a nonsingular matriz and X, X' points on two projective planes on
which the specific transformation is applied.

At last, we are in a position now to define the projective transformation from cartesian
coordinate planes to parallel coordinate planes ( Wegman, 1990). Consider a line L in the
cartesian 2-dimensional plane, given by L : y = mz + b. Then consider two points lying

on that line, say (a,ma + b) and (¢, mc+ b). For simplicity consider the tu-orthogonal

2Notice that if Ar + By + C = 0, then also Apz + Bpy + Cp = 0 hence (pz, py,p) is also a valid
representation of point (z,y).
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cartesian axes mapped into the zy-parallel axes (see Figure 4.2).
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Figure 4.2 : Cartesian and Parallel coordinate plots of two points (a,ma +b),

and (c,mc+ b)

The point (a,ma + b) in the cartesian system maps into the line joining (a,0) to
(ma + b,1) in the parallel system. Similarly, point (¢, mc + b) maps into the line joining
(¢,0) to (mc+ b,1). Conversely, it is straightforward to show that the above lines of the
parallel system intersect at the point L* : (b(1 —m)™", (1 m)_l), which depends only
on m and b, the parameters of the original line in the cartesian plot. Thus, in accordance
to Proposition 4.1, L* is the dual of L and we have the interesting duality result (a
characteristic of projective planes already discussed), that points in cartesian coordinates
map into lines in parallel coordinates and conversely lines in cartesian coordinates map
into points in parallel coordinates.

The cartesian to parallel system transformation can be theoretically defined now, and
Proposition 8 will serve as the basic tool in order to achieve this. Indeed, consider first
that in natural homogeneous coordinates the line L : y = mz + b is represented by the
triplet (m,—1,b). Additionally, the point L* : (b(1 —m)™",(1 —m)~") as an ordinary
point can be represented as (b (1 — m)™t, (1-m)™?, 1) or equivalently if we multiply by

1—m (recall notation 2), as (b,1,1 — m). Given the above, if we consider the nonsingular
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matrix A:

0 0 -1
A = 0 -1 -1
1 0 O

it is straightforward to show that
(b,1,1 —=m) = (m,—1,b) A

and consequently, in accordance to Proposition 4.2, the transformation from lines in carte-
sian orthogonal coordinates represented by (m,—1,b), to points in parallel coordinates
represented by (b,1,1 — m) is a linear projective transformation, depending on the par-
ticularly simple matrix A. To complete the formal specification of the cartesian/parallel
transformation, we have to define the transformation once again, this time by transform-
ing points in cartesian orthogonal coordinates to lines in parallel coordinates. To achieve
this, once again we have to express our coordinates in projective geometry notation using
the natural homogeneous coordinates; to start with, assume a point in the cartesian co-
ordinate system given by (z;,z2). It is evident that in natural homogeneous coordinates
(z1,z7) is written as (21,2, 1). Now, the point (z;, z2) in parallel axes is represented by
the line joining point (z,0) to (z2,1). What remains is to express this line in natural
homogeneous coordinates. In do this, we first find the equation of the line, which is given
by

y=(z2—z) 'z -z (32— 21) . (4.1)

Recall that a line L : y = mz + b is represented in natural homogeneous coordi-
nates by the triplet (m, —1,b). Accordingly, the line in Figure 4.2 is represented by the
triplet ((zz — z1)~', —1,—z; (23 — 1) ") or equivalently (multiplying with z; — z,), by
(1,z1 — 9, —x;). It is straightforward now to verify that the linear transformation from

point (z;,9,1) of cartesian coordinates to line (1,z; — z9, —z;) of parallel coordinates
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is given by

where

4.2.2 Identifying Statistical Information from Parallel Plots

As already stated, the most interesting feature of Inselbergs’ parallel coordinate plot
is its feasibility to be considered, from a statistical point of view, an exploratory data
analysis tool capable of diagnosing two-dimensional features such as correlations and
nonlinear structures, as well as multi-dimensional features such as clustering, hyperplanes
and the modes. Of the above, the most interesting, at least in the case of presenting
longitudinal /repeated measures data, is the visual detection of correlation between data.

In Wegman (1990) we find an adequate explanation on exactly how the parallel
coordinate plot can become useful in detecting the existence of correlation as well as
the degree of this correlation of the data plotted in this way. We once again need to
consider the points (a,ma +b) and (c,mc+b) of line L : y = mz + b (Figure 4.2).
Moving from Wegman’s general multivariate setting towards a longitudinal perspective,
these 2-dimensional points could be taken to represent in a longitudinal study the two
dimensional vectors y; = (y,-j,y,-(j+1))t and y; = (yi:j,yi:(j +1)>t each one consisting
of two repeated measurements on subjects i and i (i # 4 ) respectively, taken at the
consecutive times t; and t;;,. As already shown, point (a, ma + b) in a parallel plot is
represented by the line connecting points (a,0) and (ma + b,1) and point (¢, mc + b) is
represented by the line connecting points (c,0) and (mc+ b,1). We are going to show
that the relative position of these two lines determines in essence the degree of correlation
between the pairs (a, ma + b), (¢, mc + b) or equivalently (from a longitudinal point of

view) the degree of correlation between the neighboring times ¢; and ¢;,. First, consider
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that the intersection point of the two lines is given by (b(1—m)™", (1 —m)™"). Then,
if 0 < (1 —m)™! < 1 which means that the intersection of the two lines occur between
the parallel axes, apparently m < 0 (X~ < 1 = m < 0). On the other hand, in the
case of (1 =m)™" > 1 or (1—m)~! < 0 so that the intersection occurs external to the
region between the parallel lines, m is positive. If there was a way to relate the sign
of m and the correlation of the two points (a,ma + b), (¢, mc+ b) then we would have
obtained an interesting criterion, stating that for highly negatively correlated points their
dual line representations in a parallel plot tend to cross near a single point between the
two parallel coordinate axes while for highly positively correlated data lines tend not to
intersect between the parallel coordinate axes.

Indeed, as regard this relation, it is a relatively simple task to show that if m < 0 the
points are highly negative correlated, and if m > 0 we have highly positive correlated
points. By denoting as X the random variable comprising the abscissas of points on line
L:y=mz+b, then Y = mX + b is a random variable that includes the corresponding

ordinates of points on the same line:

X Y
a ma + b
c mc+b

Corollary 4.1, deriving from the following theorem will assist in defining the above
mentioned relation.
Theorem 4.1: Suppose X, Y random vartables of which their correlation coefficient

p(X,Y) exists. If a,b,c and d are constant real numbers with ac # 0, then:

p(X,Y) if ac>0

plaX +b,cY +d) =
—p(X,Y) if ac <0

From the above theorem, by taking X =Y, a = 1 and b = 0, evidently we have the
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following corollary:
Corollary 4.1: Suppose X, Y random wvariables linearly dependent, that is Y =

aX + b with a,b constant real numbers and a # 0. Then:

1ifa>0
—12fa<0

p(X,)Y)=p(X,aX +b) =

Implementation of the above corollary, in the case of X, Y = mX + b gives:

p(X,mX 4+ =4 ~Hm™>0
—lifm<0
which in words states that if m > 0, that is the parallel lines intersect outside the
parallel axes, we have a strong positive correlation between random variables X and
mX + b described above, corresponding to a strong positive correlation between the data
Yij» Yy and Yi(j11), Yy ;1) Obbained at the neighboring times ¢; and ¢;4,. Similarly, when
m < 0 (hence intersection occurs somewhere between the parallel lines), this is a strong
indication of negative correlated data taken at consecutive times t;, ¢;1.

Besides the usefulness of parallel axis plots in detecting the existence of correlation
(either positive or negative) between within-subject measurements taken at neighboring
(consecutive) times, it should be noted that the underlying plot exhibits another impor-
tant utility; the basic structure of longitudinal data can be revealed from a parallel plot.
As stated before, the basic objective in the statistical analysis of longitudinal data is to
come up with a suitable statistical model that fits the data adequately. The General
Linear Mixed Model (GLMM in abbreviation) for longitudinal data presented in Chap-
ter 5, for instance, one of the most recently developed approaches in longitudinal data
modeling, has become quite popular.

In the context of the latter model, the parallel plot may be a useful first exploratory
tool for understanding the structure of the data (mainly the between-subjects structure).

Moreover, all this interesting information obtained by the graphical representation of the

109



data via the parallel plot can be conveyed into the longitudinal data modeling in order
to assist in the construction of the most suitable model that will fit the data in the best
possible way. Thus, observing the parallel plot of the ‘raw’ data allows us to detect basic
features associated with the fixed as well as the random parameters (e.g. fixed/random
intercepts and slopes) of the mixed-effects model for longitudinal data.

Some basic interpretation of parallel plots in this setting is given by Weiss and Lazaro
(1992). In their article, the authors describe how to read information by using either
the parallel plot of the ‘raw’ data or the parallel plot of the residuals. As demonstrated
by Weiss and Lazaro, the presence of specific patterns in a parallel axis plot of the data
can be clearly suggestive about the most possible model formulation. In the sequel, we
describe how to read information in a parallel plot of the ‘raw’ data. To this end, we note
that individual parallel flat lines in a parallel plot usually indicate the need for a random
intercept, individual parallel sloped lines indicate the need for a fixed slope as well as
for a random intercept, and differing slopes indicate the need for random slopes. The
easiest way to illustrate all the preceding is by means of some examples of real, repeated
measures, data sets. For instance, Figure 4.3 shows the rat body weights data taken from

Boz (1950).
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Figure 4.3 : Rat body weights plotted in a paralel azis plot.
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The data consist of rat body weights in grams, from a toxicology study. In this
experiment, 27 rats were randomly allocated to each of three treatment groups; control,
treatment with the thyroxin additive, and treatment with the thiouracil additive. The
rats were weekly weighted for a period of five weeks. Thus, a total number of five repeated
measurements were obtained from each rat, and therefore we can classify the specific data
as longitudinal data.

By viewing the plot of Figure 4.3, one can immediately see that the individual body
weights generally increase with time and that the marginal variance increases with time
too. (The marginal variance at the last time point, that is week 5, is significantly larger
compared to the marginal variance of the preceding time points). In general, widening-
shaped patterns such as the above are indicative of increasing variability and usually a
model that involves a fixed intercept but a random slope seems to be the most appropriate
model to fit the specific data. Thus in short, in a parallel plot where the individual lines
at time point 1 begin close together but spread with increasing time, a fixed intercept
and a random slope are a typical choice. Moreover, it is also possible from Figure 4.3
to detect the presence of a strong positive correlation between the neighboring within-
subject measurements, since as one can easily observe the individual line segments do
not cross in general. (With negative correlated data, the line segments would criss-cross
between two consecutive time points). Similarly, a model with both a random slope and
an intercept might be indicated by a parallel plot where individual lines begin separated
and spread further. Finally, for longitudinal data with a parallel plot where individual
cases appear more or less as parallel lines (as, for example, in the dental study data of
Potthoff and Roy depicted by Figure 4.1), there is a strong indication that a random
intercept should be included in the initial model.

4.2.3 Casement Plots

Casement plots (Chambers et al., 1983) provide a useful way of reducing clutter that can

usually shown on a single parallel axis plot, by stratifying the overall observations using

111



more than one parallel plots, according to a covariate. For instance, consider the Potthoff
and Roy data as presented in a single parallel plot (Figure 4.1). Plots of this form, due
to the fact that comprise the entire set of observations on all subjects may become very
complicated and consequently any preliminary attempts to recognize possible structures
from these plots can be rather problematic. By presenting the observations, not in a
single plot, but via plots that each of them includes observations associated with the
different levels of some covariate enables us to detect more easily any differences between
the levels of the covariate.

Figure 4.4 presents a typical casement plot of the Potthoff and Roy data. In this case
the data have been grouped in such a way so that they can be distinguished as concerns

the two different levels (i.e. boys, girls) of the covariate ‘sex’.
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Figure 4.4: Casement plots of the Potthoff & Roy data. The orthodontic growth
patterns of the 16 boys and the 11 girls are presented with different parallel plots

per gender.

It is evident that by observing these two separate plots is much more easier to see
differences (e.g. differences associated with the variation between boys and girls) among
the two groups, than by using the single parallel axis plot of Figure 4.1. Finally, as

concern the appearance of casement plots in the literature, it should be mentioned that
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the casement plots have been used by Crowder and Hand (1990, Chapter 2) although

not by name.

4.3 The Draftman’s Display

As an exploratory tool, the parallel axis plot satisfactorily conveys important informa-
tion about the data’s behavior, such as changes of overall (between subjects) variance
across time or changes in the shape of each subject’s curve. However, it has not proven
to be useful for the inspection of the within-subjects variance-covariance structure of
longitudinal and repeated measures data.

The main plot for checking the data’s, within-subject, covariance structure (without
first having to fit a model) is the so called Draftman’s display® as described by Dawson
et al. (1997). Consider once again a typical, balanced, longitudinal data set, where 1
subjects (¢ = 1,2, ...,m) are repeatedly measured over time. Suppose that measurements
are equally collected for all subjects at the n occasions: t = (ty,t,, ..., ,)". A Draftman’s
display of data such as the above is a matrix of scatterplots (also known as scatterplot
matrix) of observations from the same subject, at times ¢; and t,, times ¢; and ts,...,
times ¢, and ¢,_;. Basically, it shows how observations on the same subject, but at
different time points, are related. Inspecting this array of scatterplots, it is possible to
gain an indication of the correlation (and hence the covariance structure) between the
within-subjects measurements, at various time lags.

For example, if the correlations at all lags are of about the same magnitude, then
a compound symmetric structure seems reasonable to describe the within-subjects co-
variance. If the correlations are shown to decay exponentially with the time lag, then
a autoregressive covariance structure can be considered as the most appropriate to de-

scribe the dependence of observations within a subject. To demonstrate application of

3The specific graph was originated by Chambers et al. (1983) as a technique for detecting clustering
and outliers.
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Draftman’s display in practice, we now apply it on the data described in Boz (1950),
consisting of rats body weights in grams, from a toxicology study.
To get an impression of the within-subject dependency structure, the Draftman’s

display of the above data has been drawn and is shown in Figure 4.5.
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Figure 4.5 : Draftman's display of the rat body weight data.

The trends of decreasing correlations with increasing interval between measurement
times is apparent in the above scatterplots. That is, the scatterplots for the measures
close in time show stronger correlations than the scatterplots for the measures apart in
time. For example, scatterplots of sequential observations (i.e. week 1 against week 2
measurements, week 2 against week 3 measurements; etcetera) are shown to exhibit a
significant linear trend, while the scatterplot that plots observations collected at week 1
against observations collected at week 5 shows no trace of correlations (all points on this
plot appear to be randomly scattered). The basic conclusion of practical usage is that
measurements taken close together in time are generally more strongly correlated that
those taken further apart in time.

Typically, within-subject variation of this nature is usually represented by assuming
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an autoregressive type covariance structure (see Section 5.4). Of course, various other
covariance structures may be indicated by the inspection of a Draftman’s display, de-
pending each time on the specific data’s within-subject interrelations (e.g. suppose a
Draftman’s display that exhibits total absence of a linear trend in any of the pairwise
scatterplots. Clearly, a plot of this form suggests that the within-subject observations are
essentially independent and thus an analogous, independent type, covariance structure
should be assumed).

Finally, it should be mentioned at this point, that despite its practical usefulness
Draftman’s display has not shown to perform adequately well under all situations. Weiss
(1997) reports that while in the cases where the between-subjects variance is constant
across time the Dtaftman’s display gives de-facto a picture of the (within-subjects) cor-
relation structure, on the other hand when the variance is not constant this changing
variance may easily overwhelm the correlation information. As a solution to overcome
this problem, both Weiss (1997) and Dawson (1997) recommend in the non-constant
variance situations to apply Draftman’s display not to the observed data, but to trans-
formed data obtained by the removal of variability associated with differences in the
means and variances over time [one usually uses the standardized data y;;/s;, obtained
by dividing the repeated measurements y;; collected at time ¢; (7 = 1,2, ...,n) with the
sample standard deviation s; of the response variable at time t;].

Moreover, it is worth noting that Draftman’s display is most effective for studying
equally spaced longitudinal data (balanced designs). In the case of unbalanced longitu-
dinal data, comparisons across the various scatterplots of the Draftman’s display may
become difficult. Other plots are useful for checking the covariance structure under this
setting. For instance, an alternative way of visualizing the association among within-

subjects repeated measurements with irregular observation times is the semi-variogram

(D1ggle, 1988).
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Chapter 5

General Linear Mixed Model for Longitudinal Data

5.1 Introduction

In Chapter 2, we have discussed in detail that the classical methods (ANOVA, MANOVA),
for analyzing longitudinal and repeated measures data unfortunately find application only
under special circumstances, mostly due to the restrictions they impose. To begin with,
a basic requirement of both classical methods is the one of keeping the design balanced.
This, although does not causes serious problems in many types of designs (e.g. agri-
cultural or industrial experiments, where the researchers usually have full control over
experimental conditions), often there are situations where it becomes a major drawback.
Such situations are those where the experimental units are humans. Take for example a
medical study, that is designed to measure a specific characteristic of patients participat-
ing in the study, at predetermined regular time intervals. Many years of practice showed
that due to various reasons (patients’ drop-out of the study, or failing to return at the
specific designed times), the balance brakes down. Thus, the bottom line is that in many
practical situations the requirement for balanced design is an unachivable ideal.

In addition to the above, we have shown that the analysis of variance F-tests for
the (fixed or random) effects of the ANOVA model depend on the sphericity assumption
for their validity. (see Huynh and Feldt, 1970). However, longitudinal data obtained in
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applied settings, (particularly in the medical and behavioral sciences), will rarely con-
form to restrictive assumptions for the covariance structure of the model such as the
ones of sphericity or compound symmetry. In contrast, the multivariate analysis of vari-
ance method presumes a complete arbitrary covariance structure. As a consequence, the
method does not attempt to take in account the two sources of random variation arising
in longitudinal data, the within-unit variation (random error) and the between-unit vari-
ation (random effects). This corresponds in having to estimate a large number of variance
components. For the above reasons, other more recently developed strategies have been
advocated for the analysis of longitudinal and repeated measurements—strategies that
may be generally more valid for data obtained in applied settings.

One of the newer approaches is based on a mixed model methodology, that results in
a very general model for handling longitudinal data that not only allows for various para-
meterizations of the covariance structure, but in addition can handle unequal numbers of
observations for each subject, as well as unequal time-spacing of the observations. This
approach enables practicing statisticians to choose from various covariance structures
for the model formulation, rather than having to presume a certain type of structure
(ANOVA case), or a complete unspecified structure (MANOVA case). A consequence to
this, is more efficient estimates of the parameters of the model and more powerful tests
of the models effects (fixed/random).

The General Linear Mixed Model for Longitudinal Data has been proposed by Laird
and Ware (1982) in their significative, computationally oriented article under the title
“random-effects models for longitudinal data”. Although their model is partly based
upon the General Linear Mixed Model presented in Chapter 3, as well as in the significant
work of Harville (1977), they were the first to introduce the GLMM theory to longitudinal
studies, making their work seminar in the specific field of analysis of longitudinal data.
Thus, it is not surprising to find many authors referring to the general linear mixed model
for longitudinal data as the “Laird-Ware model”. In fact, a wide variety of names are also

used in the statistical literature to describe the latter model and its versions, reflecting
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the diversity of its use in many fields. These names include: general linear mixed (effects)
model; Laird-Ware model; two-stage random effects model; multilevel linear model; two-
level hierarchical model (because there are two levels of random variation: u; and &;);

‘empirical Bayes’ model, and random regression coefficients.

5.2 The ‘Laird-Ware’ Model

5.2.1 Model and Notation

Following Laird and Ware (1982), the general linear mixed model for longitudinal data
(or the two-stage random-effects model, as it was originally called in the specific article)

can be written as:

Yi = Xib+Z1-u,-+z-:i, ('L—' 1,...,m), (51)

where,

y: is the (n; x 1) vector of responses for the ith subject [yi = (yi1, Yia, ...,ymi)t},

taken at times t; = (;, ti2, o tind)

e X;isa (n; x p) design matrix that characterizes the systematic part of the response,

e.g. depending on covariates and time,

e bis a (p x 1) vector of (population-specific) fixed parameters, namely the fixed

effects,

e Z; is a (n; x g) design matrix that characterizes random variation in the response

due to among-unit sources,
e u, is a (¢ x 1) vector of (subject-specific) random effects, and finally

e ¢; is a (n; x 1) vector of within-unit errors, usually called random error.
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Since each subject’s response vector y; consists of n; measurements, it is evident that
the total number of observations included in the longitudinal model will be N = i Ny,
in total. =

Furthermore, as concerns the distributional behavior of the random terms of model
(5.1), it is customary to specify a fully parametric form for both the subject-specific

random effects u; and the random errors &,. Normality is the most common parametric

assumption for the distribution of u; and e, (Laird and Ware, 1982), that is we assume:
u, ~ N, (0,D) and &; ~ N, (0,R,), (6.2)

where D is a (g x g) variance-covariance matrix that characterizes variation due to
between-subjects sources, and R; a (n; x n;) variance-covariance matrix that charac-
terizes variance and correlation due to within-subjects sources (i.e. the variation that
occurs due to measurement error or due to biological within-unit fluctuations). Also, it
is assumed that u; and e; are distributed independently for i = 1, ..., m. Further, notice
that the above model assumes homogeneity of variance only for u; (constant variance-
covariance matrix D for all subjects i = 1, ..., m).

In the above GLMM of Laird and Ware, the primary constraint upon the variance-
covariance matrices D, R; is that matrix D has to be positive-semidefinite!, whereas
no specific assumption is made on R;. From (5.2) it follows that each response vector
y: follows a m;-variate normal distribution, with mean vector E (y;) = X;b and with

variance-covariance matrix Var (y;) = V; = Z;DZ! + R,;. Hence, we may write:

yi ~ N, (X;b,Z,DZ! + R;) . (5.3)

1A square matrix A is positive-semidefinite (or non-negative definite) if for any column vector of
constants x, it is x*Ax >0.
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5.2.2 Variations in Presenting the “Laird-Ware” Model

Due to its general applicability, model (5.1) has enjoyed great popularity, and applications
of it have been and are continuing to be made in many fields of statistical analysis. In this
Section we display some of the most common alternative representations and variations

of the ‘Laird-Ware’ model, found in the literature.

The “Laird-Ware” Model as a GLMM

Alternatively, we can write the combined model for all data in a (single) matrix form by
letting:
Y1

(Yi7ya7 ,y:n)t 3

‘e

¥Ym

the (N x 1) vector that comprises the repeated measurements of all m subjects, and

Xl u; €1
Xg [83)) €9

X = , U= ) €= )
Xm Um Em

where X is a (N x p) matrix, u is the (mg x 1) vector containing each subject’s random

effects and € the (IV x 1) vector of random errors. Further, if we define?

V = dzag (Vl,VQ,...,Vm),
D = diag(D,D,...,D),
Z = diag(Z1,2,,...,Z,,) and

2The notation diag (¢, ..., &) implies a matrix with diagonal elements a,, ..., &, and all off-diagonal
elements zero.
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R = dzag (Rl, Rz, o600 R,,n) 5

then the linear model for vector y has exactly the same form as the General Linear Mixed

Model (GLMM), discussed in Chapter 3:
y=Xb+Zu+e,

with the only difference being that the implied variance-covariance structure for vector
y is block-diagonal with the m V,; matrices making up the diagonal of the variance-
covariance matrix V. Thus, under this notion, the “Laird- Ware” model can be considered

as a special case of the GLMM.

The “Laird-Ware” Model as a Two-Stage Model

As noted previously, the “Laird-Ware model” through a barrage of literature following
the article of Laird and Ware (1982), has been presented under various names, including
the appellation of two-stage model. The specific name is attributed to the model y; =
X;b + Z;u; + &; due to the fact that the latter can be formulated in two stages, as we
demonstrate in detail now.

One of the most interesting features of “Laird-Ware” model, is its duality concerning
the source of random variation. The model incorporates two sources of random variation;
the random vector u;, aiming to describe the variation between the 7 individuals, as
well as the random error €; corresponding to the within individuals variation. The two
stages serve the purpose of introducing into the model these two sources of randomness,
one at each stage, separately. Specifically, the first of the two stages, describes the
distribution of each response y; within individuals. For this reason, the random term u;
becomes a non-random parameter by conditioning the response y; on u;. Considering

that the mean and variance-covariance matrix of the conditional variable y; | u; is given
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by E (y; | w;) = X;b + Z;u; and Var (y; | w;)) = R, , at stage 1 we have:
Stage 1:  y;|u;~ N, (X;b+ Z;u;, R,).

(Notice that up to this point, the variance-covariance of y; is R; = Var (g;), hence stage
1 does not allow other source of random variation, except from the &;).

The second stage describes the variability between individuals by specifying a distrib-
ution for the random effects u;. Usually, the assumption is that u; follows a multivariate
normal distribution with zero mean and variance-covariance matrix D. Hence, at stage
2 we have:

Stage2: u; ~ N,(0,D).

It is important to realize that the above two-stage model is just an alternative presen-
tation of the “Laird-Ware model”, y; = X;b+Z;u;+¢€;. Indeed, based on the information
provided by stages 1 and 2, it is an easy task to derive the model equation (5.1). To
show this, we only use standard results of Probability Theory, and especially the defin-
itions of the marginal density function and the conditional density function based on a
two-dimensional random variable.” More specific, if we consider y; and u; to formulate
the two-dimensional random variable (y;,w;)*, then it is well-known that the marginal

density function (p.d.f) of y; is given by:
fy:) = /f(}’i:ui)dui = /f(ui) f(y: | wi) du,, (5.4)

where by f(u;) and f (y: | u;) we denote the density function of u; and y; | u;, re-
spectively. Now, from stages 1 and 2, f(u;) and f (y; | u;) can be easily constructed

as:

1 1
)= —F—gexpy-zuDug, 5.5
(o) = o on | e (55)
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and

1

flyi|w) = ——5——
Y @n? Ry}

1
exp {—5 (y: = X;b — Z;u,)' R (y; — X;b = Ziui)} , (5.6)

By substituting (5.5) and (5.6) in (5.4) and performing the calculations, it can be
shown that the probability density function of y;, f (y:), corresponds to a n;—dimensional
normal distribution with mean vector X;b and variance-covariance matrix Z;DZ; + R;,
that is:

Yi ~ N, (X;b,Z,DZ + R;),

which is just an alternative way of stating that y; = X;b + Z;u; + ¢;, with y; following

a multivariate, n,—dimensional normal distribution.

The “Laird-Ware” Model as a Growth-Curve Model

We are closing the discussion on the most often presented variations in the literature
of the GLMM for longitudinal data, with a different approach as concern the model’s
formulation. We are going to see how the latter model can be expressed, this time in the
context of growth curve analysis®. As is standard when working under a growth curve
perspective, for the formulation of model y; = X;b + Z;u; + £;, the primary concern is on
specifying the part of the model that characterizes the growth curve of each individual.
Then, based on this specification, we proceed with the modeling of the parameters of
the individual growth curves as linear functions of individual characteristics [Laird et al.
(1987)).

Namely, this type of formulation consists of two separate stages, as described above;
in the first stage we assume:

yi = Z;8; + &,

3Growth curve analysis applies to data consisting of repeated measurements over time, in which a
single characteristic has been measured at n different occasions on each individual. The interest is mainly
on forecasting the future growth of individuals. [For more details on the subject, we refer to Potthoff
and Roy (1964), Khatri (1966) and Rao (1965)].
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where the only introduced term is 3;, which is the random vector that defines the ith
individual’s growth curve (¢ = 1,...,m). Additionally, as concern the distributional

behavior of 3;, we have:
ﬁz (o N (A.,;b, D) 3

where A; a (g x p) design matrix and b, D (as usual) a (p x 1) vector of fixed parameters
and the (g x ¢) variance-covariance matrix of random vector u;, respectively. Now, we
are able to proceed with the second stage, which completes the specification of the model.

To do so, we calculate the mean and variance-covariance of the response vector y; as:

E (yz) = Z.LE (,8,) + E (61') & ZzAzb = Xib,

and

Var(y;) = ZVar(B;) 2!+ Var (&& '
— Z.DZ!+R,,

where we have set Z,A; = X,. From the above, it follows that 8, = A;b+ u;, and
the equivalence of growth curve model: y; = Z;3;, + &; to the ‘Laird-Ware’ model:
vy, = X;b + Z;u; + ¢; is apparent, since:

yi = ZB,+e;=Z;(Ab+ ) +e¢;
= ZiAib + Z,-u,- +E&; = Xzb + Z,;Ll-,; + £&;.

The “Laird-Ware” Model in a Bayesian framework

The Bayesian approach to the formulation and representation of the ‘Laird-Ware’ random
effects model consists of three distinct stages. As is well-known, the distinguishing feature
of a typical Bayesian model is the specification of prior distributions for all parameters

in the model. These ideas are accommodated in the GLMM for longitudinal data by the

125



following 3-stage Bayesian model:

stage 1: (describes the within — subject variation)
yi=Xb+Zu;+¢e;, (1=1,2,...,m)
g; ~ N’n.,'_ (O, R’L)

stage 2 : (describes the between — subject variation)

u; ~ Nq (0, D)

stage 3: (specifies the prior distributions)
b ~ N, (b*, H)
D-! ~ Wishart and R;* ~ Wishart

In the above setting, the parameters b*, H and those characterizing the independent
Wishart distributions for D! and R;! are assumed to be known. The choice of Normal
and Wishart priors, is an example of the usual Bayesian strategy of using conjugate?
priors.

At this point it should be noted that although the primary emphasis of the present the-
sis has been on describing the modeling framework as well as on the estimation methods
for the ‘Laird-Ware’ model from a classical frequentist perspective, Bayesian approaches
to the analysis and estimation of the ‘Laird-Ware’ model that have been considered in
the literature are also presented. In general, there is a strong similarity between the
inferential procedures arrived at from both the frequentist or the Bayesian point of view
as concerns the ‘Laird-Ware’ model.

Lindley and Smith’s (1972) work is of key importance to Bayesian type approaches
to the linear mixed model analysis. Their idea was to add a third stage to the two-stage
model to incorporate prior distributions for the parameters. Fearn (1975) developed the

ideas of Lindley and Smith for specific application to growth curve models. Other related

4A conjugate prior is one for which the resulting posterior distributions of interest come from the
same distributional family.
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references include Butler and Louis (1992), Strenio et al. (1983), Louis (1991), Geisser
(1970) and Searle et al. (1992).

Further, we should also remark that the iterative techniques recently developed in the
Bayesian theory for estimating posterior distributions, namely Markov chain Monte Carlo
(MCMC) methods, and in particular the Gibbs sampling algorithm (see, e.g., Gelfand
and Smith, 1990) have been adopted by many authors for the analysis and parameter
estimation of the general linear mixed-effects model for longitudinal data (Laird and
Ware, 1982). Within this framework, Gelfand and Smith (1990) consider a full Bayesian
analysis of the (Gaussian) linear mixed model of Laird and Ware by proposing a Gibbs
sampling scheme. A wide variety of alternative Gibbs samplers have been implemented
by several authors in longitudinal modeling applications, for instance see Lange et al.
(1992); Carlin (1996); Carlin and Louis (1996) and Liu and Rubin (1995). In the
following years, further refinements and improvements (e.g. convergence improvements)
on the work of Gelfand and Smith appeared in the literature, including Chib and Carlin
(1999); Vines et al. (1996) and Gelfand et al. (1995, 1996) among others.

Alternative Parametric Specifications

Most of the existing work on the ‘Laird-Ware’ model is based on the parametric spec-
ification (5.2) for the random terms u; and ;. That is, whenever a fully parametric
distributional assumption is made for the random effects u; and the error terms g; it is
almost always taken to be the normal model (5.2).

However, this approach, despite its major advantages, has a few disadvantages, too.
Specifically, a typical linear mixed-effects model for longitudinal data specified by (5.1)
and (5.2) (i.e. with normal distributions to characterize the distributional behavior of
u, and &;) suffers at some point from lack of robustness against outlying observations in
the same manner as other statistical regression models based on the normal distribution.
To this end, other parametric assumptions have been proposed in the literature for the

‘Laird-Ware’ model, assumptions that replace the well-established Gaussian distribution
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with distributions that handle more adequately any possible occurring outliers. Pinheiro
et al. (2001) for instance, following a robust statistical approach originally considered
by Lange et al. (1989), replace the multivariate normal distributions of (5.2) for the u,
and €; by multivariate t-distributions with known or unknown degrees of freedom which
are allowed to vary with the subject. The motivation for this was the fact that the
t-distribution, with its heavier tails, appears as a suitable robust alternative to handle
outlying individuals, compared to the Gaussian distribution.

Further contributions, associated with the GLMM and its parametric specification
via the t-distribution, may be found in Wakefield et al. (1994) and Racine-Poon (1992),
restricted only to the distribution of u; though. Ideas similar to Pinheiro et al.’s (2001)
are those by Pendergast and Broffitt (1986), who have also considered the multivariate
t-distribution for the more restrictive field of growth curve models.

Pinheiro et al. (2001), proceeding as in Lange et al. (1989), replace the normal dis-
tributions used for the distributional specification of u; and ¢; with the t-distribution [i.e.
u, ~ t, (0,D,v;) and g; ~ t,, (0,R,,v;), where v; denotes the multivariate ¢t-distribution
degrees-of-freedom (d.f.) for the ith subject]. Thus, the robust variant of the Laird-Ware

model (multivariate ¢ model), considered by Pinheiro et al. (2001) is written as:

yi=Xb+Zu+e, (i=1,..,m), (5.7)

where random terms u;, €; are assumed to be mutually independent, with:

u, % t,(0,D,v;) and € "Nty (0,R,,v;). (5.8)

Besides the formal specification of the multivariate ¢ model, the authors also consider
maximum likelihood (ML) estimation of the parameters in the latter model (namely,
the fixed effects and the variance components), by describing three EM-type algorithms
(Dempster et al., 1977) for the ML estimation with known and unknown degrees of

freedom. Furthermore, by conducting simulation studies, Pinheiro et al. (2001) deduce
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that the multivariate ¢ model substantially outperforms the typical Laird-Ware model
with Gaussian specification when outliers are present in the data, even in moderate
amounts, making thus the former as a robust alternative to the latter.

Non-Gaussian linear mixed-effects models for longitudinal data have been also taken
under investigation by Verbeke and Lesaffre (1996), who assume the random effects u;
(1=1,2,...,m) to be a sample from a mixture of g normal distributions instead of the
usual normality assumption (5.2). They refer to their model as the ‘heterogeneity model’
(as it is specifically designed to take into account the presence of subgroups/clusters
among the u;’s), and propose estimation and inferential techniques similar to those
for the Laird-Ware model (e.g. EM algorithm, likelihood ratio tests). Mixture densi-
ties have been extensively used in biology and medicine for the purposes of modeling
unobserved population heterogeneity [for a review on mixture models we refer the in-
terested reader to Bohning and Seidel (2003); Everitt and Hand (1981); McLachlan
and Basford (1988) and McLachlan and Peel (2000) among others]. As remarked by
McLachlan, Peel and Bean (2003), especially for multivariate data (and consequently
for longitudinal data) of a continuous nature, attention has focussed on the use of multi-
variate Gaussian components of the mixture distribution because of their computational
convenience. In this setting, Verbeke and Lesaffre (1996) proceed by considering the
random effects vectors u; (i = 1,2,...,m) to be distributed according to the mixture:
pN (py,D) + (1 — p) N (py, D), ie. the random effects u; following a mixture of two
(multivariate) normals with proportions p and (1 — p).

Finally, the interested reader may also be referred to Magder and Zeger (1996) for

another parametric model for the random effects u;.

Nonparametric/Semiparametric Approaches

Parametric specifications for the random terms u; and &;, such as the ones in (5.2), are
by far the best-accepted and most widely applied approaches for analyzing longitudinal

data using the basic general linear mixed model (5.1). In particular, most of the ex-
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isting work and methods concerning model (5.1) has been based on assuming Gaussian
distributions for both random effects vector u; (i = 1,2, ...,m) and random error term e;
(1=1,2,...,m).

However, it is also possible either not to make any assumptions about the distribution
of the random parameters included in the model at all (nonparametric approach), or to
resort to some kind of compromise between a parametric and a nonparametric specifi-
cation (semiparametric approach). Adaptation of distribution-free approaches, such as
the above, has gained some attention in the recent years mainly due to the fact that the
latter approaches offer flexibility and are less restrictive compared to the, more formal,
parametric approaches. The lack of full distributional assumptions, however, often makes
such methods difficult to interpret as well as computationally intensive.

Standard nonparametric smoothing methods, such as smoothing splines and kernel
methods are mostly considered for the proposed nonparametric/semiparametric models.
The literature on nonparametric smoothers for independent data is extensive. We refer
the interested reader to Hastie and Tibshirani (1990) and Wahba (1990) for a compre-
hensive overview.

In the current context of longitudinal data, a comparatively limited literature exists,
mainly concerning special types of mixed models for specific data sets. For instance,
Anderson and Jones (1995) use smoothing spline structure to model the random effects,
while Wypij et al. (1998) and Wang and Taylor (1995) use spline smoothers to model
the non-random terms of their model, namely the fixed effects. Similar ideas have been
used in Shi et al. (1996) who devised splines to model both the fixed effects and the
random effects. Zeger and Diggle (1994) use a kernel smoother to model the mean CD4
cell numbers in HIV seroconverters and Diggle and Verbyla (1997) consider modeling
the covariance structure using local linear smoothing with kernel weights. Also, Verbyla
et al. (1999) assume a spline-based structure for the random effects. A more general
family of nonparametric mixed-effects models has been proposed by Wang (1996), who
uses general smoothing spline models for the modeling of the fixed effects in the GLMM,
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while the random effects are modeled parametrically.
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5.3 Estimation/Prediction of Fixed and Random Ef-

fects

5.3.1 Estimation of Fixed Effects b

As we have already done in Chapter 3 with the General Linear Mixed Model (GLMM),
we once again begin by the (point) estimation of the fixed effects vector b of “Laird-
Ware” model (5.1). Although several methods for estimating fixed-effects b are available
(e.g. maximum likelihood, restricted maximum likelihood, generalized least squares),
we will consider maximum likelihood estimation here. Thus, assuming that each sub-
jects’ i (i = 1,2, ...,m), response vector y; is multivariate normal with known variance-
covariance matrix V; [i.e. y; ~ N, (Xib,V;) ], it can be shown [see Laird and Ware

(1982)], that the maximum likelihood estimate of b, say b, is given by:

m -1 m
b= (ZX&V#Xﬁ) > o Xivity, (5.9
1=1 =1

where V; = Var (y;) = Z;DZ!+R,;. Indeed, on assuming that the vector of measurements
of ith subject, y; follows a multivariate normal probability with mean X;b and variance-
covariance matrix V;, then the (marginal) probability density function of y; is given

by:

1
f (yu X,Lb, Vz) = 1 exp {*l (yl'—le)t V:l (yl—Xzb)} . (510)
(2m)2 | Vi |2 2

But there are m in total, independent to each other, vectors y; (i = 1,...,m) and thus
the likelihood function of all measurements y = (y1, a2, ..., ¥m) of the model (5.1) will

be:

L (X'iba V'n Y) =

132

\v\\‘\

Oy O
N9 g s



m

= Hf (v X;b, V) = H (2”)—12i | Vi |_% €xp {“% (Yi—xib)tvz'-l (y‘i_Xib)}

i=1 =]

) &7 <H|V ) exp{—%Z(yi—xib)tVf (yi—xib)},

i=1

hence the corresponding log-likelihood A is calculated as

B B m ng 1 ™m 1 m o
A= InL=-— = '5111(271') — '2'11’1 <ZI;[ | Vi |> £ 5 ii (yi-—X,;b) Vi (yi—X,-b)
m n; 1 m 1 m o
= — E Eln (2m) — 5 5 (In | V;]) — 5 E (y:i—X;b)' V7 (y;—X;b)

To obtain the maximum likelihood estimator of fixed effects vector b, b, it suffices to
maximize log-likelihood A. For this, we must calculate the partial derivative of A with

respect to b and equate the resulting derivative to zero. Indeed, doing so we have:

dlnL 10 «
el erym i V—-l [
s oo g yi—X:b)' V7! (yi—X;b)
1& a -1 1 by
= Z XVt (yi—Xib),
=1
and equating to zero, we have:
alnL thv ;b)a= 0

t=]

=N i XV ly, = Z XVIiXb

=1 =1

m 1 m
& b= (ngv;lxi> Yo Xivily,
=1

i=1
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assuming that the inverse of i XtV X, exists, of course.

Maximum Likelihood esti;;;tor b has proven to share good optimality properties that
even hold without the assumption of normality for the error terms u;, €, and consequently
for the response vector y;. Among these properties, it is worthwhile noticing that b is
consistent, asymptotically normal and fully efficient, provided though that the variance-

covariance matrix V; correctly specifies the Var (y;). If Var (y;) # V;, b is still consistent

and asymptotically normal, but not efficient any longer.

Mean and Variance-covariance Matrix of the ML Estimator b

It is straightforward to conclude that the ML? estimator b, is also an unbiased estimator

of the fixed-effects vector b, since:

E(B) =~ E (iXﬁV{1Xi>_liX§V;1yi

1=1

)3

- (} XV > th VIE (), (5.11)

1=

fury

and by regarding that F (y;) = X;b, we have

m -1
E(B) = (;ngi—lxi) ;xﬁvfx,-b

= Ib=bh,

where I is the identity matrix.

Further, as concerns the calculation of a suitable formula for the variance-covariance

3This ML estimator is also the (Aitken's) generalized least squares (GLS) estimator of b, as it can
be easily shown.
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matrix of b, we have:

m -1 m
Var <B> = Var (; XfVi_lXi> ;X,fvi—lyi

" =1 e .
= (ngv ) th Vit Var(y:) (th ‘1X) > o Xivit
i=1 =1

17t

m =1 m m t m

= | ) Xﬁv;lxi) Z XV, <Z XﬁV;l) (Z ngi—lxi) -
=1 - i=1 ) V:1V1~=I
m m t o t

= Y xiv! ) Z X! ( Xtvy ) KZ X;‘;V;lxi> }
t=] =] i=1
m ~1 m -1

= |2 X:V;lxi) Z XiVi'X; (Z X:V;lxi>
1==1 i=1 i=1

m -1 m 1
I (Z XfV;IX,) = <Z XfV;lx,-) . (5.12)
=1 i=1

[for the above calculations, we have used that if A a square matrix, then (A‘l)t =

=1

(At)_l, as well as that V! = V,, since V; is a variance-covariance matrix.

It is worth noting that in the case where variance-covariance matrix V, has been
mispecified (i.e. Var (y;) # V;), equation (5.10) does no longer provide a valid estimate
for Var (B) In an attempt to handle situations of this kind, Liang and Zeger (1986)

suggest using an alternative formula for Var (B), given by:

Var (B) -
(i XﬁV;lx,) B zm: XtV (yi—XiB) (yi—xiﬁ)t VX, (i xjv;lxz-)
=1 i=1

i=1

1
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5.3.2 Prediction of Random Effects u;

We have already discussed in the context of the GLMM distinctions between fixed and
random effects as well as the subject that concerns their estimation. What has been
proposed for the estimation of the fixed and the random terms of the GLMM also applies
to its extension, the Laird-Ware model. Hence, although in most practical longitudinal
studies it is of primarily interest to estimate the fixed effects vector b of the model
yi = X;b+ Z;u; + &, (i =1,...,m), and the variance components (the elements of the
variance-covariance matrices D and R;), on the other hand there are situations where it
is often useful to calculate estimates (usually called predictors) for the random effects u,
as well.

Haruille (1976) obtained estimates of the, m in total, subject-specific random effects
w;, (1 =1,...,m) using an extended version of the Gauss-Markov theorem for random ef-
fects that produces the best linear unbiased predictor (BLUP) of u; (denoted by u; srup).
The procedure is similar to that presented in Chapter 3, where we have shown derivation
of the best linear unbiased predictor for the random vector u of mixed-effects model
y = Xb + Zu + ¢, therefore we give the resulting formula for u; pryp, omitting the un-
necessary calculations. To this end, if V; = Z,-DZf +R;, and both R; and D are assumed
to be known, then the BLUP of random effects u;, (i = 1,...,m) has been shown to be
(Laird and Ware, 1982):

w; grvp = DZ; V! (y; = XibgLys), (5.13)

where bpry £ as usual denotes the best linear unbiased estimator (BLUE) of b, bgryg =

m

(i XtV 1X,~> 1 Z XtV ly;. (Note that bpryr and the ML estimator b of 5.2 are
NS, =

Another possible way to come up with a predictor for u;, is to use an extended
likelihood approach. This likelihood-based procedure produces a ML solution for u;

by optimizing the log-likelihood that results from all two-dimensional random vectors
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(yi,w)’, ¢ = 1,..,m. To illustrate the method, let us consider again GLMM (5.1).

Moreover, consider the conditional random variable of y: given u;, namely y; | u;. Under

the usual normality assumption imposed for model (5.1), it is clear that y; | u; is also

normally distributed, with:
Yi | Wi ~ N, (Xib + Ziu;, Ry) (5.14)
This gives the following expression for the probability density function of y; | u;:
flyilw) = (@2n)"7 | R [ exp {—% (yi — Xib = Zow,) R (y: — Xib — Ziui)}

Now, the distribution of random effects term u;, ¢ = 1, ...,m is N, (0, D) with corre-

sponding density given as:
-3 -3 1 -1
f(uw)=(2m)"2 | D |72 exp —suD 7w o

By definition, the conditional density function of y; given u; is:

Tt f(yi,ui)
f(ys | w) f(u'i')"'y

thus, consequently the joint density function of (y;,w;)* which also corresponds to the

likelihood of (y;, u;)* will be:
flyow) = f(w)x fy:|w). (5.15)

Moreover, the (joint) likelihood of all pairs (y;, w;)", 4 = 1,...,m is calculated as:

Lm = Hf (Yiau'i) =

=]

(2m)7" | D |73 Re [

.zss

=
-
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1
X exp {—5 [UED—lLIi + (yZ =¥ le = Ziui)t Rl_l (}’z = Xzb = Ziui)]} .

. . %5 (ni+q/2)
which becomes, without the constant (27) e :

1
m B
L,=|D|™ % (HlRi |> X
i=1

1 m
X exp {—5 Z [ufD—lui + (yi — X;b - Ziui)t Ri‘1 (y; — X;b — Ziui)] } .

i=1

The corresponding log-likelihood A,, = In L,, of L,, is:

Am=InLp=In]]f(,w)=
=1

m 1
e ___E R, | —
21n]D| 2i11n[ |

3 D w + (v — Xib — Zow) R (v: — Xob — Zaw,)]

=1

DN —

ML solution for u; is obtained by differentiating this log-likelihood with respect to u;

and setting the result equal to zero. We start with the calculation of d1n L,,/0u;. It is:

O0lnL,,
8ui =
18 (Z ufD—lui> 18 [Z (yi = Xib— Ziw,)' R (y: — Xib — Zwy)
e 1=1 i L=l
B 2 ou; 2 Ou,
& _l@ufD—lui A 18 (Y'L = Xzb a Ziui)t Rl_l (yz 3 Xzb - Ziui)
a 2 Ou; 2 Ou, 7

and using (3.32) result of matrix derivation, we have:

1
F =4 —§2D—1ui = %2 (—Zf) R,L_l (Yz - Xzb - Z,-ui)

= ZIR['(y, - X;b—Z;u,)) - D 'y,

Oln L,,
au,-
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Z!R;'y; — ZIR'X;b — Z'R;'Z;u; — D 'u,
= ZR;'(y:—X:b) — (ZIR;'Z, + D) u,. (5.16)

Setting the above partial derivative equal to zero yields the following ML estimator
of u;:

8, = (ZR'Z;+ D7) ZR (vi - Xib),

with the presumption that the inverse matrix of Z!R;'Z; + D! exists. Since the above
formula contains the unknown fixed-effects vector b, the latter can be replaced by one
of its estimators (i.e. either its ML estimator f), or its BLUE estimator bg.yg, given by

the same formula). Hence, we may write:
i, = (Z'R;'Z; + D) ' ZIR;! (yi . X,-B) . (5.17)

In fact, as it has already stated, it can be shown that the latter (ML) estimator of u;
is identical to the best linear unbiased predictor (BLUP) of u,, given in (5.13). Indeed,

to prove this, we only have to show that:
(ZR;'Z; + D) ZIR; ! = DZ!V[ L. (5.18)

Recalling the important general result (3.36) (developed by Henderson for application
to the GLMM of Chapter 3), and using it in the case of the Laird-Ware model y; =
X;b + Z;u; + €;, (i.e. replacing Z, R and V of the GLMM by Z;, R; and V; of the
Laird-Ware model, respectively) one may see that (5.18) holds. Thus, estimator @; can

be equivalently written as:
i, = DZtV;! (yi = x,.f)) , (5.19)

or

ﬁ, = DZ:V:I (y-; - XibBLUE) o (520)
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m

o ~1
since b = by = (Z X§V51Xz'> > Xivity.
=1

i=1

Alternatively, and due to the fact that the subject-specific parameters u;, (i = 1,...,m)
are assumed random, it is most natural and appealing as well to implement Bayesian
techniques for their estimation (prediction). We have already shown that conditional
on u;, the response vector y; follows a n;—variate normal distribution with mean vector
X;b + Z;u; and with variance-covariance matrix R; (equation 5.14). In combination with
the distributional assumptions for u; and by using typical Bayesian methodology one can
easily deduce (see, e.g. Smith, 1973; Lindley and Smith, 1972) that, conditionally on y;,

u, follows a g—variate normal distribution with mean:
;= DZ{V! (yi — Xib), (5.21)

which may be used in practice as an estimator of random effects vector u;. Naturally,
in practice, since the fixed-effects vector b is unknown, it has to be replaced by its ML
or Best Linear Unbiased estimator, b and bgryg respectively, thus yielding prediction
formulas for the u; identical to the BLUP and ML presented earlier. The resulting
predictions for the random effects, using a Bayesian methodology, are called Empirical

Bayes (EB) estimates.

Determining the Variance-covariance Matrix of 1;

As originally proposed by Laird and Ware (1982), since ; is a linear function of y; (like
the fixed-effects estimate f)), an analytic expression for its standard error may be easily

derived as:

- -1
Var (&) = DZ:{ V! - VX, (Zx:v;lxi> XVt Z.D.

=]

To prove the above expression for the variation of ;, observe that from (5.19) we
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obtain:

Var () = Var (ngv;lyi = ngvi—lxif)) .

m 1 m
Then, by replacing b = (Z XV 1Xi> 3 XtV ly,, the above becomes:
=1 i=1

i=1

m -1
Var (&) = Var { DZ'V;ly, — DZIV; X, (Z XEV[lXi) ZX’EVi_lyi
i=1

P

m -1 m
= Var (DZ?V{lyi) + Var { DZIVX, <Z XfVi‘IXi> E XIVity,

=1 =]

m =1
~Cov{ DZV;ly; DZIVX, (Z XfVi“lX,) Z Xivly,

i=1 =1

m -1
—Cov{ DZVX,; <ZX§V;IX,-) > XiVily, DZVy o (5.22)

i=1 i=1

We start to calculate now each part of (5.22), to come up with the desired expression

for Var ({;). As concerns the first part, it is:

Var (DZV;ly,) = DZYV; WVar (y;) (DZVH'
= DZV['V, (Vi)' Z,D=DZI1 (V) Z,D = DZ'V;'ZD,  (5.23)

since V;, D are variance-covariance matrices and thus V! = V;, D* = D. For the second

part, we have:

m -
Var { DZ'V'X, ( 3 ngi-lxi) N Xy,
=1

=1

i=1 i=1

m -1 m
= DZ!V;'X; (Z Xf-V{lXi) > Var (XiVily:) -

1=1

- -1
(‘i x:v;lxi> X!V;Z,D
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= DZV[X, (ngv ) th Vi War (v:) VX, -

i=1

m =1
(Z XﬁV[IXi> Xvi1z,D
=1
m -1 m
= DZV{'X; (Z x:v;lxi> (Z XfV;lviV;lx,) :
i=1

=1

- -1
(Z XQV;IX,.) XV:1Z,D
=1
m -1 m
= DZIV X, (ZXﬁV;lxi) (ZXfV;I)g.).
=1

i=1

= -1
(}: x:v;lx,) XV1Z.D

=1

m -1
= DZV X, (ngv;lx,) XtVi1Z,D. (5.24)

1=1

Finally, by performing simple calculus, the first of the last two terms of formula (5.22)

becomes:

=1 =1

m m -1
= DZ!V['Cov <y,-, Zx:v;lyi) (Z ngi—lxz) XVI1ZD
i=1

i=1

m -1,
Cov {Dzzvrlyi,nz:v:lxi (Z x:v;lx,-) SoXVily:

- -1
= DZ'V Cou (y;, Xt Vily: + ... + X,V ym) (Z x;v;lxi> X!V 1Z,D
m -1 -
= DZV7Cou (yi, XiVi'yi) (ngv;lx,-> XV:1Z,D

o -1
= DZ{V;'Var(y:) VX, (Z X:V;lx,) XtV;1Z,D

i=1

- -1
= DZ!V;'WV, VX, (ZX,‘-V{IXi> XVilz,D

i=1
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m 1
- DZ!V;X; (szv;lxi> XtV 1Z,D, (5.25)

i=1

Similarly, the second of the last two terms of (5.22) becomes:

=1 i=1

m -1 m
Cov {Dzzvrlxi (Z XﬁV;lxi) > XtV ly, Dz,

m -1 m
= DZiV X, Z XﬁVle) Cov (Z X:V;lyi,yi> Vv 'Z,D
=1

i=]1

o ~1
= DZ!VIX, ngv;lx,) Cov (XtV;lys,y:) ViZD
=1 .

o -1
= DZ!V X, ngv;lx,) XV War (y;) V1Z,D
i=1

1

— DZIV]X, ngv;lxi> XtVIlv,vilz,D
i=1
1

= DZIVX, ZXﬁVi’lX,) XIV1ZD, (5.26)
=1

i.e., it is identical to (5.25). Thus, by considering (5.23), (5.24), (5.25) and (5.26),

equation (5.22) can be rewritten as:

m =1
Var (1) = DZ'V;'Z,D + DZ'V; X, (Z XﬁV;IX,) X{V;Z,D—

=1

m -1 m 1
DZ:V X, (Z ngi-lx,-) X!V;1Z,D — DZIVX, (Z xﬁv;lx,-) XiViZ,D

i=1 1=1

- 1
= DZ!V;ZD - DZ!V]'X,; (Z ngi—lxi> XtV1zZ,D.

=1

Noticing that DZ’ and Z;D are common factors in both parts of the above, we conclude
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that:

= -1
Var (&;) =DZ:{ VP - VX, (Z XﬁV{lxi) XVt Z,D. (5.27)
1=1

A drawback of the latter expression (5.27) is that it fails to take into account the
variation in 1; — u,. Specifically, it underestimates the variability of @; — u; since it
ignores the variation of random effects u;. Thus, in order to assess the variation in
i, — u, it is preferable to use (Laird and Ware, 1982):

Var (; — u;) = D—Var () &

5 -1
= D-DZ!{ V7 -V X, (ngvi—lx,-) XVl Z,D.

=1
5.4 The Covariance Structure of the “Laird-Ware”

Model

In longitudinal studies, a very interesting and challenging problem is that of determining
an adequate way to model the heterogeneity of longitudinal data, and not in a few
situations applied statisticians may have primary interest in the covariance structure® of
the proposed model. Since observations on different subjects are assumed independent,
the covariance structure refers to the covariance pattern of measurements on the same
subject. Characterizing this within-subject covariance structure essentially consists of
specifying Var (y;) = V; as a function of a (relatively small) number of parameters, in
order to obtain a parsimonious parameterization of V;. Of course, this should be done

at a stage prior to the inferential stage of the analysis. That is, we must conclude with

6This opportunity, in being able to choose among various covariance structures is in fact one of the
most important advantages of the GLMM for longitudinal data, in comparison to classical methods (such
as ANOVA or MANOVA), where we are forced to presume either a too restrictive variance-covariance
matrix (i.e. ANOVA) or a too vague variance-covariance matrix (i.e. MANOVA).
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a suitable form for V; before fitting the model, estimating the model’s parameters and
conducting any tests of significance for the model’s effects. It is important to model V;
carefully, since it affects both the efficiency of the estimates of the fixed effects, say b,
and the validity of the estimate of Var (f)) To this end, various approaches have been
presented, and this section intends to give some insight into the subject. Specifically,
we present the most common choices of covariance structures, for the formulation of
V,; matrix. Moreover, we will discuss standard methodology found in the literature,
developed for the selection of the covariance structure of Laird-Ware model.

As already stated, variation of model y; = X;b+Z;u; +¢; is attributed to the model’s

two random sources, the random effects u; and the random error €; chosen so that:
u, ~ N, (0,D) e, ~N, (0,R,).

(In particular, u; is used to describe the between-subjects variability, while ¢; de-
scribes the within-subjects variability). This is so, due to the fact that Var(y;) =
Z,DZ: + R;, hence Var (y:) is based on D and R;. Consequently, the specification the
covariance structure for (5.1) model must be done through D and R;. In the follow-
ing, we see how the variancé-covariance matrices of u; and €; (that is D and R;), are

parameterized in order to model the covariance structure of the response vector y;.

5.4.1 The Variance-Covariance Matrix of u;

Most work related to the covariance specification of Laird-Ware model, has been focused
on specifying a suitable covariance pattern for variance-covariance matrix D. Especially
the recent advances in the statistical software have led to an impressively wide variety
of possible candidate forms for parameterization of D. A large selection of covariance
structures are available, varying from the most simple to extremely complex, indicating
the intensive work conducted in the last years on the specific area. The majority of

these patterns is intended to deal with the problem of incorporating the (possible) serial
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correlation of within-subject measurements into the model. More specifically, according
to Littell et al. (2000), for most of these models the covariance between any two ob-
servations on the same subject depends only on the length of the time interval between
those measurements (most often known as the ‘lag’). Such correlation structures, where
the correlations between measurements on the same subject depend only on the time
difference of those measurements are called stationary. Also, usually the variance for
each measurement is assumed to be constant over time.

In the sequel, we describe five of the most representative covariance structures, cov-
ering a wide range of the available choices, from a completely unstructured covariance

pattern to more complex covariance patterns borrowed from Time Series analysis.

The Unstructured Structure: One example of a very simple covariance structure
very often used for the specification of variance-covariance matrix D is the “unstructured”
structure. The latter, specifies a variance-covariance matrix with no particular pattern,
essentially leaving D completely unspecified, since that variance parameters within D

are all different to each other, and are given by:
(UN):  Cov(yij,yik) = ojx, for all i,7,k. (5.28)

There is a major potential problem however with using the unstructure covariance
structure; this generality in the parameterization brings the disadvantage of having to
estimate a very large number of variance and covariance parameters. Indeed, for the
(g X q) variance-covariance matrix D, an unstructured approach requires a total number
of g (¢ + 1) /2 variance parameters to specify D, raising the cost in computational efforts

and thus leading to severe computational problems when fitting models of such structure.

The Compound Symmetric Structure: The compound symmetry (CS) structure

specifies the variances and covariances included in each subject’s variance-covariance
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matrix Var (y;) to be:

(CS):  Covul(yi,yix) =02 for j#£k, Var(y;)=o02+o? forj=k (529

that is, observations on the same subject have homogeneous covariance o? as well as

homogeneous variance 0% + o%. As one notices, CS corresponds to the (unique) structure
assumed by the Analysis of Variance (ANOVA) method for longitudinal data, presented
in Chapter 2. Although the specific structure is not too realistic for modeling longitudinal
data (since CS assumes equal covariances across time whereas for repeated observations
on the same subject it is more possible covariances close in time to be greater than
covariances distal in time), it has been established as a familiar choice for modeling
longitudinal data via the Laird-Ware model.

There are various ways to specify a CS structure for Var (y;); a typical procedure is
to replace the (n; X q) matrix Z; in y; = X;b + Z;u; + €; by a (n; x 1) vector of ones.
In doing so, the random effects vector u; consequently reduces to a univariate random

variable, say u; with u; ~ N (0,0?%). By further assuming that Var (e;) = 0?1, it is:

Var (y;) = Z;Var(w)Z: + Var (&)
— B A o bhec N e el )

ni—n,

= o2, +’L,, (5.30)

where, as usual, J,. denotes a (n; x n;) matrix of ones and I, is a (n; x n;) identity

matrix.

Another commonly used way is to define D or R;, to be zero and define the other

matrix to be compound symmetric, e.g.: R, = 021, +03J,,.

The First-Order Autoregressive Structure: For data collected over time on the
same subject (e.g. longitudinal data), often within-subject serial correlation is present.

As Jones (1993) states, when data are serially correlated, observations that are closer
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together in time tend to have higher correlations than observations that are farther apart.
Covariance structures, such as compound symmetry or the unstructured fail to take
into account this possibility (unstructured structure makes no assumptions at all about
covariance and correlation, while CS assumes equal correlations among measurements,
no matter how far apart in time the measurements are placed).

The need aroused to model adequately this type of correlation, led to the introduction
of familiar Time Series models into the analysis of longitudinal data via the GLMM.
Especially, for equally spaced repeated measurements’ (i.e. when time periods between
observations are evenly spaced), usually the first-order autoregressive [AR(1)] covariance
structure is employed.

By definition (e.g. see Brockwell and Davis, 1996), an AR(1) time series process with

zero mean [i.e. E (y;) = 0], is given by the equation:
Yi = PYi—1 + L, tr= OpsSil) ... (5.31)

where {Z,} is an i.i.d. random variable with Z; ~ N (0, c?). Further, Z; is uncorrelated
with y,, for every s < t. p is called the autocorrelation coefficient and the restriction
imposed on p is that | p |[< 1. We call this model autoregressive due to the specific nature
of equation (5.31), where the present value y; is ‘regressed’ on the previous value y;_;. On
assuming that each within-subject’s time sequence of repeated measurements specifies an
AR(1) model of the form (5.31) it is easy to show that variances and covariances of the

ith subject’s repeated measurements y; = (yi1, ¥iz, --- yini)t are given by:
AR(1): Cov(yij, Yix) = o** pli=kl, WO sl ek 192) »., 1%, (5.32)

where 0** = 62/1 — p?. Indeed, under an AR(1) formulation we have that the following

"For unequally spaced observations usually continuous time processes [e.g. a continuous AR(1)
process, denoted as CAR(1)], are employed to describe within-subject serial correlation (for more details
we refer to Jones, 1993).
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equation holds for the y;1, ¥i2, ..., Yin, repeated observations:
Yij = PYij-1+ Zj, =l 2) ... (5.33)

The variance of each y;; is calculated, considering that E (y;;) = 0, as:
Var (yij) =F (y12]) .

Hence, for determining Var (y;;) we equivalently have to find £ (yfj) By multiplying
both sides of equation (5.33) with y;; and take expectations, we get:

v: = i (pyij-1 + Z;)
= E (y2) = E i (oyi5-1 + Z;)]
= E(y3) = E(pyi51 + Z5) (pyij—r + Z5)]

and since y;; uncorrelated with Z;, we have:

0.2

E(y5) = P°E (y) + 0" = E(uf) (1= p") =" = E (u) = {75

hence Var (y;;) = 02/ 1 — p®. As concern covariances between two repeated measure-

ments, say y;; and y; j—x, observe that:

Cov (ysj; Yij-k) = Cov(pi;ir+ Z;, % 5L)
= Cov (pyi,j—la yi,j—k) + Cov (Zj, yi,j—k)

= pCov (Yij-1,Yij—k)

since Cov (Z;,y:j—k) = 0. For example, for & = 1, the covariance between two consec-

utive measurements yi;, ¥ j—1 18 Cov (¥ij, Yij—1) = pCov (Y -1, Yij-1) = pVar (yij-1) =
po2/1 — p? = o**p. Hence, in any case Cov (Ysj, Yir) = o** pli=* is true. For the AR(1)

structure, observe that variances are equal (62/ 1 — p?), and the covariances decrease
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exponentially depending on the lag (separation in time of measurements): | j — & |.
Finally, closing the discussion on the AR(1) structure, we have to notice that the
specific structure in contrast to others (i.e. unstructured) is an example of a very parsi-
monious structure since its parameterization requires only two parameters, p and o2, and
thus adaptation of AR(1) type structures for modeling the within-subjects covariance in
a GLMM for longitudinal data has become quite popular; Potthoff and Roy (1964) were
the first to consider a first-order autoregressive AR(1) structure for equally spaced obser-
vations in a balanced growth curve situation. More recent, Jones (1985, 1991), Mansour
et al. (1985) and Pantula and Pollock (1985) discuss longitudinal data analyses with
a random subject effect and AR(1) error structure. A thorough review on analyzing
longitudinal data via linear models as well as a general discussion on AR(1) models can

be found in Ware (1985).

The Toeplitz Structure: The Toeplitz structure (sometimes called the general autore-
gressive structure), resembles that of an order-one autoregressive structure. In particular,
one may regard the Toeplitz structure as a generalization of the AR(1) structure. The
Toeplitz structure [similarly to the AR(1) structure], assumes covariances that depend
only on lags, but the difference now is that the covariances do not all depend on the
parameter p, as is the case with the autoregressive structure. In the case of the AR(1)
structure, all covariances partially based on p or powers of p. Here, covariances are more
arbitrarily defined, the only restriction being that covariances along every diagonal be
equal. Hence, while for the parameterization of a (4 x 4) matrix D as an AR(1) structure

we would have used:

1 p p* P
p 1 p PP
2
D =0 §
prop 1oy
PPt p ]
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the same matrix, being parameterized by the Toeplitz structure would be expressed as:

L p pa p3
D=y?| A L p1 po
pa P 1 g

ps Py pr 1

Notice that the above, by taking ¢? inside the matrix, can be rewritten as:

L py py ps o? a’py a’py o?py
Y IR a*py a* aPpy opy
pr P11 p o%py o%py o op
ps P2 p1 1 a’py a’py o’py O

and setting o%p; = 01, 02py = 09, dpy = o3 results in the following form for variance-

covariance matrix D:
g~ 01 02 O3

g1 0'2 gy 0O
gy O] 0° O
J
o3 Gy 01 O°
which is just another, alternative way to express a variance-covariance matrix of Toeplitz

form [for more on Toeplitz matrices we refer to Grenander (1958) and Littell et al.

(2000)]. Thus, variances and covariances of a matrix of Toeplitz covariance structure are

namely:

(TOEP):  Cov (yij,yix) = 0j—k for j £k, Var(yy) =02 for j=k (534)

The Banded Type Structures: Structures as the AR(1) or Toeplitz, allow for the
presence of correlation among observations made on the same subject. But there is the

possibility the correlation between two widely separated observations to be negligible. For
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situations like this, it may be appropriate to ‘band’ the D matrix by setting correlations
between the observations that are widely separated in time to zero. For example, by

choosing to parameterize D as [where say D is of order (4 x 4)]:

o 0% o4 O
0 o, o o

0 0 o, o2

we essentially say that correlation is present only between consecutive observations,
whereas correlation between observations separated by two or more time intervals is prac-
tically zero. This specific banded model is known as the one-dependent model, which in

its general form expresses that:

Cov (yij, Yij+1) = Oli—Gi+1)) = 01, Cov (Y5, Yijek) =0 for k> 1,  Var(yy) = o>
Of course, depending on how far in time we want correlation to exist, the one-
dependent model can be extended to a two-dependent or higher dependent model, produc-
ing each time different banded covariance structures (e.g. the two-dependent covariance
structure states that observations that are one and two steps apart in time are corre-
lated). Table 5.1 summarizes the diferent covariance structure specifications that have

been discussed.
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Table 5.1

Covariance structure specifications considered in the literature for the Laird-Ware model

Structure Formula
2
0y 021 031 Oy
2
021 O3 032 042
Unstructured
2
031 032 O3 043
2
041 042 043 Oy
ol+o 0% o3 Uf
o2  o?’+o?  o? o?
Compound Symmetry
0'% Uf o’ + o} o?
o? o? ol o’+o
2 3
1 p p7p
2
. . p 1 p p
First — Order Autoregressive 2
2
pm p 1 p
3 2
p>pt op 1
[ 2
g g1 02 O3
2
) 01 07 01 02
Toeplitz
09 01 0'2 g1
2
03 Oy 01 O
o2 0 0 O
) _ 0 o2 0 O
Banded Main Diagonal
0 0 o2 O
2
0 0 0 oy
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Table 5.1 (continued)

Structure Formula

o2 o1 0 0

g1 O'2 5] 0

Toeplitz with Two Bands
0 g1 0'2 g1

0 0 g1 0'2

2

a7 01020 01030 T104p
2

O901p o5 02030 CT204p

2
0301p 0302p O35  0304p

Heterogeneous CS

2
0401p 04020 0T403p Oy

U% g102p 01030 0104[33
Ta01p 0% T2030 0204,02
Heterogeneous AR (1) ) )
030107 0302p 03 T304p
04010° 0402p°  0403p Ui

Midi M A A
Aadi Aibdy Ads A
DTS VERED V) PRED LB D YOV
) V5 YERED V9 PREEED VP PR VS

First — Order Factor Analytic

2 2 2 2
0_% trl-;—a'2 _ /\ 0]-;-03 . /\
2 2 2 2
Huynh — Feldt 52%’4—)\ o? 22-;—‘11_)\
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5.4.2 The Variance-Covariance Matrix of ¢;

In contrast to the various options available when parameterizing the between-subjects
variance-covariance matrix D, the assumptions on (within-subjects) variance-covariance
matrices R,; are rather simplified. Although the various covariance structures presented
in section 5.4.1 for the modeling of D can be similarly used for describing the covariance
structure of random error &;, through R;, often we resort to less complex solutions. In

fact, the most common choice for R; is the simple covariance structure:
R, = o’

where I,, the (n; X n;) identity matrix and o? is a (unique) variance parameter used to
describe the within-subjects variability in the data. The simple structure specifies that
even measurements on the same subject are independent, and all measurements have

homogeneous variance, i.e.:

Simple (SIM):  Cov(yij,yx) =0 for j#k, Var(y;)=o? for j#k.

In other words, this parameterization suggests that the variance is the same across
each ith (: = 1,...,m) individual’s separate measurements y;i, Y, -, ¥in, and further-
more, these measurements were taken sufficiently far apart in time so that the possibility
of correlation among them is practically considered negligible. Hence, this model choice
essentially assumes that all the variability in the data which is not taken into account by
the random effects u; (that models the between-subjects variability), is purely measure-
ment error.

The Laird-Ware model with this specific additional restriction of €; ~ N,, (0,6%1,,) is
called the conditional-independence model, due to that conditional on the random’
effects w;, it is Var (y;) = o?I,, which implies that the n; responses on individual i
are independent. Note that this commonly used variant of Laird-Ware model assumes

homogeneity of both variance terms u;, €, (constant variance-covariance matrices D, oI
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for all subjects i), while model (5.1) assumes homogeneity of variance only for u;.

Remark 5.1: The above methodology for the parameterization of D and R,; llus-
trate what has become standard in the modeling of longitudinal data via the Laird- Ware
model. Of course, it should be mentioned that there are other approaches for introducing
serial correlation into the model, except of the one already described which consists of
specifying the simple, conditional-independence structure for the covariance of €;, using
the random effects u; to give any additional structure to Var (y;). Jones (1993), for ez-
ample, introduces serial correlation into the within-subject errors g; by letting R; to have
a first-order autoregressive [AR (1)] structure, rather than just assuming that the errors
and consequently observations on the same unit are uncorrelated. For alternative para-
meterizations of the within-subject variation see also Verbeke et al. (1998) and Lesaffre
et al. (2000).

In general, several authors have considered various alternative ways for the parame-
terization of D and R;, including the study of rather extreme situations, such as the
one of setting one of D, R, equal to zero (e.g. setting D = 0 essentially corresponds to
elimination of the v, term) and specifying a covariance structure for the other remaining

term.

5.4.3 Selecting the “Best” Covariance Structure

The feasibility to choose among a broad variety of covariance structures for Laird-Ware
model is one of the greatest advantages this model accommodates into the analysis of
longitudinal data. By selecting a structure that best fits the true covariance of the
data results in obtaining the best possible efficient estimates of fixed effects b, and
consequently in performing more powerful and valid rests upon the latter effects.

On the other hand however, this availability has an obvious impact on the implemen-
tation of Laird-Ware model since modeling can be considerably more complicated under
the additional burden of having to select between more than one covariance structures.

Choosing the most appropriate structure is not an easy task, and various methods are
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now utilized, including indices of goodness-of-fit, comparisons of covariance estimates
and graphical techniques. In particular, for practical applications usually likelihood-
based methods are used. Note though, that a straightforward application of the model’s
likelihood function L by forming a likelihood statistic based entirely on L cannot be
seen as a suitable choice for model comparison, since its value will always increase as
more variance components are added. Hence, other alternative approaches for model
choice have become standard in use. Models with the same fixed effects, but with differ-
ent covariance structures can be compared using again statistics based on the likelihood
function, this time though adjusting for the number of variance parameters. The other
approach is to use likelihood ratio tests (LRTs). In the following sections we present
both methods, describing the formulas of statistics and specifying the situations each of

those methods apply.

5.4.3.1 Likelihood Ratio Test (LRT)

The likelihood ratio test (LRT) for selecting among two models, the one with the ‘best’
covariance structure applies only to certain circumstances. More specific, it provides
valid inferences in the special situation where one model is a ‘constrained’ version of the
other. By this, we mean that the two models are nested, i.e. the simpler model can
be obtained by restricting some of the variance parameters in the more complex model.
Under this notion, the LRT can be used to test the null hypothesis that the model with
more variance parameters is not a significantly better fit than the simpler model with
the fewer parameters.

As concern now the formula of the statistic, if by ¢; we denote the value of —2 times

the logarithm of the likelihood from the first model, that is ¢, = —2log L; and accordingly
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£, is the value from the second model (i.e. £; = —2log L;), then the LRT is given by®:
‘ (9) "y (9) ~ 2, (5.35)

where 8 is the ML (or REML) estimate of the unknown variance components § that
maximizes L, and L, respectively, and d is the difference in the number of variance
components fitted between the two models. Finally, z2 denotes the chi-square distribution
with d degrees of freedom. [To clear things a little, what is actually done here is first fitting
the two nested model, then obtain estimations of each model’s variance components 6 and
finally (using these estimated ) calculate statistic 5.35]. A large value of the difference
4 (9) — {9 (9) leads to the rejection of the null hypothesis that the two models are the
same (i.e. the extra variance parameters do not improve the fit) and thus conclude that

the best model is the second, the one with the extra parameters.

5.4.3.2 Akaike’s Information Criterion (AIC)

So far we have discussed only comparisons of nested covariance structures, for which
the likelihood ratio test can be validly used. However, for comparisons between non-
nested models the LRT is not suitable for making inferences. Alternatively, covariance
structures can be objectively compared using other selection procedures, such as Akaike’s
Information Criterion (AIC) and a modified AIC, the Schwarz’s Information Criterion
(SIC).

AIC, which initially developed for decision theory (see Akatke, 1974), is a statistic
based on the (maximized) likelihood, with the advantage of penalizing though this like-
lihood for the number of parameters fit to the data to avoid overfitting. Under this

perspective, AIC statistic is given by:

AIC =log L (9) —q (5.36)

81t has proven to be more convenient when constructing likelihood ratio tests, to work with
—2loglikelihood than with the likelihood itself.
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where once again 0 denotes the ML/REML estimates of variance components 6, and g
is the number of the (estimated) variance components. The model which has the largest
value of AIC is selected as the ‘best’ model (i.e. the model with a covariance structure
that fits best to the data).

Some authors find it more convenient, instead of using (5.36) to work with another
formula for AIC that incorporates £ = —2log L into the statistic. Thus, in many texts,

the following formula for AIC can be met:
AIC = -2 [log L (8) - o] = ~210gL (8) +20=¢ ‘(é) +2g (5.37)

In this case, due to the modification, best model is the model with the lowest AIC

value.

5.4.3.3 Schwarz’s Information Criterion (SIC)

Schwarz (see Schwarz, 1978), suggested a modification of Akaike’s Information Criterion
that, as he has proven, increases penalty for overfitting compared to AIC. Schwarz Infor-
mation Criterion (or Schwarz Bayesian Information Criterion) in addition to the number
of estimated variance parameters ¢, is formed in such a way so that to take into account
and the (total) number of repeated observations N = in: n;. More precisely, SIC (or
SBC) is expressed as: =

SIC =log L (9) - g—log N, (5.38)

where 6 is the maximum likelihood estimate of #, g the number of the variance parameters
and N the total number of observations in the model. For the case where the estimations
of 8, 0, are obtained by the restricted maximum likelihood method, the SIC statistic is
slightly modified to:

SIC =logL (9) - -g—log (N —p), (5.39)

where the extra term p is the number of the fixed effects in the model. As was the case

with AIC, once again the model with the largest SIC value is the most preferable.
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5.4.3.4 Other Information Criteria

More complicated information criteria for selecting an appropriate covariance structure
have been the subject of ongoing research in the recent years. These criteria though,
are of questionable applicability, since in most practical studies standard choice criteria
(i.e. AIC, SIC) are used instead. Among them, worthwhile mentioning is the informa-
tion criterion proposed by Bozdogan (1987), who suggests increasing the penalty term
slightly more, and called the resulting statistic the consistent Akaike Information Crite-
rion (CAIC):

CAIC =logL (9) - g (1+log N). (5.40)

Another, less frequently used criterion, given by the SAS (Littell et al., 1996) Proce-
dure PROC MIXED, is the Hannan & Quinn information criterion (HQIC):

HQIC =logL (9) — glog (log N) . (5.41)

(For more information on the above criteria, the interested reader is referred to the

SAS manuals).

5.4.3.5 Graphical Techniques

Complementary to the above criteria, informal graphical techniques that have developed
for deciding among various candidate covariance structures are available. In particular,
graphs such as the Draftman’s display (see Section 4.3) or the empirical semivariogram
(see sub-Section 5.7.2) can help with the specification of the Laird-Ware model’s co-
variance structure. As is known, repeated measurements on the same subject are usu-
ally (positively) correlated. Moreover, measurements taken close together in time are
potentially more highly correlated than those taken far apart in time. Inspection of
a Draftman’s display and/or a semivariogram allows us to determine the appropriate
(within-subject) covariance structure by visualizing the relationships and (possible) cor-

relations between the repeated measurements within each subject. Once a correlation
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pattern has been detected from these plots, a suitable covariance structure may be used

to allow for this pattern of correlation to be incorporated in the model.

5.4.4 Concluding Remarks

Although the ability for various parameterizations makes clear an advantage of the ‘Laird-
Ware’ model over other longitudinal data modeling approaches, however it is not usually
practical to test a large number of covariance structures in a single application. Espe-
cially, covariance structures of the most complex form are rarely used in practice. Most
common strategies suggest to start with the fit of simple structures, such as the compound
symmetric or the first-order autoregressive. More complex structures can be tested and
should be accepted only if they prove to be significantly better, compared to the simpler
structures. As Brown and Prescott (1999) point out, numerical evaluations have shown
that for many real datasets, especially those with a few repeated measurements on each
subject, the estimates of the fixed effects b differ little between models using different
covariance structures. In any case, one usually utilizes either a general unstructured
variance-covariance matrix D (i.e. a symmetric positive definite (g x ¢) matrix which
does not assume the random‘é/ffects matrix D to be of any specific form), or a compound
symmetric variance-covariance matrix D.

As far as concerns the selection of a covariance structure among various models, the
usual procedure is to compare the values of AIC and SIC on all models, that is choose the
model that exceeds the largest value on both information criteria. This is quite possible
to occur, since in many cases the two criteria are likely to come up with equivalent results.
In any other case, where one model has the largest AIC value and another model has the
largest SIC value, what is practically done is to trust one of the two information criteria.
Closing the discussion on information criteria, it is worthwhile mentioning a recent crit-
icism to the two widely applied criteria, AIC and SIC. In Keselman (1998) for example,
a study was conducted in order to see how effective the latter information criteria are

in detecting the correct covariance structure. The authors simulated longitudinal data

161



arising from specific population covariance structures, with a total number of eleven co-
variance structures being fit with the SAS procedure, PROC MIXED. AIC and SIC were
both utilized to detect each time the correct covariance structure. Unfortunately, the re-
sults indicated that neither criterion was much effective in finding the correct structure.
Specifically, the Akaike criterion only resulted in the correct structure being selected 47
percent of the time, whereas the Schwarz criterion resulted in the correct structure being
selected just 35 percent of the time. Authors present as a possible explanation for the
poor performance of both criteria, the fact that the (wrong) structures chosen by the
criteria might be very close approximations to the true covariance structures.
Nonetheless, despite criticism, information criteria and especially AIC and SIC still
remain the most frequently used approaches on testing for the best covariance struc-
ture between various Laird-Ware models, and are included as a standard tool in most

statistical software for modeling longitudinal data through mixed effects analysis.

5.5 Unknown Variance Components

So far we have considered estimation of fixed effects vector b and prediction (estimation)
of random effects u;, (i = 1....,m) of the Laird-Ware model (5.1), on the presumption
that the covariance structure of the latter model is known. That is, when the variance
components 8 (i.e. the elements of the variance-covariance matrices D and R;) are
known, and thus D, R; and V; = Z,-DZf + R, are considered to be known, closed-form
expressions for the estimates of fixed and random effects b and u; can be derived without
particular difficulties (see section 5.3).

However, the specific assumption rarely holds in practice, as it has been already
mentioned in Chapter 3. In most longitudinal studies conducted via the Laird-Ware
model, variance-covariance matrices D, R, are unknown. Hence, since equations for the
estimators of fixed and random effects involve these unknown matrices, estimates of D,

R, and V; are necessary in order to derive closed form solutions for the estimators of b
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and u;. In this situation, where all the variance components 6 of the Laird-Ware model
are not known, but an estimate, say 8 of 0 is available, the common étrategy to proceed
with fixed and random effects estimation is to set V; = V; (9) =7Z,D (9) Zt + R, (9)
and estimate b and u; using again the already derived equations of section 5.3, this time
replacing V;, D and R; with their estimates Vi =V; (é), D=D (9) and R, = R, (9)

Thus, we may write:

m “1 m
b(8) = (Z XﬁV[lXi> ;xz\‘f;ly,-, (5.42)

=1

to be the ML estimator of fixed-effects vector b, and accordingly:

i, (é) = Dz (yi - XJB) , (5.43)
as the ML estimator of the random effects u;, (i = 1,...,m), under the assumption that
model’s variance components (and thus model’s variance-covariance matrices) are un-
known.

The literature that is concerned with the topic of estimation of variance components
in mixed models is quite extensive. Although several methods are available, much of the
attention has been focussed onto two competitive methods; one is the standard maximum
likelihood (ML) method, introduced to variance components estimation by Hartley and
Rao (1967) and the other is the modified ML technique known as the restricted maximum
likelihood (REML) method (Patterson and Thompson, 1971). Both methods as well as
their adaptation on the GLMM for the estimation of the model’s variance components
have been reviewed in sections 3.3.4.1 and 3.3.4.2, therefore we will avoid any additional
comments on the two methods. The common approach to perform estimation of variance
components @ of the Laird-Ware model is in combination with the estimation of the fixed
effects b, such that both estimation procedures are conducted in a simultaneous way. As
stated before (Chapter 3), the troublesome complication arising when trying to obtain

simultaneously estimates of b and 6, is that in the end we conclude with a system of
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equations of no closed form, since equation that gives the estimator of b is a function
of the unknown variance components €, and similarly equation that provides variance
components estimator 8 contains the unknown b. Consequently, no simple one-step
solution can be obtained, as was the case with estimation of fixed and random effects
when variance components are known. The only possible way to proceed is to employ
numerical procedures of iterative nature to derive the desired estimates. These iterative
schemes may be satisfactory applied to perform both ML and REML estimation of the
variance components. Most notable among these iterative algorithms are the widely
applied Newton-Raphson (N-R) algorithm, and the more recently developed Expectation-
Maximization (EM) algorithm. [Others however, (see e.g. Vonesh and Carter, 1987),
have proposed non-iterative estimation procedures for the Laird-Ware model parameters).

In the sequel, we attempt to describe the current status and recent developments
associated with the ML/REML estimation of covariance structure (i.e. the variance
components) of the Laird-Ware model for longitudinal data via EM and N-R algorithms.
To this end, the remainder of the current section is organized as follows; in subsection
5.5.1 we present the basic theory of the EM algorithm, while in the next subsection
5.5.2 application of the latter numerical iterative algorithm either for ML estimation
(subsections 5.5.2.1 and 5.5.2.2) or REML estimation (subsection 5.5.2.3) is discussed.
In subsections 5.5.3 and 5.5.4 the basics of the other (restricted) likelihood maximization
method, the N-R algorithm are reviewed. Further, we consider all necessary formulas
for the implementation of the iterative N-R to derive estimates for both ML estimates
(subsection 5.5.5.1) and REML estimates (subsection 5.5.5.2) for the variance components

in mixed effects model for longitudinal data (5.1).

5.5.1 The EM Algorithm

A major difficulty of maximum likelihood estimation is that in many situations, no the-
oretical solution on the likelihood equations is available, leaving no other choice than

to resort to numerical optimization techniques. A widely applied general approach to
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numerical computation of ML estimates is the so called: Fzpectation-Mazimization algo-
rithm (EM algorithm). The EM algorithm has become in recent years one of the most
well-known and popular techniques in applied statistics. Since its definition by Demp-
ster et al. (1977) in their fundamental article, it has been used successfully in a wide
variety of applications, from mixture models density estimation to maximum likelihood
estimation of variance components.

EM is a general-purpose algorithm for both ML and REML estimation in a wide
variety of situations, best described as ‘incomplete-data’ problems. In simple words, the
EM algorithm is essentially an iterative, numerical technique that is based on the fact that
if certain data values were not missing, ML/REML estimation would computationally be
much easier. Under this notion, one could say that the generality of EM algorithm is in
doubt since it only applies to missing data problems. But this is not true, however; EM
applies not only to evidently incomplete-data situations, but also in a whole variety of
situations where the incompleteness of the data is not natural or evident. For example, in
many occasions, even if the estimation problem is not one of incomplete-data, it is often
preferable to express it as an incomplete-data problem and apply the EM algorithm. In
this way, what is actually done is to associate with a given (assumed to be) incomplete-
data problem for which ML estimation is extremely difficult to perform, a complete-data
problem for which maximization of the likelihood is much easier. (It is worth noting that
this is the approach followed in applying EM algorithm to Laird-Ware model, as we shall
see in the sequel). Trying to make a general concluding remark on EM algorithm, we
can say that it is a simple and easy to implement, iterative procedure for ML/REML
maximization in incomplete (or at least assumed as being incomplete) data problems.
As regards its implementation, we should note that despite its good properties (i.e.
simplicity, numerical stability), it also suffers from several drawbacks, the main one being
its very slow convergence in most situations.

In the following, we briefly describe the general framework of the EM algorithm,

presenting the basic features of the algorithm in a simple way as possible. In do this, we
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first start by establishing some necessary additional notation. First of all, the ‘incomplete
data’ term in its general form implies the existence of two sample spaces, Yous (observed
sample space) and Y .m (complete sample space), as well as a many-to-one transformation
(or mapping) from Y eom t0 Yobs- If we let H denote this transformation, then a random
variable Y, defined in yobs is related to random variable Y ,,, defined in ycom through

this transformation, i.e.:

Yobs =H (Ycom) . (544)

In addition, let us consider the ‘observed’ (incomplete) data y,, which is a realization
of the random variable Y ,,, and accordingly the ‘complete’ data y..m, realized from
random variable Y,,,. Essentially, y..m consists of the observed data y,,, plus the
missing data ymis. Thus, we may write Yeom = (Yobs, Ymis)- In other words, we have
just hypothesized a problem, where instead of observing some ‘complete data’; y.om, we
observe only a portion of these data, namely the ‘incomplete data’ y.s. The ultimate
purpose is to estimate (usually via maximum likelihood estimation) a vector of some
parameters 6, taking its values in the convex set 2 (8 € Q ). If the density function of
r.V. Yeom 1S f (Yeom; @) and the density function of Y e, is f (Yobs; 8), then it is:

¥ (e 0= / £ Feoms: 6) ¥ eom. (5.45)
H(ycam)=yobs

Now, let us denote by L (6; Ycom) = f (Yeom; 9) the complete-data likelihood function
of parameter 6 € 2, and by L (6; yobs) = f (Yobs; 8) the observed-data likelihood function.
As already mentioned, EM finds application in those statistical problems, where ML
(or REML) estimation of 6 is much simpler through maximization of the ‘complete-
data’ log-likelihood In L (6; y .om) than maximization of the ‘observed-data’ log-likelihood
InL (8;yes). Hence, the EM algorithm requires maximizing In L (6; y.m). But there
Is an evident complication in performing the latter maximization. The complete data
Yeom are not available (only the incomplete data are available in practice), therefore it

is not possible to perform directly the optimization of the complete data log-likelihood
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In L (8; ycom)- To overcome this, we replace In L (6; y..m) by its conditional expectation,
given the observed data y.s. This is the so-called expectation step of the algorithm.

In general, expectation-maximization algorithm is an iterative procedure that consists
of two steps; the expectation step (E-step) and the maximization step (M-step). Since
the E- and M-steps involve parameter § which is unknown, it becomes necessary to use
an iterative procedure which starts by providing some initial value for # and then iterate
between the two steps until convergence is reached. More specific, if 8% denotes the
estimate of @ at the kth iteration (k = 0,1,2,....), then at the (k + 1)st iteration the
E-step calculates the expected log-likelihood of the complete data, say @ (9, 9('“)>, given
the observed data y., and the current estimate 6%).- The M-step then, simply finds a
new estimate of 6, 0(}”1) by maximizing Q (6’, H(k)>. Hence, the E- and M-steps of EM

algorithm (for the kth iteration), can be presented as:
E—step: Calculate Q (9, 9““)) —E [mL (6: Yeorn) | Yobe: 9“”] :

and

M —step:  Choose §*+1 that maximizes Q (0,0(")) .

After providing the initial estimates for 6, 6© the above iterative scheme is repeated
until the produced sequence {9(")} reaches convergence. As usual, we say that we have

reached convergence when the difference:

Ly (9(k+1)) illiobs (9(k))

changes only by an arbitrarily small amount. In the above, L., denotes the likelihood
of the observed data y.ss that we seek to maximize with respect to 6.

Closing this brief description of EM algorithm, we note that Dempster et al. (1977)
among other general properties of EM, show that each iteration of the algorithm increases

Leops (8) = L (8; Yobs), which in words verifies the monotonous increase of the likelihood.
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5.5.2 The Implementation of the EM to the “Laird-Ware” Model

The EM algorithm developed by Dempster et al. (1977), is a general purpose algorithm
for obtaining maximum likelihood (ML) or restricted maximum likelihood (REML) es-
timates for some unknown parameters in the case of ‘incomplete data’ problems. In
general, the algorithm consists of two distinct steps, the E- and M-steps. The E-step
calculates the conditional expectation of the complete-data log-likelihood given the ob-
served (incomplete) data and the current estimates of the unknown parameters, while
the M-step computes the new estimates of the parameters by maximizing the conditional
expectation obtained at the E-step. The process iterates between the E-step and the
M-step, until the estimates reach convergence. Actually, as pointed out by Dempster et
al. (1977), EM algorithm can be applied even in estimation problems where there are
no missing data, in the actual sense. A typical example of such type of implementation
for the EM algorithm is the GLMM for longitudinal data, proposed by Laird and Ware
(1982).

Let us recall once again the (Gaussian) general linear mixed model (Laird and Ware,
1982):

yi=Xb+Zu, +e;, (G=1,..m),

where as usual, y; are vectors of length n; containing the repeated measurements on
the ith subject and &; are error vectors of the same length, independently distributed as
N,
(p x 1) vector of fixed effects while Z; is a (n; X ¢) design matrix which corresponds to

. (0,R,;). Further, X, is a (n; X p) design matrix of covariates and b is a corresponding
the (¢ x 1) vector of subject-specific random effects u; [u; ~ N, (0,D)]. In the context
of the specific model, to implement the EM algorithm, the observed (incomplete) data
are considered to be of course the measurements y;, (z = 1,...,m) actually collected
on each subject. However, the complete data are taken to be the observed data plus
the unobservable random effects and random error terms, namely u; and €;. Thus, the

missing data cannot be viewed as data in the traditional statistical sense. In this way,
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that is by treating the latent variables (such as u;, €;) as missing values, we are able to
apply EM even in estimation problems where there are no missing data in actuality.

The first to describe implementation of EM algorithm for both ML and REML esti-
mation of the variance components (in D and R;) of model y; = X;b + Z;u; + ¢; was
Laird and Ware (1982). Since then, many authors have discussed computational details
of the above implementation. For example, Laird et al. (1987) reviewed and continued
to examine the application of EM to the latter model. In addition, Lindstrom and Bates
(1988) examined methods to improve computational efficiency of the EM algorithm, ini-
tially proposed by Laird and Ware. Their improvements involved a reparameterization
of the covariance structure using a Cholesky decomposition to avoid problems with the
parameter space, as well as computational improvements indented to speed the algorith-
m’s convergence rate. Other work on the specific field includes Jennrich and Schluchter
(1986), Meng and van Dyk (1998), Jones (1993, Section 2.6) and McLachlan and Kr-
ishnan (1997, Section 5.9).

5.5.2.1 Maximum Likelihood Estimation via the EM Algorithm

We first discuss the use of Exﬁéctation—Maximization algorithm for maximum likelihood
estimation, following ideas from Laird and Ware (1982), who use the EM algorithm to
estimate the fixed-effects vector b and the (unknown) variance components associated

with the, introduced by the authors, general linear mixed model:
yi:Xib+Z,~ui+€i, (Z= 1,...,m),

where

u;, ~ N, (0,D) and e; ~ N, (0,R;).

Note that Laird and Ware came up with all necessary formulas that define the EM

algorithm for the particular choice for the variance-covariance matrix of random errors
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&, (conditional-independence model):
R'L = 0-2Ini7

where I,,,, as usual, denotes an identity matrix of order (n; x n;). They also illustrated
their developed methodology on two datasets arising in the study of effects of atmospheric
pollutants on pulmonary function.

Under this conditional-independence setting (i.e. R, = 021,,,), Laird and Ware (1982)
notice that if random terms u; and €; were observable then we could easily find simple
closed-form ML estimates of the model’s variance components (which in this case is the
variance o2 and the elements of variance-covariance matrix D), based on quadratic forms

inu; and &; (¢ = 1,...,m), given by the ‘sufficient’ statistics:

m
S eley
i=1

62 = o (5.46)
and m
> uu;
D - =1—m— (5.47)

where N = {E n; denotes the total number of measurements, and m is the number of
subjects. Evhéntly, as it should be, equation (5.46) produces a scalar while from equation
(5.47) we obtain a matrix of order (g x q).

However, random vector u; and random error term &; cannot be observed and thus

Laird and Ware by treating them as missing data, gave an interesting variation® of the

EM algorithm to estimate b, ¢ and D. In this case the E-step of the iterative algorithm,

YAs we shall see later, the algorithm described by Laird and Ware corresponds to a particular version
of EM algorithm and not to the EM originated by Dempster et al. (1977).
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say at the (k + 1)st iteration, is given by the following equations:

E —step:

E {z ele: | vi, 9<k>} =3 {trvar [si i, 9(’“>] +élei},
i=1 i=1

and

E{ uut | yi,B(k)} =) {Va'r [ui | yi,G(k)] + ﬁiﬁf} ,

1

while for the M-step, at the (k + 1)st iteration, we have:

M — step : calculate

. m _ -1 m -
b+ — (Z vagkﬂ) IXi) 5 X§V$k+1) lyi,
] =1

=1

m

o = 3 {trVar [ec | v, 6] + &l } /N,

i=

—

and
D+ = {Var [u,. | yi,G(k)] + ﬁiﬁﬁ} /m,
=}l
where VY = z2,DGED7Zt 4 o270 g% = (p®) 2 D®E) is the estimate of

6 = (b,0%, D) obtained at the kth iteration, @, = 4, (0<’°>) _ <ui | yi,O(k)>, and
g, =F (ei | Yi, 0(’“)) = y; — X.;b*) — 7.1, (H(k)). As one can observe, the expectation
step of the above algorithm involves the determination of the conditional expected values
of the numerators of the sufficient statistics (equations 5.46, 5.47), given the observed
data y; (¢ = 1,...,m) and the current estimates %) = (b(k),az(k),D(’“)). Then, at the
maximization step, we use the expectations calculated at the E-step to obtain the up-
dated values 02", D*+1) and b+ of o2, D and b. The iterative process continues
until convergence is reached (i.e. the change in new versus old estimates is insignificant).
These values, obtained at convergence, are essentially the ML estimates of o2, D and b.

In the following, we attempt to give some insight on the exact methodology that led

to the formulation of the specific equations and we try to describe in as much detail
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as possible the steps of the EM algorithm generated by Laird and Ware. However,
for the purpose of generalization, instead of studying the implementation of EM on
the conditional-independence model, we study a more broad model where a slightly
different covariance structure for the random errors g; is assumed. To this end, we
assume €; ~ N, (0,0%R;), where R; this time is a known (n; X n;) positive definite
matrix, in contrast to the article of Laird and Ware, where an identity square matrix L,
is considered. More specifically, to derive the equations that define the E- and M-steps

of the iterative EM, we consider the mixed effects model of the following form:

yi = X;b + Z;u; + €, (i = 1,...,m), (5.48)
where

u, ~ N, (0,D) and &; ~ N, (0,0°R;) - (5.49)

In the above, R, is a known, positive definite matrix of order (n; x n;), and D is an
unknown (g x g) positive-semidefinite symmetric matrix. It follows from (5.48), (5.49)

that the response vectors y; are marginally distributed as:
Yi~~ ]Vni (Xib’vi) )

where V,; = Z,DZ! +02R,. The goal is to estimate the variance components of the above
model, that is the parameters of variance-covariance matrix D, along with the unknown
positive scalar 2. The intuitive idea behind EM algorithm, is to think of the response
vectors y; (1 = 1,....m) as being the incomplete (observed) data, while as missing data
we regard the (unobserved) random effects u; (i = 1,...,m). Under this perspective, it is

obvious that the ‘complete data’ would be the vector:
Xeom = (x17X27 050y xm)t ) (550)

where each vector x; (i = 1, ....m) collects together the observed data y; plus the ‘unob-
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u;
served data’ u; for the ith subject. That is x; = (u;,y;)" = . Normaly, to obtain
yi

2 and D in this particular problem), one

ML estimates of the variance components (o

should maximize the log-likelihood of the full observed data vector y = (y1,¥2, ..., ¥m)":

A = InL(X;b,V,y)

m

1
= const. - 52 (In| Vi) -

1=1 E:

(]

(Yi—xib)tvi_l (yi—Xib). (5.51)

[N

1

However, as already stated, the EM-type approach bypasses the need of directly
maximizing this incomplete data log-likelihood function, by iteratively maximizing an ex-
pected complete-data log-likelihood function. More precisely, due to that y; ~ N,, (X;b, V)
and u; ~ N, (0, D), it is reasonable to assume that the complete data vector x; = (u;,y:)*
for subject ¢ follows a multivariate normal distribution with some mean vector g, and

some variance-covariance matrix 3, i.e.:
X; ~ Nayn, (14, 2i) - (5.52)

Thus, evidently the corresponding log-likelihood function of the complete data vector

Xcom CanN be expressed as:

/\com = In Lcam (I'l'ia 2 xcom)

m

5> (0 S -5 g ST ). (559

= const. — =
2 Y
1=1 1=1

Formally, the EM algorithm maximizes the observed data log-likelihood function
(5.51) by iteratively maximizing the complete data log-likelihood function (5.53). Each
iteration consists of the two distinct steps; the E- and M-steps. The E-step computes
the conditional expectation of the above complete data log-likelihood given the observed
data y and the current parameter estimates, while the M-step of the algorithm simply

maximizes the ensuing conditional expected complete data log-likelihood obtained at the
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E-step with respect to the variance components and fixed-effects b. The iterative scheme

is repeated until convergence is reached. The two steps are presented right away.

Formulation of the Expectation Step: In order to compute the conditional expec-
tation of complete data log-likelihood (5.53), given the observed data y we essentially

require the following conditional moments of the unobservable random effects vector u;,

namely:

E(u; | y:) (5.54)

and

To proceed with calculating the above expectations, for start we need to define the
exact form of the mean vector p, and variance-covariance matrix ¥; of x;. Based on the
multivariate normal distribution theory, it can be shown that the complete data vector

x, = (u,, yi)t has a multivariate normal distribution with mean vector:

E(w)
E (Y'i)

and variance-covariance matrix:

5 Var (u;)  Cov (u;,y:)
1 Cov (yi,ui) Var(y:)

Thus, we may state that the joint distribution vector x; = (u;,y:)" can be specified

u; . E (u;) Var (w;) Cov(u;,y:)
™~ Ngtn; ’ : (556)
Yi \ E(vi) Cov(yi,wi) Var(y:)

We already know that F (u;) =0, E (y;) = X;b, Var (u;) =D and
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Var (y;) = Z,DZ! + ¢°R,;. In addition, it is:

Cov (u;,y:) = Cov(u;, X;b+ Zu; + &)
= Cov(w, Zu,) = Cov (w;, u;) Zt
= Var(w)Z: = DZ,

and similarly,

CO’U (yi, ui) = CO'U (Xzb - Ziui + £, ui)
= Cov(Z;u;, ;) = Z;Cov (u;,u;)
= Z,-Var (u,-) = Z,,,D

Consequently, the distributional form of (u;,y;)" can be re-expressed as:

u; 0 D DZ:
~ Nyin, , (5.57)
Yi Xb Z.D Z,DZ! + o’R;

To obtain the required E (u; | y;) and E (u;ul | y;), what remains is to consider the
following well-known result from multivariate normal distribution theory:
Proposition 5.1: Let yi1, y2 be random vectors of order (p x 1) and (g X 1) respec-

twely. If y1 and y2 are partitioned into a single vector y such that

yi . M Vi Vy
Y2 Mo Vi Vo

then the conditional distribution of y, given ys follows a p-variate normal distribution

with mean

E(yi|y2) =p + V2V (y2 — 1y),
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and variance-covariance matriz
— =il
Var (y1|y2) = Vi1 = V12V Vo,

hence

yilye~ Ny [p + VsV (y2 = H9), Vi — V12V, Vo

Now, both E (u; | y;) and E (u;u’ | y;) are directly obtainable by applying the above
proposition to equation (5.57). First, for F (u; | y,) it is:

E(u |y) = 0+DZ!(ZDZ! +0’R,) " (y: — Xib)
— DZ!(ZDZ! + o’R;) 7 (y: — Xib), (5.58)

which, after some simple matrix manipulations, becomes:

DZ: [R. (ZDZR; ! + 0%1,,)] ' (v: — Xib)

E(u | ye)

DZ! (ZDZ!R; + 0%L,) "' R;* (y: — Xib). (5.59)
By the same proposition, the conditional variance-covariance Var (u; | y;) is given
by:

1

Var(u; |y;) = D-DZ;(Z,DZ; + UQRi)— Z.D

= D-DZV'ZD. (5.60)

The above results for E (u; | y;) and Var (u; | y;) can be updated by making use of

the following trivial matrix identity:

(ZiZ; + o*D~") DZ! = Z} (Z,DZ; + ¢°1,,) . (5.61)
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where D is assumed nonsingular, and from which it follows that:
DZ! (Z,DZ: + 0’L,) ' = (Z!Z; + o>D™ ) ' Zt, (5.62)
Using the latter identities, E (u; | y;) can be re-written as:
E(w |y) = (ZR'Z, + o*D7) 7 ZIR; ! (y; — Xib), (5.63)
and similarly Var (u; | y;) becomes:
Var (u; | y:) = D~ (Z!R;Z, + DY) ™' Z!R;'Z,D, (5.64)

which once again after some simple manipulations [common factor the (Z:R; 'Z; + ’D71) _1],

results with the following more compact form:

Var (u; | y:) ZR;'Z;+0’D7)” - [(Z:R['Z; + ¢°D™") D — Z!R;'Z,D]

ZR;'Z; + o? D7) 0%, = (Z'R;'Zi + 0*D7)) 7 (070L,)

1

=
= (ZR;'Z;+o°D" 1)‘ (Z:R;'Z,D+¢°D™'D - Z!R;['Z;D)
=
s

L, (Z'R'Z, + 0*DY)] ' = (672ZR;'Z; + D™}) . (5.65)

[For the above, we have used the well-known matrix property (AB)™" = B7LA™1],
Let us now move on to the calculation of F (u;ul|y;). To achieve this, we will use a
familiar result of multivariate analysis; if y denotes a random vector with mean vector

E (y) and variance-covariance matrix Var (y), then the following result holds:
Var(y)=E(yy') —~EME () = E(yy") =Var y)+E(y)E(y)".  (5.66)
The above result (5.66), in conjunction with (5.65), gives:

E(wui|y:)) = Var(w|y)+E(u|y:)E (uf|y:)
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= (072ZR'Z4+D N L E(w | vi) E (ut | y)
= (07*ZR7'Z, + D)7 + il (5.67)

27

where for notational convenience we have denoted 4, = F (u; | v;) and &¢ = E (uf | y.).
All the above, lead naturally to the following formulation for the E-step of the EM

algorithm, say at some (k + 1)st iteration:

E — step: using the current estimates 0% = (b(k),UQ(k),D(k)> , calculate

,\ izl
a,=F (ui | vi, Q(k)> = (ZgRi—lzi + 02 D® 1) ZR; (y: — X;b™®)
and

15 (uiuﬁ | ¥4, 9(}"\’) = <J‘2(k)Z§R[1Zi + D(krl)*l +FE (u,; | v, 9(")) E <u;t | i, 9(’“)> )

Formulation of the Maximization Step

We consider now the formulation of the second distinct step of the EM algorithm, namely
the M-step. Recall that the M-step is associated with finding the values of b, ¢ and D
that maximize the expected complete data log-likelihood, given the observed data and
the parameter values obtained at the previous iteration. Thus, at the (k + 1)st iteration
of EM, we have to find the values b*+D 52" and D®+1) that maximize the latter

log-likelihood function:
0 (9, 9<k>> —E [m Leom (8; Xeom) | Yobe, e“ﬂ , (5.68)

where in this case 8 = (b,02, D). By the direct maximization of Q <9, O(k)> we obtain:

m -1 m
b = (E X-ERZIXz') Z [XER;IYi Z,E (ui | Y-i,e(k)ﬂ

1=1 =1

. =
- (ZXERZ le-) > (XiR; Yy — Ziv) (5.69)
=1

=1
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1 m
DED = — % :E< |y 0(’“>)
wu; |y, ) (5.70)

i=1
and
1 m
0'2(k+1) = —T-l- E E (eﬁRi—lsi l y’i70(k)) b (571)

=1
to be the updated values for b, D and o? respectively. Though the acquired equation
(5.69) for fixed effects vector b is adequately analytical, expressions for D and o? require
further manipulations in order to become suitable for the algorithm’s implementation.
Below, we present all the necessary calculations that lead to an analytical M-step. Con-
sider first D+, From (5.67) we obtain:

D+ E (usut | y;,6%)

3=

1[~]3

.
|
]

[var (ui i, 0““’) +E (ui v, 9<’°>) E (ug i, 9<’°))]

I
3=

1

o
Il

—1\ -1 \
{(0—2“" ZR7Z+D®7) 4 B (w |y, 69) B (ul |y, 9"”)}

I
3l
M

1

=
I

1
+ ﬁiﬁg] : (5.72)

I
=l

{(0_2(” Z:R7Z + D(k)_l>

=1

Il

where @; = E (ui ] yi,B(k)) =[from equation (5.58)]= D(’“)ZﬁVz(k)—1 (y: — X;b™®) and

2(k+

if=F (uﬁ | yi, 0('“)>. Now, as concerns o2, observe that the conditional expectation

E (sﬁRi‘lsi | v, 0('“)) contained in equation (5.71), can be rewritten as:
E (EﬁRi‘lsi I yi,O(")) =E [tr (eﬁRZIei | yi,0<’°))] =FE [tr (R;ls,e;? | yi’g(k)>J .

[The first equality derives form the fact that quantity e!R; 'e; is a quadratic form'’
and due to that every quadratic form is a scalar, thus e!R; 'e; is equal to its trace. For

the second equality we have used the matrix property tr (AB) = tr (BA), for A = ¢

10We define as a quadratic form of a random vector y every function of the form y‘Ay, where A is
every known matrix whose dimension complies with the dimension of y.
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and B = R, '¢;]. Further manipulations give:

E |:t’l” (R;lsisﬁ | yi,O("))] =trE (Ri_léfisz I yi,O(k))
= tr [R;lE (eisf | yi,G(k)ﬂ
(5.62)

=tr {Ri'l [Var (ei | yi,B(k)) +E (si | ¥i, B(k)) E <sf | ¥i G(k))}}
= gy [R;lvar (z—:i | yi,B(k))] +tr [R;IE (si i, 0<’°>) E (sg | yi,B(k))] .

Thus, if we denote &; = E (ei | yi,O(k)>and gi=FE (sf | ys, 9(")), E (sz{lsi | yi,G(k))

becomes:

E (eﬁR{lei | y,—,B(k)> = tr [R[lVar (si | yi,B(k)>J +tr (R;'&:8})
= tr [RIIVar (si | vi, 0("))] +tr (IR; &)
= tr [R7'Var (e; | y;)] + &R; & (5.73)

In the above we have replaced the trace of i R1&; with & R !&; itself, since &R &,
p k3 2 1 1 13 1
is a quadratic form).

Now since:

Var (ei | vi, G(k)) = Var (yi - X;b - Zu; | yi, 9<k)>
— Var (Ziui | v, 0<k>) = ZVar (ui lyi, e<k>) 7t

-1 !
-z (0-2‘“ Z'R'Z; + D® ) zt, (5.74)
combining (5.73) and (5.74) yields the following expression for E (sf»Ri‘ 'ei | yvis 0(")):

_ -1
E (sz{lsi | yi,H(k)) = tr [R_;lzi <0‘2(k)Z§Ri-lzi+D(k) ) zg] &R e,
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. k+1
Using the above, we may hence re-express ot as:

m

S -\
A =Y {tr [R;lzi (:* 2z 12, + DO ) Zf} +&R; 1;,-1.} SCHEY
=1

In summary, the maximization step, for the (k + 1)st iterative step, is notably illus-

trated by the following:

M — step : update 8 = (b,0? D) with ¢+ = (b(’““), 02(k+1),D(k+1)) by

m Lm
et = (B XR0X) 3 (KR~ 7))
=1 =1

m 2 -1

g2 = L5~ {tr [R;lzi (0——2“’255{;12,- + D®” ) zg} +éfRi‘1é¢},
i=1

and

D(k+1) — ;];L_ Tzn: [(U—Z(k)Z:Ri_IZi + D(k)—l)
i=1

=il
¥ aiﬁ;.] |
It is important to note that the above presented maximization step specifically con-
cerns, as noted earlier, a Laird-Ware model that specifies e; ~ N, (0,0°R;). Of course,
in the slightly varying situation of ‘conditional independence’ model [g; ~ N, (0,0%L,,)]
considered in the seminal article of Laird and Ware (1982), we simply have to set I,,, in

place of R; to derive the corresponding M-step.

5.5.2.2 An Important Remark

By comparing the above formulation of the maximization step and the maximization step
proposed by Laird and Ware (1982) (see page 170), clearly an important difference is
indicated. As one may observe, the two formulations are generally consistent, except for
the formulas providing the ML estimator of fixed effects vector b. Thus, the difference
between the standard EM algorithm, previously described, and the EM scheme of Laird

and Ware lies in the way the fixed-effects vector b is calculated.
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In fact, the algorithm described by Laird and Ware does not correspond to the stan-
dard EM algorithm proposed by Dempster et al. (1977). As Liu and Rubin (1994)
point out, the formulas given by Laird and Ware (1982) (which were mistakenly called
an EM algorithm) are clearly justified by the theory underlying a variation of the EM
algorithm and not EM itself, namely the “expectation-conditional maximization
either” (ECME) algorithm. The specific algorithm was called a hybrid EM algorithm
by Jennrich and Schluchter (1986) who also realized it is not an EM.

In short, the ECME algorithm, originated by Liu and Rubin (1994), can be con-
sidered as being an extension to the standard EM algorithm. The “conditional maxi-
mization step” refers to the fact that instead of the EM algorithm’s usual maximization
step (M-step), the maximization step of ECME algorithm is undertaken conditional on
some of the parameters. As regards the “either”, it refers to the fact that with this
extension some or all of these conditional maximization steps (CM-steps) can be re-
placed by steps that maximize the incomplete (observed) data log-likelihood function
In L (0;yes) conditional on some of the parameters, and not the complete data log-
likelihood Q (H,G(k)) = FE [ln L(8;¥Yeom) | yobs,é’(k)] as is the case with standard EM
algorithm. For a detailed review on the ECME algorithm we refer the interested reader
to Liu and Rubin (1994) and McLachlan and Krishnan (1997).

As concerns the particular algorithm of Laird and Ware, observe that the value of
b, obtained by the maximization step at some (k + 1)st iteration is, as already shown,

given by:
m -1 m
-1 L -1
bkt (§ XV Xz-) > XV .
i=1 i=1

The above formula gives in fact the ML estimator of b, obtained by maximizing the
observed data (and not the complete-data) log-likelihood (see Section 5.3.1). Further, it
is of interest to note that the updated value b(**1) of b does not depend on the variance
parameter values obtained at the previous iteration step (i.e. o2, D®)) as it should be

2(k+1)

the case for the usual EM algorithm, but instead requires the updated values o and
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D®+1_ Thus, what Laird and Ware consider as a unified M-step, in fact consists of two
separate CM-steps of the ECME algorithm. While the one CM-step proceeds identically
to the standard EM algorithm calculating the variance components ¢? and D as on the
M-step of the EM algorithm, the second CM-step calculates b*+1) by maximizing the
observed data log-likelihood given the updated values of the other two parameters, namely
2™ and D+, Taking all the above under consideration, we can now reformulate

the variant of EM described by Laird and Ware as follows:

E — step: This is the same as the E — step of EM
CM — step 1: calculate

24D {tTVaT [51 | v, e(k)} + ézéi} /N,
=1

and

D+ = {Va'r [ui | i, e(k)] + ﬁiﬁf} /m.

N
I
=

(k

CM — step 2 : using o2, D*+Y calculate

m — -1 -
b(k‘+1) — (Z vafk-{*—l) IXi> Z X£V§k+1) IYi.
i=1 i=1

The examination of convergence behavior of the Laird-Ware ECME algorithm in
terms of number of iterations and computational time required for convergence merits
special attention. As Liu and Rubin claimed through the use of numerical examples,
this extension of the standard EM algorithm is nearly always faster than EM in terms
of required iterations and moreover can be faster in total computer time by orders of
magnitude. Thus, it is generally advisable to resort to the Laird-Ware ECME algorithm
which appears to converge more quickly compared to the standard EM algorithm, often

criticized for its slow convergence.

183



5.5.2.3 Restricted Maximum Likelihood Estimation via the E-M Algorithm

So far, we discussed maximum likelihood (ML) estimation of fixed effects and variance
components in the Laird-Ware model. As is well known, performing ML estimation for

the Laird-Ware model requires maximization of the following “full-data” log-likelihood:

Aur (Xib, Viy) =InL(X;b, V3 y)

— \Cn"f_’ _l m V., __]:\fi X BVl (v X
Losge 1 s
const. = = > (| Vi) - 5 (yi—X:b) Vil (y; = X;b). (5.76)
7==] =1

An important problem with ML estimation of variance parameters is that this method
produces biased estimators of those parameters due to the fact that the ML estimates
of the variance components fail to take into account the degrees of freedom lost in esti-
mating fixed effects. Instead, the restricted maximum likelihood (REML) method, which
amounts to maximizing the part of the likelihood that is invariant to fixed effects, cor-
rects for this bias. Specifically, the crucial aspect of the REML approach is that a linear
combination (also known as the “error contrast”) of the i** subject’s vector of measure-
ments, namely Ky, is used instead of the ‘raw’ data vector y; = (vi1, ¥z, o Yin)' As
already noted in Chapter 3, the matrix K must be chosen so that Ky, will be invariant

to X;b. Thus, essentially we choose a K matrix of order (n; x n;) so that:
E(Ky,) =0, (i.e. KX;=0).
Also, as concerns the variance-covariance matrix of error contrast Ky,, we have:
Var (Ky,) = KVar (y,) K* = KV, K"

It follows from the above (imposing once again the necessary normality assumption

for each error contrast Ky, ), that the ‘restricted’ data vector Ky, (i = 1,2, ...,m) follows
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a n;—variate normal distribution with Ky, ~ N, (0,KV,K") and corresponding p.d.f.

given by:

_n,—r!xi) .
f(Ky)=(2m)™ 2 |KVK'|: exp{‘%(Ky,»Y(KVin) Ky} |

Having that in mind, the next step is to calculate the restricted maximum likelihood

as follows:

Lremr = H [ (Ky,)

]

= const. x (H | KV,K* |>

i=1

N

exp {—% E {nyt (KVl-Kt)_1 Kyi] } .

=]

To calculate the corresponding restricted log-likelihood function (or log-restricted-

likelihood function) it suffices to take the natural logarithm of Lggasr. Indeed, we have:

Aremr =InLremr

m

= const. — %ln (E | KV, K |) _ % Z [yﬁKt (KViKt)—l Kyz}

i=1

| o= 1 . ]
- const.—gb:vaiKt[-§Z[y§Kt (KV.K) Kyz} (5.77)

1=1 =1

Now we only need to utilize once more the two important results due to Searle {equa-

tions (3.51) and (3.52)] that can be re-expressed as:
In , KViKt ’: In | Vi I +1n ’ X:V:lxz I,

YK (KVK) 7 Ky,= (v:i-X:B) Vi (y:-Xib)

By substituting the above results to (5.77) we derive the following expression for
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AREML:

)‘REA[L =
m

= const. — %Z (In]V;|+In|X{V'X; |) - %i (yi—XiB)tVi—l <yi_XiB)

i=1 i=1

= const. — %i In I X:V:lxz I - i In I Vi i —';- Z (yz~XZB>tV:1 (yi—XiB> o

=l

[ R

«
—
-,
1
=

which, without the additive constant, and from (5.76) becomes:

AREML = Z In | XEV7IX |+ (XiB,Vi; }’) . (5.78)
=1

[Se RN

Observe that the restricted log-likelihood function Aggpsr differs from standard log-
likelihood function Aarp only in the extra term —1/2 i In | X¢VIX, |, Also, Arear
does not depend any longer on the fixed-effects vector i)lezvhich now has been replaced by
its estimator b.

Having defined the restricted log-likelihood for REML estimation, we now move on
to the description of the computing formulas for implementing the EM algorithm to
calculate restricted maximum likelihood (REML) estimates of the fixed-effects vector b
and the variance components of the Laird-Ware model (5.48). In particular, we focus
our attention on describing the variant of EM algorithm (namely the ECME algorithm)
introduced by Laird and Ware (1982) for REML estimation instead of the standard
EM algorithm as the former seems to have substantial computational advantages over
the latter (faster convergence rate) and is the most commonly considered between the
two algorithms. For the sake of a clear presentation, let us start the discussion with
considering once more the iterative scheme of the EM variant of Laird and Ware for ML
estimation, described in the previous section. Specifically, after providing the starting
values for the (unknown) parameters @ = (b,s%, D), the E- and the two CM-steps of
ECME algorithm at some iteration k£ + 1 as already shown may be expressed via the

following iterative computational scheme:
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E — step: using the current estimates 8% = (b(k), O’Q(k),D(k)) , calculate

E {Z sfei I yi,O(k)}
i=1 It

and

E {Z wut |y, 9(’“)}
=

CM — step 1: calculate

{trVar [el | yl,B(k)] éféi} ,

[\/Ja

1

{Var [ul | yl,B(k] + uff} :

Ms

i=1

[

0_2(k+1) _ Z {tT-Va,’l" [Ei | Yi, G(k)] + éféZ} /N:

=1

and

D) = {Var [ui v, 9“)] + i} /m.
=1

CM — step 2 : using o2*™, D*+D calculate
g

m — -1 m _
bt = (Exevi7x ) xviEy,
i=1 =1

It is easy to realize that the above optimization algorithm can be used to define the
ECME iterations for the calculation of the REML estimates for b, ¢ and D, too. Only
this time, the quantities Var {ui | yi,O(k)] and Var [Ei l yi,O(k)} have to be replaced
by Var {ui { Kyi,B(k)} and Var [si | Kyi,B(k)} respectively, since to perform REML
estimation requires utilization of error contrasts Ky, instead of the ‘full’ data vectors
y: (i=1,2,...,m). Hence, to describe the EM iterative equations for the Laird-Ware
model in terms of REML estimation, what is additionally required is the calculation of

the following variance-covariance matrices of the conditional random variables u; | Ky,
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and ¢; | Ky,, namely:
Var (u; | Ky,) and Var(e; | Ky,).
Beginning with the calculation of Var (u; | Ky;), we may use Proposition 5.1 to write:
Var (w; | Ky,) = Var (0;) — Cov (w;, Ky,) [Var (Ky,)] " Cov (Ky;,u) . (5.79)

It is straightforward to calculate the above variances and covariances included in the

expression for Var (u; | Ky,). Indeed, we have:

Var (v;) = D,
Var (Ky,) = KVar (y:)K' = KV,K',
Cov (u;, Ky,;) = Covlu;, K(X;b+ Z;u; + &;)]
= Cov(w;, KZ;w,) = Var (u;) ZIK
~ DZK

and

Cov(Ky;,u;) = Cov[K(X;b+ Z;u; +¢;),u;]
= Cov(KZ;u;,u;) = KZ;Var (u;)

By substitution of the above in (5.79), the updated Var (u; | Ky,;) now becomes:
Var (u; | Ky,) = D - DZ!K! (KV,K*) " KZD. (5.80)

Considering a result from Searle (1979) on REML estimation for the General Linear

Mixed Model (GLMNM), (which modified applies to the Laird-Ware model, too), we may
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write that:
1

Kt (KViKt)_ K = Pi, (581)
where
0 1
P,=V -V X, (Z ngi-lxi) XVt (5.82)
1=1

Substituting (5.81) in (5.80) yields the following expression for the conditional vari-

ance of random effects vector u; given Ky;, namely Var (u; | Ky,):
Var (u; | Ky;) = D - DZ;P;Z,D = D (I - Z{P,Z,D) . (5.83)

Furthermore, by similar routine algebraic operations it may be possible to derive the

following representation for the second required conditional variance, namely Var (e; | Ky,):
Var (e; | Ky,) = o*tr (I-0°P;) (5.84)

with P; representing again the projection matrix already defined in (5.82).

We are thus in position now, introducing the obtained expressions (5.83) and (5.84) for
Var (u; | Ky;) and Var (e; | Ky,) respectively into the iterative scheme presented in page
180, to conclude with the following ‘Laird-Ware’ ECME numerical optimization algorithm
for REML estimation: The E-step and the two CM-steps, at the (k + 1)st iteration, for
the simultaneous estimation of b, ¢ and D are (after providing the necessary starting

values b(@, 527, D).

E — step: using the current estimates %) = (b(’“), 02(k), D(’“)> , calculate

{UQ(k)tr (I—Jz(k)PEk)) + éféi} .

{D<k> (I - ZﬁPEk)ZiD(“) + ﬁ,-ag} .

s

Il
=

£ eter 69} -
i=1

{5 .00 -
i=1

(]

NgE

=1

-
Il
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CM — step 1: calculate

G2+ _ i{ 2(k) tr( 2(’“)Pz(.k)) gte }/N
D+ i:{ (I - ZﬁPf.’“)Zz-D““)) + i, }/m-

CM — step 2: using o2, D+ calculate

™m — =1 —
i=1 =1

where VD™ = 2D0+078 4 02V, 1, = 6, (0%) = B (u | Ky, 60 =
DWZVE™ (yi - XbW), & = B (e | Ky, 8¥) = yi — Xb® - Zisi, (6%)

- — m = —
and P = v0T _yv®Tx, (Z Xty ® lxi> XtV® ™ The above scheme is iter-
=1
ated until convergence of the parameters is reached. (For an early discussion on REML
estimation of the ‘Laird-Ware’ model via the EM algorithm compare also Laird et al.,

1987; and Lindstrom and Bates, 1988).

5.5.3 The Newton-Raphson Algorithm

In numerical analysis, the most effective way of finding the roots of nonlinear equations is
to devise iterative algorithms, which start with an initial estimate of the root and converge
to the exact value of the root in a finite number of steps. One of the oldest and at the
same time most powerful methods for solving such one-dimensional or multidimensional
equations when an algebraically solution to this problem cannot be achieved, is the so-
called Newton-Raphson method (N-R in abbreviation). As early as 1685, in the book
of Wallis: Algebra, it is mentioned that the idea of this method was due to Newton.
Several years later (1690) the method, slightly modified was published by Raphson and
since then the method is known as the Newton-Raphson method.

To understand the general framework of the method, let us consider some (one-

dimensional) function f(z), of which we seek to find its zeros, i.e. to solve equation
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f (z) = 0. To achieve this, the N-R method depends on the following iterative relation
(which derives from the well-known Taylor series expansion of a function at a neighbor-
hood of a point):

Tht1 = Tk — ?ﬁf (zx), k=0,1,2,.. (5.85)

where z is the current value, f (zx) represents the value of the function evaluated at
zi, and f (zx) is the derivative at ;. z,, represents the next value obtained by the
iterative scheme (5.85). To find a root of f(z) = 0 we only need to start with an initial

value zy and then iterate the above relation until convergence is reached.

5.5.4 Maximum Likelihood Estimation via the N-R Algorithm

As noted already, an appealing feature of the Newton-Raphson algorithm is that it is
not restricted only to one dimension, but it can easily generalize to multiple dimensions.
Consequently, N-R can be applied to situations that require numerical evaluation of the
roots of n-dimensional functions, where n > 1. In the statistical framework for example,
the N-R method (and variations) has been extensively applied to solving equations of
multidimensional functions. N-R has become a necessary tool for the maximization of,
very often multidimensional, likelihood functions when no theoretical solution could be
obtained. Its usefulness is more apparent in problems that require the ML estimation
of unknown variance parameters, i.e. ML estimation of variance components of the
General Linear Mixed Model. Maximizing the log-likelihood function of the GLMM,
evidently requires a generalization of N-R algorithm since that the likelihood function is
a multidimensional function depending on the variance parameters. In particular, if 8
denotes the vector that contains the variance parameters that we seek to estimate, the
N-R algorithm obtains the ML estimates 3 by starting with some initial value 8© and

then iterating to converge to a final solution by using:

) -1 0
gt — glk) _ (H(’“)) ! % otk (5.86)
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where A = In L (8) denotes the log-likelihood, 8A/88 is a column vector consisting of the
partial derivatives of log-likelihood A with respect to each parameter of @ evaluated at
the estimate 0(’“), and H is the Hessian!! matrix of all second-order partial derivatives
of the log-likelihood with respect to the variance components. In fact, the inverse of the
Hessian matrix, H™! is a measure of the curvature of the likelihood surface given the
current estimates, whereas 0\/06 measures the slope (directionality) of the likelihood.
Therefore, their product in (5.86) gives a projected degree of movement of vector 6
towards an improved set of values to be used in the next iteration.

A very interesting variation of the N-R algorithm, often met in statistics, is the
modified Scoring algorithm of Fisher (or the Fisher’s scoring algorithm). This algorithm
results from N-R by simply replacing the inverse of the Hessian matrix in (5.86) with its
expected value, which after allowing for a change in sign turns out to be defined by the
inverse of Fisher’s information matrix, namely —I~!. Thus, the Fisher’s scoring iterative

equation is given by:

a1 OA
o*+D = o) 4 (1) 1% e (5.87)

for k = 1,2,.... The significance of Fisher’s scoring algorithm mainly lies on the fact
that in most times the information matrix is easier to compute, compared to the Hessian
matrix, because some of the correlation terms of I are zero. Further, Fisher’s scoring has

been shown to be more robust to ‘poor’ starting values than the strict N-R algorithm.

5.5.5 Implementation of N-R to the “Laird-Ware” Model

We mentioned already that Gradient-type algorithms such as Newton-Raphson and its
variant, Fisher scoring, have been extensively used in the Statistical field for likelihood
maximization. More specific, N-R and variations can be used to obtain (in a simultaneous
way) both ML estimates of the fixed parameters of the model and ML/REML estimates

of the variance components of the model.

11A Hessian matrix, is a matrix which contains all second-order partial derivatives of a real-valued

function.
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In the literature, especially in the recent years, many articles have been occupied with
the issue of estimating variance components in the Laird-Ware model by the application
of Newton-Raphson algorithm. As regards a thorough treatment on the latter issue,
full implementations of the N-R and Fisher scoring methods for maximum (or restricted
maximum likelihood) estimation in the Laird-Ware model were discussed by Jennrich and
Schluchter (1986) and by Lindstrom and Bates (1988). Jennrich and Schluchter applies
the N-R algorithm to a more general model, that includes the mixed-effects model of
Laird and Ware as a special case. Their presentation involves illustration of general
formulas for ML/REML estimation of fixed effects vector b and variance components
of the unbalanced repeated measures GLM: y; = X;b + ¢; (i = 1,2,...,m) via the N-R
method, as well as formulas for the modified N-R, the Fisher’s scoring algorithm.

Lindstrom and Bates, in their more computationally-oriented article, present in great
detail derivative formulas for implementing the N-R algorithm to obtain ML/REML
estimates of the GLMM y; = X;b + Z;u; +¢; (i = 1,2,...,m). Additionally, they con-
sider improvements to the general N-R method proposed by Jennrich and Schluchter,
improvements that have the purpose of reducing the number of iterations required for
the convergence of the algorithm and consequently improving the overall convergence
behavior of the algorithm.

The following sections have as a primary aim to illustrate and adequately describe all
the necessary computations needed for the implementing N-R algorithm to the standard
Laird-Ware model. Moreover, we try to present these, computationally expensive, for-
mulas of Jennrich and Schluchter (1986) and Lindstrom and Bates (1988) in a simple

way as possible, without at the same time moving far away from the spirit of both sets

of authors though.

5.5.5.1 ML Estimation via the Newton-Raphson Algorithm

Following Jennrich and Schluchter (1986), we may express the form of the iterative N-R

algorithm that, when reaches convergence, produces ML estimates of the fixed effects
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vector b and the variance components 8 = (8,6, ..., 9q)tsimultaneously, as:

b+ | [ b () OA/3b |,

(5.88)
glk+1) 6™ N/ 00 |

where )\ /0b, OA/080 are the first partial derivatives of the log-likelihood function A with
respect to b and 0, respectively and H denotes the Hessian matrix, containing the second
partial derivatives of A:
Ho 82)/8bdb 52X /6bo8 ' (5.89)
02)\/860b 5°)\/5008
The above iterative scheme (5.88) indicates, in simple words, that in order to obtain
at each iteration step of the algorithm the ‘new’ estimates b®*+1), 8*+1) what is required
additionally to the ‘present’ estimates b®) and 8%, is first and second partial derivatives
of log-likelihood A with respect to b and variance components, evaluated at the current
estimate values b®) and 8%). The remainder of the current section thus, will be devoted
to the presentation of all the above necessary derivatives for the implementation of the
Newton-Raphson algorithm. Before proceed with the calculations though, it should be
mentioned that for the derivation of the following formulas we are taking under consid-
eration that the variance-covariance matrix V; is symmetric (i.e. V; = V%). This is in
compliance with the style adopted by Jennrich and Schluchter. Lindstrom and Bates, in
their article, follow an slightly alternate approach that maintains the distinction between
Vi and V; (e.g. for Lindstrom and Bates 0V}/06 does not coincide with 0V;/86, while
for Jennrich and Schluchter does). Considering the above, we are ready now to continue
with the calculation of the first and second partial derivatives.
First of all, recall that the log-likelihood function A that we seek to maximize is given
by: m
A = const. — % zmzln | Vi | —% Z (y: — X;b) V! (y; — X;b). (5.90)
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Hence, evidently, obtaining 0A/0b requires calculation of d1n | V; | /8b as well as cal-
culation of 8 [(y; — Xib)! V! (y: — X;b)] /8b, while to obtain a formula for the first par-
tial derivative with respect to the other parameter 8, namely 0\/06 what is needed is the
calculation of all partial derivatives 81In | V; | /86;, 8 [(y: — Xib)' V! (y; — Xib)] /06;,
where 7 = 1,2, ..., ¢ index the variance components (all elements of the parameter vector
6).

We start with the calculation of OA/0b; clearly, it is d1n | V; | /0b = 0, thus what is

only needed is:

8 [(y: — Xib)' V! (y: — X;b)]
Jb

To derive the above, we have used the standard result from matrix derivatives, already

presented in (3.32). From (5.90) and (5.91) we get:

N 8|:CO’I’LSt.——%ih’lIV,; I —%Z(yi—Xib)tV[l (yi—Xib)
= i=1 i=1 1
ob ob

_ 1 = 9 [(yi — Xib) Vi (y: — Xib)]
= 0-0= 52 b

2
= > XiV7l(y:i - Xib). (5.92)

As concern now 9\/96;, we once again make use of the useful results (3.43) and (3.44)
of Chapter 3. From (3.44) the derivative 0ln | V; | /08; can be expressed as:

(91n|V1| _ _16Vi
0, tr (Vz 79, ) ) (5.93)
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while using (3.43) we get:

8 [(yi = Xib) V! (yi — Xib)] A
20, = (v = Xib)" 5= (3: ~ Xib)
= (v = Xb)' ( 5 g‘ef ”) (v: — X;b)
IR aa\a/.v (y: = Xib). (5.94)

Formulas (5.93), (5.94) are sufficient to allow us to come up with an expression for
the first-order partial derivative of the log-likelihood with respect to variance parameter

8,. Indeed:

N {const. 1| Vi | -1 3 (7 — Xub)! Vi (y: — Xib)
| i=1 i=1
80; 06,
X;b)' Vi1 (y; — Xib)]

= 31n|V| -_]:m T 4 i
B O—E; 2Z 86;

1 \ (V“ 3Vi) 3 % l.. 9 [(yi — Xib) V7! (y; — X,b)] (5.95)

2 ﬁ‘ 6 0, ’

and by noticing that quantity (y; — X;b)* V! (y; — X;b) is a quadratic form (therefore

a scalar), thus it is equal to its trace, the above can be reformulated as:

SHUEIEIUEES TS

_ L
T2 2
=1 i=

152 oV, 10V,
= - T‘ t Vv 12 ty-t > :

1 = A
= = t e e Nyt )

2 :__{ r {Vz (ezeZ V,) V; 39]_] , (5.96)



where, for the sake of notational convenience mainly, we have set in the above e; =
(y: — X;b), e = (y: — X;b)*. To summarize, thus far we have calculated the first partial
derivatives of log-likelihood A with respect to b and 6; (shown in (5.92) and (5.96)
respectively), required for the implementation of N-R algorithm for deriving ML estimates
of both fixed-effects vector b and variance components 0; (j = 1,2, ...,¢) in the Laird-
Ware model.

In addition, what is needed to complete the set of crucial formulas for N-R implemen-
tation is the elements of the Hessian matrix H, namely the second partial derivatives:
92X\ /0bdb, 52X/6bd6, 5*X/808b and 82)/H66. To start with, as regards 9%)/0bob,
observe that (using 5.91):

8 [(y: ~Xib)' Vil (ys = Xib)] 8 [O[(yi —Xib) V] (v: — Xib)]
Obdb ~ 0b

ob (5.91)
9 ty7—1 txr—10 (yi — Xib)
= — [=2X}V; i — Xb)| = -2XV ————
ab [ 2X1 1 (y )] T 1 ab
= —2XV 1 (-X;) =2XVIIX,. (5.97)
This, combined with the obvious result:
8%In |V, |

yields the following expression for the partial derivative 82)/0bdb:

2 1 & 0% [(y; — X;b)Vl(y;, — X;b
O0bdb 2 — O0bdb
_ 1 Z IXVIIX, = - Y XUVIX, (5.99)
2 - i Vg :; 171

We now turn to the calculation of the second partial derivative of A with respect to

one variance component, say ¢;, and vector b. First, the second partial derivative of the
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term (y; — X;b)* V! (y; — X;b) with respect to 6; and b is given by:

82 [(yi - X;b) Vi (yi — X;b)] 0 ]9 [(y: — X:b)' Vit (y; — X;b)]
36,0b = 39, ab

ov;t
22XV (y; lb)] 2X! 50,

0
6, [ (y: — Xib)

Vi
= —2X! (—V{la V.—1> (y; — X;b)

EE
= X <2V—1‘ZZ \'A 1) (yi — X;b). (5.100)

Moreover, it is:

Pln|V;| 0 <61n|V,-|) =0. (5.101)

86,0b 96, b

Using (5.100) and (5.101), we may easily calculate 8>1/06;0b as follows:

o _i(@> 9 {0 0 15210 ---Xib)tVfl(yi—Xib)}}

89;0b ~ 06; \8b ) ~ 06; 2 & db
™ 9% [(yi — Xib) Vi (yi — X;b)] P OV .
N ?1 86;0b - _5‘;)(’ (2V 86, a6, VE )(yi ~ X;b)
= —’_*T XVl ZZ'V (yi — X;b). (5.102)

=1

Finally, as concerns the derivation of an expression for 3°A/86;80,, straightforward
matrix algebra is used again to give the following result for the second partial derivative
of the log-likelihood term (y; — Xib)tV{ ! (y; = X;b), with respect to §; and 0, (4,7 =
1,2,..,q):

8 [(yi — Xsb) Vi (y: — Xib)] 0 {3 [(y: — Xib)' V1 (y; — X;b)] }

56,6, 56, 59,
= 0 s OV
= a_aj [(Y'L - Xzb) aer (Y'L =3 Xzb)]
0 _ BV
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B d Vi
= (y: — X;b)" 3 (v 5. ity )(yi - X;b). (5.103)

Additionally we have:

@ln|V,| 8 (dlm|Vi]\ _ 8 (v 2V
56,06, 96, \_ 06, ) s 86, | 36,

and since V;'0V;/0; is continuously differentiable, then tr (V;10V,/88,) is also con-

tinuously differentiable, thus:

a7 (7 )| = [ag; (050)]

and consequently it is:

2 , .
Fla| Vi| _, [0 (28]
86,00, 96, 86,

Now, by applying the following rule that concerns the partial derivative of the product
of two functions f, g : R™ — R , and states that —(fi g + f , we get:

FIn|Vi| i ov;tov, +V_1_8_ oA
00,00, 08, 06, L 06, \ 80,
L0V, . _,0V; _, 0%V, .
= tr (—V 59, ——tV; a0, + Vvt 50,29, ) (5.104)

By applying (5.103), (5.104) it can be shown (Jennrich and Schluchter, 1986) that
9%)/ 06,09, is written as:

82\ _, 0V, - _18V
23 82V,
=N -1 (v X ot _ ;

3 2tV [ = Xib) (v: = Xib)' = Vi Vi -

1=1
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5.5.5.2 REML Estimation via the Newton-Raphson Algorithm

In the current section, we consider implementation of Newton-Raphson algorithm for
calculating restricted maximum likelihood (REML) estimates of variance components in
the Laird-Ware model: y; = X;b + Z;u; + €;, 1 = 1,2, ..., m. REML estimation differs
from standard ML estimation in that while the latter obtains estimates by maximizing

the ‘full’ data y = (y1,¥2,...,Ym) log-likelihood function:

1 = 1 e txr—1
—const.— =Y In|V;|—= o — Xb) Vi (y: — X,
AmL = cons 5 % n|V;| 5 lél’ (yv.— X;b)' V7 (y: — X;b),
REML method maximizes the log-likelihood function of a set of error contrasts Ky,
where K is a (N x N) full-rank matrix. As regards the log-likelihood function of this

‘restricted’ data Ky, most often denoted by Agrgayr, we have already seen that it is

expressed as:

AREML =
m

N 1, o oot 1 — 1 S
= const.——2-1n|iz__;XiVi X1|——§;1n|vz|—52(y, — Xzb) Vi (y'z_Xzb)

=1

1 m
= —3n] S XV | Az, (5.105)

=1

where A, corresponds to the log-likelihood function of the standard maximum likelihood

method.
The N-R algorithm for the REML shares the following, iterative scheme with the N-R

version for ML:

blk+1) bk) -1 [ 9\ db
( _(H(k) ) rREML/OD g (5.106)

REML
gl +1) OArEML/O8 | o)
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where

(5.107)

02\ rens/0bOb  92AppaL/ObOO
Hremr = ;
0 Arzais /000D 6 Angars/0000

Thus, the only difference with ML estimation via N-R is that the usual log-likelihood
Amy is replaced by Agpmr. Observing now equation (5.105), one easily sees that the
only difference between Aggas, and the standard log-likelihood Ay is just caused by the

extra term:

1 X yty-l
—§ln|ZXiVi X; | .

ta=]
For the derivation thus of first and second order partial derivatives of Aggasr with
respect to b and the components of 8, that are required by the iterative N-R algorithm
of (5.106), additionally to the derivatives already found in the previous section, we only

m
have to find expressions for the following six partial derivatives of term In | _ X!V X, |,
i=1

namely dIn | 3 XtV7!X, | /b, 81n | Y XtV;1X, | /86, (required for calculation of
=1 i=1
OMremr/0b and OAggarr/00, respectively), and &%In | ZX@V."IX,- | /6bdb, 8%In |

ZXtV 'X; | /0bd8;, 8%1n | ZXtV X | /86;0b, 8%In | ZX‘V X, | /06,06,
=1
(required for the calculation of the elements of Hpppr)-

Since, for obvious reasons,

oln| Y XtVIIX, |
i=1

&b .
#ln| 3 XIVIIX, |
Zglbab =0,
and m m
&ln| Y XiViX, | 8%In | 3° XiV'X, |
zglejab =0= zgioaej !
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what remains in suspense, is calculation of the following partial derivatives:

dln| > XeViIX, | 8| 3 X4ViIX; |
i=1 i=1
d
50, o 59,00, !

for j,r = 1,2,...,q. Thus, by using again result (3.44), the first-order partial derivative
of In | Z XtV X, | with respect to the variance component 8; (j = 1,2, ...,q) is:

i=1

=l PP A%
89]' (4‘"’ '

=1

i=1

96

119 XIVIIX,
X )

= tr (ixgv ) foa;f; :
=1

and by setting A = 3" X!V!X, for notational convenience, the above becomes:
=1

8ln| 3 XtVIX, |
=1
0, (

A-l\_‘xtavz_ X,
796,

= ¥ tr [A—lxﬁ( -V, av'v*) X,}
= 90

L0V,

= =Y tr[ATIXV}!
" 29,

“iy- 1X> (5.108)

Finally, based upon the previous result it can be shown (Lindstrom & Bates, 1988)
that derivative 82In | 3 XtV X, | /86,00, necessary for the N-R algorithm, is formed
=1

as:

0%In | 3 XtV7IX, |
i=1
86,00,
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L0V, = L0V,
tv— V 1 -1 \ - =il
(X - X) x AT S (Xle 5 X)}

=1

OViyaVi Vi | GVi 10V,
v;! i - -1
(ae 56, ~ 66,00, ae,V ae,)vz X”

g

5.5.6 Implementing the Fisher Scoring Algorithm

In this section, we consider in brief one of the most significant variants of the iterative
Newton-Raphson, namely the Fisher scoring algorithm, and its implementation to the
Laird-Ware model for computing estimates of the variance components of the latter
model. Fisher scoring differs from standard N-R algorithm in that all second derivatives
of the log-likelihood function are replaced by their expectations. Hence, in other words,
Fisher scoring simply replaces the Hessian matrix H by its expectation. Jennrich and
Schluchter (1986), considers Fisher scoring, introducing all necessary formulas for the
computation of variance components in the Laird-Ware model through this algorithm.

Specifically, as pointed out by Jennrich, the expectations of the second partial derivatives

of the Hessian matrix are given by:

dc
(%

=Y XX, (5.109)

-5
2)-5(2%) -

and
9%\ 1 3= oV 10V,
— P, ; V 1 ‘}—
E <60j69r> 2 *——-;1 tr < 8«9] 08, ) (L)

for every j,r = 1,2,...,q. As in every Fisher scoring algorithm in general, the expected

Hessian matrix:

E (6%)/0bdb) E (82)/6bd8)

E(H) =
E (82)/060b) E (8°1/5696)
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is easier to compute, compared to the Hessian matrix H of (5.86), due to that its off-
diagonal elements E (82X /0bd8), E (0°A/060b) are zero. As a consequence to this, the
estimates of b and 8 = (64,0, ..., 9q)t can be obtained by solving separate equations, dif-
fering in this way from the iterative single equation (5.85) that simultaneously estimates
both b and @ via N-R algorithm. Thus, for Fisher scoring, the ‘new’ estimates b(*+1) are
obtained by the maximum likelihood (or the generalized least squares) step (see equation

5.9):
m e
B+ (Z XEVZIXz‘) Y Xivily, (5.112)
i=1

=]

whereas ‘new’ estimates for the vector of variance components € are computed by the

iterative scheme:
00 %>

where Ipg is the negative of the matrix E (§2)/06008).

g%+t = g 4 1 (5.113)

There are several motivations for employing Fisher scoring instead of N-R algorithm.
For start, Fisher scoring behaves better far from the solution (i.e. exhibits better handling
of poor starting values), whereas it has reasonable convergence near the solution. A
further advantage is that calculation of E (H) is easier than calculating H itself, reducing
in this way the computational efforts. These reasons made implementation of the former
algorithm a possible choice on variance component estimation, especially for models such
as the GLMM for longitudinal data. Even though Fisher scoring is still not considered
to be the standard method for estimating the variance components 8 in the Laird-Ware
model, some of its virtues are quite appreciable in practice. For example, SAS procedure
PROC MIXED, uses Fisher scoring for the first iteration and then N-R for the remaining
iterations as the default fitting method.

5.5.7 Comparison of the EM and Newton-Raphson Algorithms

Thus far, two general purpose algorithms for iterative (ML/REML) estimation of the vari-

ance components in the Laird-Ware model were considered; the Expectation-Maximization
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and the Newton-Raphson algorithm. The main question that arises at this point is ob-
vious; does any of the two algorithms performs better compared to the other, or their
differences as concern their performance just tend to be indistinguishable in general.

The latter question of determining the ‘best’, if any, among these two algorithms
is not an easy question to answer. Comparison of EM algorithm and derivative based
algorithms (such as N-R and Fisher scoring) has been the focus of many authors since the
development of the expectation-maximization algorithm in the late seventies (Dempster
et al., 1977). Attempting to come up with a basic conclusion, we can say that both
algorithms share their own advantages, suffering at the same time from several drawbacks,
and thus the decision to use either the EM or the N-R algorithm should depend on the
specific statistical problem, weighing each time the trade-offs between the two procedures.

Specifically, as concern the convergence rate of the two algorithms, N-R exhibits a
quadratic rate of convergence, while EM has typically (very) slow linear convergence. In
fact, this slow convergence rate is the main disadvantage of EM algorithm. The more
variance components there are to estimate, the longer will be the number of iterates
to reach convergence. Although various acceleration schemes (i.e. variants of the EM
algorithm) have been proposed to improve convergence rate, they generally require sig-
nificant analytical work, increasiné thus the complexity of the algorithm. Another cause
of slowness of the EM algorithm, besides its convergence rate, usually arises when the E-
or the M-step does not admit an analytical solution. In situations like this it is necessary
to resort to iterative methods for the computation of the expectation or the maximiza-
tion. For example, a common case is where Monte-Carlo approximations of the E-step
are used.

On the other hand, however, EM algorithm has an additional positive feature not
shared by derivative type methods such as N-R and Fisher scoring; its convergence is
global, which means that the algorithm converges to the solution from any starting point.
This fact is guaranteed by the monotonous increase of the likelihood at each iteration step

(see Dempster et al., 1977 for the proof). This property of EM establishes the latter
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algorithm as a very stable algorithm, in contrast to N-R type algorithms that do not
guarantee convergence and may diverge from starting points that are not appropriately
chosen. In addition, Newton-Raphson is a computationally intensive algorithm that
requires heavy analytical preparatory work compared to other likelihood maximization
methods, since the necessary calculations of the gradient and the Hessian matrix can be
very complex in general. Moreover, implementation of the latter method may present
numerical difficulties, particularly when the number of parameters to be estimated is
large. Instead, EM is considered to be quite simple and easy to implement, reducing
thus substantially the computational efforts needed for its implementation.

Another interesting point is the insufficiency of EM algorithm to compute an estimate
of the parameters’ variance-covariance matrix (standard error of the parameter). This
disadvantage is not shared by N-R which provides consistent standard errors for the
parameter estimates, automatically. Extensions of the EM algorithm intended to fix this
problem have been proposed (e.g. Meng and Rubin, 1991), but they result in increasing
the complexity of the implementation, canceling out the most important advantage of
EM, its simplicity.

In the context of “Laird-Ware” model now, Lindstrom and Bates (1988) compare in
detail the EM and N-R algorithms, as well as a variant of EM, the EM with Aitken’s
acceleration, as methods for obtaining estimates of the variance components. For this
purpose they use two different data sets to compare the behavior of the three algorithms.
Their analysis verified once again the slow convergence of the EM algorithm. For both
data sets, the number of iterations required for the Newton-Raphson algorithm was
quite small compared with the corresponding number for the EM. Although Aitken’s
acceleration improved the convergence rate of EM substantially in some situations, this
does not generalize to all cases.

The authors concluded that although N-R is not guaranteed to converge (EM will
always converge to a local maximum of the likelihood surface), the prohibitively large

number of iterations required by the EM algorithm is still a serious drawback in spite
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of the acceleration schemes used for speeding convergence. Thus, they propose N-R
estimation as the most pref;erable method, especially in cases where the number of random
effects q is very small. This is because when q is relatively small it has been observed that
there is no significant computational penalty in using the N-R algorithm, in comparison
to EM algorithm. Jennrich and Schluchter (1986) also recommend using N-R type
methods when g is small, while for large q they prefer using their generalized EM (GEM)
algorithm (see, e.g. Dempster et al., 1977 for more on GEM algorithm).

As a final remark, we can say that both EM and derivative based (e.g. Newton-
Raphson, Fisher scoring) iterative methods can be well-applied to the model y; = X;b+
Ziw; +¢€;, (i = 1,2,..,m) for likelihood maximization. However, while in the past
the EM algorithm has been preferred over the N-R algorithm (mainly due to that each
iteration could be computed more quickly), nowadays the advances in statistical software
has forced practicing statisticians to usually use N-R based procedures for the estimation

of all parameters in the latter model.

5.6 Testing for Fixed Effects

While estimation of effects (both fixed and random) in the GLMM for longitudinal data is
usually of prime importance, tests of hypotheses associated with the fixed effects vector
b will inevitably be required to assess the significance of the latter effects. Thus, for
practical use one may be interested in testing the significance of the entire fixed-effects
parameter vector b that summarizes all fixed effects parameters included in the Laird-
Ware model: y; = X;b + Z,u; +¢€;, (i = 1,2,...,m). Furthermore, often questions of
interest may be phrased in terms of a linear combination of the elements of vector b.
Generally, the most convenient way to draw inferences on the above questions is to
set up a hypothesis associated with the question of interest and then use a statistical
test to check the specific hypothesis. In fact, each hypothesis associated with the (p x 1)

vector b can be expressed by specifying appropriate full rank matrices L of dimension
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(r x p) to form suitable contrasts (i.e. linear combinations) of b, given by Lb. Interest

is focussed in the test of the following hypotheses:

Ho :Lb=h
vs (5.114)

Hi:Lb#h

where h is a specified (r x 1) vector. Most often, h will be equal to 0. Basically, three
approaches are used to test the above null hypothesis Hy. Likelihood ratio tests can be
used with large samples, providing one uses maximum likelihood (rather than REML)
for model fitting. Also standard Wald tests are widely available. Finally, approximate
F-tests can be carried out by dividing the Wald statistic by the numerator degrees-of-
freedom and approximating the denominator degrees-of-freedom. Below we give a brief

account of the preceding tests.

5.6.1 The Wald Test Statistic

The classic Wald test, originally proposed by Wald (1943) for testing hypotheses concern-
ing the regression coefficients of linear regression models, has been successfully conveyed
in longitudinal data analysis as a means of testing hypotheses concerning contrasts of the
fixed effects vector b of the Laird-Ware model. Specifically, the Wald type procedure for
testing the important class of hypotheses (5.114) exploits the distributional form of the
ML estimator of b, b. As already demonstrated, the ML estimate b follows, approxi-
mately, a multivariate normal distribution with mean F (B) = b and variance-covariance

- N 1
matrix Var (B) = (Z ngi-lxi> ie.

i=1

m -1
b~ N, |b, (Z XﬁV[IXi> . (5.115)
i=1

Since the fixed-effects vector b is unknown, it seems reasonable that an estimate of the
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quantity Lb could be obtained by substituting b with an estimator of it. For instance,

we could use its ML estimator b. Obviously, in the light of (5.115), we obtain:
E (LB) —LE (B) = Lb,

and m .
Var (Lb) = LVar (b) L=L (; ng;lx,) L.

Thus, the sampling distribution of the linear function Lb can be approximated by:

m 1

Lb~ N, |Lb,L (Z XﬁV;lXi> Lt . (5.116)
1=]

Now, to test null hypothesis Hy of (5.114), we form the following statistic (Wald

statistic):
i (LB - h)t (LVar (B) Lt) - (LB - h) . (5.117)

Since Lb is approximately normally distributed, it may be argued that statistic T},
follows (approximately) a chi-square distribution with » degrees of freedom. The reason
for this is that, as m — co, Lb ~ N, (Lb, LVar (B) L‘) and consequently under Hy we
have Lb — h ~N, (o, LVar (B) Lt) = (LB - h)t (LB - h) /LVar (B) Lt ~ 22,

Thus the Wald test for testing Hy may be conducted by comparing statistic 7T to
an approximate z?2 critical value. We would reject Hy at a (predetermined) significance
level o if T, > z2 (1 — ).

Unfortunately, Wald type approaches as the above may suffer from a serious drawback;
when the number of subjects m is not too'large, the resulting inferences may not be too
reliable. This is because these approaches rely on a normal approximation to the sampling

distribution that may be a lousy approximation unless m is relatively large.
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5.6.2 The Likelihood Ratio Test

An alternative to Wald approximate methods is that of the likelihood ratio test (LRT).
The LRT, already discussed for model selection between models of various covariance
structures (see subsection 5.4.3), is applicable in the situation in which we wish to test
what are often called ‘reduced’ versus ‘full’ model hypotheses. That is, the LRT can
be implemented for testing hypotheses concerning ‘nested’ models and only under this
perspective can be used for testing hypotheses of fixed effects such as hypothesis (5.114).
For the specific hypothesis thus, the full model is taken to be the model under H; (that
is the general model that does not make any particular assumptions about the contrast
Lb), while, for the reduced model, we take the model for which the restriction of Hp
(i.e. Lb = h) is imposed. If by flfu“ and J_A}Ted'we ‘denote the values of the maximized
likelihoods for the full (under H;) and the reduced (under Hp) model respectively, then

the likelihood ratio statistic is given by:

~

Lre i )
Tipr = —2In | 2224 ) = —2 (ln Lrea—1In qu”) . (5.118)
qull

Technical arguments may be used to show that, as the sample size m tends to oo, the
statistic T rr follows approximately a chi square distribution with degrees of freedom
equal to the difference in number of parameters in the two models (i.e. number of
parameters of the full model minus number of parameters of the reduced model). Thus,
if we denote this difference with r, then we reject null hypothesis Hy at level of significance
aif Topr > 22 (1 — ).

Despite the fact that the LRT is (as the Wald test) an approximate method based
on large sample theory (i.e. large m), it has proven to be more reliable for small sample
sizes than the Wald test (see for instance Agresti, 1996). Thus, the LRT is usually more

preferable to Wald approaches when sample size m is not too large.
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5.6.3 The F-test

As an alternative to the Wald and likelihood ratio test approaches for testing hypotheses

of the form (5.114), one can use F-statistics of the following form:

o (Lb - h) (L\:::k(:)l?) L ) (Lb - h) | 5119

It can be shown that the above statistic follows an F-distribution. The number of the
numerator degrees of freedom is equal to rank (L). The denominator degrees of freedom
have to be approximated. For more details on approximate F-tests we refer the interested

reader to Fai and Cornelius (1996).
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5.7 Diggle’s Extension to the “Laird-Ware” Model

Thus far, it has been clear that the interest as concerns the covariance structure of the
Laird-Ware model is mainly focused on the random effects u; variance-covariance matrix,
namely D. On the contrary, for the variance-covariance matrix R; of random errors ¢;,
usually a very simple covariance structure is adopted. Take for example the very com-
monly used conditional-independence model [Var (g;) = 02I,,,]. A serious drawback when
following this approach is the failure to take under consideration the possible stochas-
tic variation between pairs of measurements taken on the same subject (within-subject
variation).

Diggle (1988, 1990 Chapter 5) was the first to develope a parametric model that
suggests an alternative specification for the error term’s variance-covariance matrix, and
may be viewed as an extension of the GLMM for longitudinal data. The framework
for the formulation of the author’s model is once again the typical longitudinal study,
where repeated observations are taken on, say m, units (or subjects) at different time
intervals. More formally, let y;; denote the jth measurement taken on the ith subject.
The total number of repeated measurements on each subject i is usually represented by
the response vector y; = (yi,, ¥is» ...,yiui)t. In Diggle (1988), it is suggested a different
approach in order to obtain a parsimonious parameterization of the covariance structure
of the data. More specifically, Diggle introduced a model for longitudinal data that incor-
porates variation between subjects, measurement error, as well as the serial correlation
between the measurements of the same subject. Moreover, this within-subject correlation
is formulated in such a way so that it depends on the measurements’ separation in time.

According to Diggle (1988), a model that incorporates all of the above characteristics is:
Yij = by + Zij + Ui + Wi (ty5), (5.120)

fori=1,2,..,mand j = 1,2,..,n;. The Z; are i.i.d. variates corresponding to mea-

surement error, with Z;; ~ N (0,72). The U; are i.i.d. N (0,v?) variates representing
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the between-subjects variation, and finally W; (¢;;) are independent stationary Gaussian
processes with E [W; (t;;)] = 0 and Cov{W; (t;;) , W; (ti)} = oo (| ti; — tic |). p(u) is
some correlation function that is suitably specified to describe serial correlation of W;
process, and is such that p (0) = 1 and p (u) — 0 as u — oo (t;; denotes the time at which
the measurement y;; is taken). Since the development of the latter model, several choices
for p (u) have been proposed. Two of the most popular among them are the exponential

and Gaussian serial correlation functions, defined as:

p(u) =exp(—¢u) and p(u) = exp (—¢u?),

respectively, for some ¢ > 0. The most important qualitative difference between these
two correlation functions is their behavior near u = 0 [theoretically, any correlation
function of the form p (u) = exp (—¢u*) for any fixed value of k may be used]. Under
model (5.120), it is:

Var (vi;) = Var (,uij + 2+ U + W1)
= Var(Z;) + Var (U;) + Var (W)

= 12 4+12 4 0% (5.121)
and also

Cov (yij, yix) = E [(yis — pj) (Yie — tz)]
E{[Zi; + Ui + W; (ti5)] [ Zak + Us + W5 (ti5)]}

=20 (|t —ta ). (5.122)

Now, considering the entire vector of responses y; for subject i, as shown by Diggle,
the mean vector E (y;) and variance-covariance matrix Var (y;) = V; of each response

vector y; becomes:

E (yz) - “1 = (/‘1‘1'17/"'1'21 "')/’Lini)t ? (5123)
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and

V, = 0, + 1,1t + o%H;, (5.124)

ni—n;

respectively, where H; is the (n; X n;) matrix whose (7, k)th element is p (| t;; — ti |),
I, is the (n; x n;) identity matrix, and 1,, is a (n; x 1) vector of ones. To see the close
relation of Diggle’s model with the standard ‘Laird-Ware’ model, notice that the former
may be alternatively represented using matrix notation as a general linear mixed model
of the form:

yi=L,p, +1,,U; + €1), + €2),- (5.125)

In (5.125), I,, p;, 1, and U; are as already defined and €(;),, €(2), represent random
error terms chosen such that ), ~ N, (0,7°1,,,) and €@2), ~ Nu, (0,0%H,;). The term
I, 1, defines the fixed part (X;b), while term 1,,U; can be considered to be the random
part (Z;u;). Observe that by determining 1,,U; to be the random effects term, essentially
we include only a random intercept in the model.

Model (5.125) is another way to express model (5.120), since both models yield
the same mean and variance-covariance matrix for the multivariate Gaussian vector y;
[indeed, observe that E (y;) = E (Inip,i + 1,,U; + gqy, +e(2)) = u; and in addition

i

that Var (y:) = Var (I, + 1,.Us + ey, + €2),) = Lo, Var (U) 14, + 70, + o*H; =

i

V21,,1% + 771, + 0®H,;]. The main difference of Diggle’s model (5.120), compared to a

standard Laird-Ware model of the form y; = X;b+Z,u;+¢;, is that the former essentially

decomposes the unique error term ¢; of the Laird-Ware model into two components as:
€ = £q), T &),

so that g(;), represents the within-subject variation due to measurement error, and (),
accounts for the extra random component, introduced by Diggle, to incorporate the

(possible) dependence of the within-individual’s responses.
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5.7.1 An Additional Extension

Diggle et al. (1994) expanded further the model proposed by Diggle. In particular, they

introduce an extended Laird-Ware model which can be expressed formally as:
Yi = X1b + Z,-u,- + E(l)i + 8(2)‘_, (5126)

with
u, ~ N, (0,D),

gy, ~ Nn, (0,77L,,),
€@, ~ N, (0,0°H,) .

The terms X;, Z;, b, u; and D are as defined for the Laird-Ware model. As was
the case with Diggle’s model, the error terms €(;). and &(5). express the decomposition
of the overall random error, say &;, to measurement error and to a component of serial
correlation, respectively. Further, &(;), is assumed to be independent of g3) .

Model (5.126) is a generalization of Diggle’s model, in the sense that it considers a
more general structure for both fixed and random effects of the model. For instance, the
former includes a general random effects vector, while the latter considers only a single
random intercept. For comparison, recall the matrix representation of Diggle’s model:
yi = Ly + 1,,U; + €01y, + €(2),. Here, the fixed effects vector b was specifically chosen
tobe u; = (lj'il’ iy ey ,umi)t, the random effects vector u; was taken to be the univariate
random variable U; ~ N (0,v2) and accordingly the design matrices X;, Z; could only
be I,,, and 1,,, respectively. Now, as regards the mean vector and variance-covariance

matrix for the response vector y;, we have:
E(y:) = X;b,
which is identical to the mean structure of the standard Laird-Ware model, and

Var(y;) = Z,DZ + °1,, + o°H,.
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A more detailed review concerning the extended model (5.126) as well as simplifica-

tions of it (e.g. Diggle’s model), is given in Diggle et al. (1994).

5.7.2 The Semivariogram

Analysis of longitudinal data via the linear mixed-effects model of Laird and Ware, in-
cludes among others the specification of an appropriate covariance structure that best
fits the true covariance of the data. For models of the same fixed effects but of different
covariance structures, comparisons can be conducted via the Akaike information criterion
(AIC) and/or the Schwarz Bayesian information criterion (SBC), while likelihood ratio
tests can be used for nested structures to identify better fitting models. Furthermore,
parallel axis plots and Draftman’s displays may provide significant help in selecting the
model with the best covariance structure.

Diggle (1988) outlined another practical approach to the choice and validation of
the covariance structure of his model (5.120), by using the empirical semivariogram.
The semivariogram (Matheron, 1963) is a function, of widespread usage in geostatistics,
for the estimation of the covariance structure. For a formal definition, let Y (t) be a
real-valued, second-order stationary random process. Following Matheron (1963), the

functions:

y(w) =Var[Y ) =Y (t+u)]=E[Y (t)-Y (t+u)?, (5.127)

and

g(u) = %Var Y@ -Yt+u))=F {% Y(t)-Y (¢ +u)]2} , (5.128)

for every u > 0, are known as the theoretical variogram!? and the theoretical semi-
variogram functions, respectively.
The above defined theoretical functions cannot of course be determined in practice.

Thus, instead of the theoretical semivariogram and variogram, we usually use estimators

2The term variogram is attributed to Matheron (1963). The specific function though,
has been also called a structure function in physics (Kolmogorov, 1941) and a mean squared
difference in the early time series literature (Jowett, 1952).
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of them, that are calculated by some realized values of process Y (t) (namely the ob-
served data in our case). Suph estimators of the variogram and semivariogram functions
are the empirical variogram and the empirical semivariogram, respectively. By definition,
the empirical semivariogram (also referred to as the sample variogram or the semivari-
ogram cloud), of a time series collection of data {y (¢;) : j=1,2,...,n} is a scatterplot

formulated by plotting together all squared differences:

[y (t) — y (&), (5.129)

[ SR

against all possible corresponding pairwise lags: ujx = t, — tx (j # k). However, it is
often very difficult for one to identify any structure of the data from the specific plot
due to the fact that most of the times there are so many pairwise lags. To improve
the appearance of such structureless plot and to allow the underlying semivariogram
structure to be seen more easily, a common procedure is to average all squared differences
1/2[y (t;) — y (tx)]* that share the same lag value w;r. Also, alternatively points with
similar but not necessarily the same u;; value may be pooled (essentially, averaging over
the squared differences of similar distances u;; corresponds to fitting a smoothing curve
to these differences). Then, we connect the averaged points that occur to form a curve.
This procedure usually yields curves that are smooth in appearance, to describe the
empirical semivariogram.

In particular, for constructing the empirical semivariogram of model (5.120), Diggle
suggests using yj; = Yi; — Ky, instead of the ‘raw’ data y;;. Thus, to formulate the
corresponding semivariogram of model yy; = py; + Zy; + Us + Wi (ty5), (1 =1,2,...,m),

(j =1,2,...,n;) all squared differences:
1 2
E [5 (vi; = y;‘k)] , (5.130)

for all j # k, must be calculated and plotted against t; — ¢,. Now, in order to examine

exactly how the shape of the empirical semivariogram can provide useful information
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about the covariance structure of the data and consequently to assist in selecting a
suitable model that will fit the data in the best possible way, consider first that each
smoothed (pooled) point of the scatterplot of the sample semivariogram (5.130) can be

written as:

1 1
SE (s —vi) = 3Ver (v~ vi)

2
1
= 5 [Var () + Var (4i) ~ 2Cov (35,43)] . (5.131)

For calculating the above, we need to determine Var (1), Var () and Cov (y5, y%)-

As concerns Var (y};) we have:

Var (y;j) = Var (Z,'j + Ui + VV,, (t.,-j))
= Var(Z;) + Var (U;) + Cov [W; (t:;) , Wi (t;)]
= T2+I/2+O'2p(| tij"tij I)=’7'2+I/2+0'2p(0)

= 7’41240k (5.132)

Similarly, it is:
Var (yh) = 72 + 2 + o2, (5.133)
and moreover
CO’U (y:j’ y:k) = CO’U (Z,'j + Ui + I/V«, (tij) ,Zik + Ui + W, (tik))
= ...=Cov (Ui, U,) + Cov (VV, (t-,;j) 5 VV.L (tik))
= Var (U,) + CO’U (VV,, (tij) 5 VV, (tik))

= V2 + 0'2p(| tij - tik l) 5 (5134)
Thus, using (5.132), (5.133) and (5.134), equation (5.131) becomes:

[272 + 21/2 -+ 20’2 = 21/2 = 20’2,0(' tij =tk I)]

DN | =

1 * *
§E (yij - y’ik)2 o
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= 2+’ —p(|ty—ta|)

= TP+’ [1-p(|t; —ta )] (5.135)

The last equation reveals the important feature incorporated by the empirical semi-
variogram; that is the latter is a function of the correlation p = p(| t;; —ti|). In
particular, equation (5.135) specifies that as the correlation between the within-subjects
measurements decreases, the corresponding semivariogram values increase and vice-versa.
Consequently, by observing the semivariogram’s shape we have a visual identification of
whether correlation between the within-subjects measurements depends on their distance
(lag) in time, or is constant for all lags | £;; —ti |. Let us consider an example to illustrate
the applicability of the empirical semivariogram on a real data set. The data are from
Bozx (1950) and consist of the body weights of 27 rats, collected at a period of 5 weeks.
The 27 rats were divided at random into 3 groups, each group associated with a specific
treatment applied to the rats (rats 1-10 are on a control treatment, rats 11-17 have had
a thyroxin treatment and rats 18-27 have had a treatment with thiouracil). The data
have been already presented in Figure 4.3 via the standard parallel plot.

Although parallel plots are both practical and effective for viewing longitudinal data,
unfortunately they cannot provide additional guidance in checking the data’s covariance
structure. As already stated, the main plot for the inspection of the covariance structure
of longitudinal data is the Draftman’s display (Section 4.3). Alternatively, use of empiri-
cal semivariogram may suggest a suitable correlation structure that can be incorporated
into Diggle’s model (5.120) to analyze the data. To calculate the empirical semivariogram
in longitudinal studies, instead of the raw data y;; or the scaled data yj;, it is usual to
use residuals obtained by subtracting from the observed data y;; the fitted values in a
plausible model (in this approach, one computes the residuals from a regression of all y;;’s
on all design variables and covariates that might have predictive value). The ordinary
least squares (OLS) residuals are often preferable. Figure 5.1 shows the graphical rep-
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resentation of the empirical semivariogram'® based on the OLS residuals obtained from
fitting an ordinary least squares model to the rat body weights data. The separate points
in the plot denote the semivariogram values, and the colored line (semivariogram curve)

connects average semivariogram values within each time lag.

300
1

200

ratvg

100

Figure 5.1 : Empirical semivariogram of the residuals of the ordinary least

squares fit to the rat body weights data.

As one may observe, the graph’s semivariogram curve clearly exhibits an increasing
trend. As the lag between observations widens (from lag 1 to lag 4) the semivariogram
increases, indicating a decrease in correlation between the within-subjects measurements
(had this not been the case, the smoothed semivariogram curve would have resembled
a horizontal line). This decrease in correlation while moving from data closer in time
towards data further apart in time is indicative of a possible correlation structure. For
instance, Diggle’s model with a decreasing correlation function such as p (u) = exp (—¢u)

or p (u) = exp (—¢u?) appears to be a suitable choice for fitting the data.

13Calculation of the empirical semivariogram was performed by OSWALD (Smith et al. 1994) which
is a package of functions for use with the S-Plus software, specifically designed for graphical display and
analysis of longitudinal data.
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5.8 Software for Linear Mixed-Model Analysis of Lon-
gitudinal Data

Although mixed models were initially developed by animal breeders to evaluate the ge-
netic potential of specific animals, over the years application of mixed-model analysis has
spread to other areas of research. An important application of the general linear mixed
model (GLMM) is in the analysis of repeated measures and longitudinal data especially.

Recently, commercial computer software to analyze longitudinal data using mixed
model methodology has become more widely available and more flexible. This was made
possible, mainly due to the advances in computing, combined with the developments in
the theory of linear mixed models. Several statistical software packages are designed to
fit linear mixed-effects models with various covariance structures to longitudinal data.
Commercial packages include SAS (Littell et al., 1996), S-PLUS (Mathsoft Inc., 1997),
BMDP (BMDP Statistical Software, 1990), HLM (Bryk et al. 1996), STATA (Stata
Corporation, 1997) and ML3 (Prosser et al. 1991).

Specifically, as concerns the SAS system, mixed-effects linear models can be imple-
mented with either the GLM or the PROC MIXED procedures. However, the GLM procedure
is actually a fixed effects procedure with accessory features such as the RANDOM statement,
to make it useful for analyzing certain aspects of mixed model data. The PROC MIXED
procedure on thg: other hand, was written from the start as a mixed model procedure and
thus is considered more suitable for this type of longitudinal data analysis. It fits linear
models for Gaussian response data and in addition to the standard Laird-Ware model it
can fit the Diggle model. Generally, PROC MIXED allows for various parameterizations of
the data’s covariance structure (see Table 5.1) as well as an arbitrary number of random
effects. The program provides maximum likelihood (ML) estimation for the fixed effects,
ML/REML estimation for the variance components and empirical Bayes estimates for
the random effects. The optimization algorithm required for the ML/REML estimation

of both fixed effects and variance components is, by default, a combination of the two
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gradient algorithms of Newton-Raphson (N-R) and Fisher scoring (F'S), which has shown
to be more robust to poor starting values compared to the standard N-R algorithm.

A similar program is written in BMDP (BMDP-5V version), designed for the analysis
of unbalanced repeated measures and longitudinal data. It also provides a large variety
of options for the covariance structure. In contrast to the BMDP-5V, the BMDP-8V
version does not share the ability to handle unbalanced longitudinal data.

The S-PLUS function 1me fits a linear mixed-effects model (as described in Lasrd
and Ware, 1982), or a multilevel linear mixed-effects model (as described for example in
Longford, 1993), using either ML or REML to estimate the variance components. The
availability of choosing among various covariance patterns is currently offered by 1me,
too. To this end, different covariance structures can be used to represent the between-
subjects variance-covariance matrix D of the Laird-Ware model, while the within-subject
correlation structure can be flexibly modeled by specifying the appropriate pattern for
matrix R; from a large selection. Also notice that the (iterative) numerical estimation
of fixed effects and variance components is carried out by means of the EM algorithm.

Similar procedures are also available in HLM, a package which is more popular though
for fitting hierarchical linear models, hence is utilized mainly for educational and psy-
chological research. Finally, ML3, which stands for Software for Three Level Analysis,
was developed for applications within the fields of education and human growth. Last
but not least, we must make a reference to another very frequently used alternative for
mixed-model analysis of longitudinal data, the S-PLUS set of functions termed OSWALD
(Smith and Diggle, 1994). OSWALD is a package of functions and data types for use
with the s data analysis environment (e.g. S-Plus), specifically designed for the ma-
nipulation, graphical display and analysis of longitudinal data. A major motivation for
utilizing OSWALD is that the latter has the ability to handle missing and incomplete
longitudinal data (unbalanced designs). In fact, OSWALD has the added advantage
of providing means to fit models under the assumption of informative dropout for the

missing data mechanism.
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Chapter 6

Nonlinear Mixed-effects Model for Longitudinal Data

6.1 Introduction

In the previous Chapter we have considered the analysis of continuous type longitudinal
data where each subject’s response is assumed to be linear in both the fixed effects and
the random effects, by use of the General Linear Mixed Model (GLMM) for longitudinal
data (Laird and Ware, 1982). In fact, the latter model has become extremely popular
and the majority of work on methods for longitudinal data has been focused on data
that can be modeled via the Laird-Ware model, that is data that can be modeled by an
expectation function that is linear in its parameters. A large literature has grown on the
particular subject and the model’s. use and implementation has been examined by many
authors, e.g. Laird and Ware (1982); Lindstrom and Bates (1988); Laird et al. (1987);
Jennrich and Schluchter (1986); Lange and Laird (1989); Meng and van Dyk (1998)
and others.

However, there are often situations where longitudinal data are inherently nonlinear
with respect to a given response function, say f(-). In particular, longitudinal data
arising in the fields of population pharmacokinetics!, biological growth and epidemiology

1The particular term population pharmacokinetics reflects the focused attention given to pharma-
cokinetic studies (i.e., studies carried out to characterize the kinetics of a drug) in populations different
from those comprised solely of healthy volunteers ( Yuh et al., 1994).
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typically tend to be nonlinear in some unknown parameters of interest. For instance,
consider the theophylline data considered by Pinheiro and Bates (1995). The specific
data set is reported in Table Al and refers to serum concentrations of the anti-asthmatic

drug theophylline measured 11 times in twelve subjects (patients) over a 25-hour period.

10

Concentrat on(mg/L)

[+ 5 10 15 20 25
Time(hrs)

Figure 6.1 : Theophilline concentrations (in Mg/L) of twelve patients.

As easily seen by examining the parallel plot of the data (Figure 6.1), the general linear
mixed model does not seem appropriate enough to describe the relationship between
response (drug concentration) and covariate time, since the suggested from the plot
relationship is clearly nonlinear. As a consequence, fitting a linear mixed-effects model
to this type of data would no longer be the suitable choice and inferences drawn from such
fits are usually invalid. Thus, the need to develop more general statistical models that
allow for the expected responses to be nonlinear functions of the parameters has naturally
arisen. The Nonlinear Mixed Effects Model (NLME in abbreviation), can be considered as
a natural generalization of the general linear mixed model (GLMM) for longitudinal data
introduced by Laird and Ware (1982). Many of the theoretical methods and analytical
procedures used for the development and implementation of the GLMM for longitudinal

data are extended in a straightforward manner to nonlinear mixed effects models. In
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contrast to the linear mixed-effects methodology, however, things are more complex with
the nonlinear approach due to the fact that there exists a quite scattered literature on
NLME models for longitudinal and repeated measures data, with most of the existing
references being connected with specific inferential strategies. Several different methods
for estimating the parameters in the nonlinear mixed-effects model have been proposed
and in the remaining of the present chapter we are aiming at providing an adequate,
unified presentation of up to date methods and issues for nonlinear longitudinal data in
as much detail as possible.

The most important implication nonlinear mixed-model methodology has to confront
is caused by the fact that the random effects enter the model in a nonlinear fashion.
Consequently, there is no closed form expression for the marginal distribution of, say the
ith subject’s, response vector y; (i = 1,2, ...,m). Thus, it is not as straightforward as in
the linear case to write down the likelihood of data vector y;. In fact, the actual form of
this likelihood will be quite complicated and will involve an integral with respect to the
elements of random-effects vector u;, (i = 1,2, ...,m).

Several methods have been proposed for dealing with this challenging problem and
various nonparametric, semiparametric and Bayesian methods have been developed.
Their principal approach until now has been to try linearizing the model with respect
to the random effects in a complete parametric context. The typical way to achieve this
linearization is by approximating the marginal distribution of y; (i = 1,2, ...,m). This is
based on the approximation of the nonlinear function f by either linearizing the latter
using the well-known Taylor series approximation or the (adaptive) Gaussian quadra-
ture. Alternatively, the Laplacian approximation has been considered by many authors.
Specifically, linearization of the f function using a Taylor expansion has been considered
and examined in an extensive manner. In particular, Sheiner and Beal (1980, 1985);
Beal and Sheiner (1982, 1988, 1992); Beal (1984); Vonesh and Carter (1992) and Hirst
et al. (1991) employ a first-order Taylor series expansion to approximate f about the

average random effect E (u;) = 0. Solomon and Coz (1992) also expand f about the
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mean of u;, using the four leading terms of the Taylor series expansion (fourth degree
approximation) for a specific type of nonlinear model (an exponential growth model with
random doubling time). An alternative approach that addresses linearization through
Taylor series expansion is suggested by Lindstrom and Bates (1990). They attempted to
improve on the first-order approximation by expanding f not around u; = 0, as Sheiner
and Beal did, but around estimates of the random effects u;. Moreover, they present a
two-step iterative algorithm for maximum likelihood and restricted maximum likelihood
estimation of the NLME variance components and fixed effects of the model. The closely
related Laplacian approximation is discussed by Beal and Sheiner (1992), Wolfinger
(1993), Vonesh (1992, 1996) and Wolfinger and Lin (1997) among others. In particu-
lar, Wolfinger (1993) shows that the Lindstrom & Bates algorithm for REML estimation
can be derived using Laplace’s approximation to the likelihood function. Also, Pinheiro
and Bates (1995) and Liu and Pierce (1994) introduce the use of Gaussian quadrature
rules (see, e.g. Golub and Welsch, 1969) for approximating the nonlinear function f.

A different approach, namely a nonparametric maximum likelihood procedure that
makes no assumptions at all about the distributional form of the random effects, was
first described by Mallet (1986). In particular, the author proposes a nonparametric ML
approach for estimating the distribution of the random effects of a NLME model. An
alternative nonparametric approach is also presented by Schumitzky (1991; 1993). In a
semiparametric context, Davidian and Gallant (1992; 1993), following ideas of Gallant
and Nychka (1987), proposed a particular inferential method referred to as the smooth
nonparametric maximum likelihood (SNP) method.

There -have been several articles addressing nonlinear mixed-effects models and es-
timation procedures for the latter in the analysis of longitudinal data from a Bayesian
viewpoint. Bayesian parametric approaches involving development of a two-stage em-
pirical Bayes estimators for the parameters of the NLME model have been considered
by Berkey (1982), Racine-Poon (1985), Berkey and Laird (1986), Pocock et al. (1981),
Wakefield (1996), Wakefield and Racine-Poon (1985) and Wakefield et al. (1994) among
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others. Also, in Gelfand et al. (1990) we find an iterative algorithm based on the Gibbs
sampler (Geman and Geman, 1984) that generates samples of the random parameters
based on a full hierarchical Bayesian specification.

Hence, as one can easily deduce, there has been a tremendous interest on NLME
models for longitudinal and repeated measures data in the recent years and aim of the
current Chapter is to present an analytical and critical overview of the preceding lit-
erature by covering the most important approaches proposed for modeling nonlinear,
continuous response, longitudinal data via mixed-model methodology. We will focus on
model formulation and inference. The rest of the Chapter is organized as follows; in the
next section we briefly introduce the general form of the NLME model and some of its
most important variations appeared in the literature. The following sections are devoted
to the parameter estimation problem in the NLME model. The main focus is on the
most salient and most widely applied of those methods. We discuss each of these meth-
ods in turn. In particular, section 6.3 presents the widely-used approximation method
of Sheiner and Beal, based on a first-order Taylor series expansion. Ideas similar to the
Beal and Sheiner approach, proposed by Lindstrom and Bates (1990) are discussed in
section 6.4. Section 6.5 deals with a large-sample approximation, known as the Laplace
approximation, which has proven to be close-connected to the Lindstrom and Bates ap-
proximate estimation method. Approximations to the log-likelihood function based on
Gaussian quadrature rules are discussed in section 6.6. We continue our presentation on
NLME modéling techniques for continuous longitudinal data with a brief overview on
two alternative approaches found in the literature (that do not base inference on cer-
tain parametric specifications as is the case with the preceding methods), namely non-
and semiparametric approaches (section 6.7). The considerable literature on Bayesian
approaches is the topic of section 6.8. Finally, some remarks on the principal computer
software programs and program procedures developed for the implementation of NLME
model analysis in the context of longitudinal and repeated measures data are offered in

section 6.9.
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6.2 The Model and Some Notation

The standard model in situations where the repeated measurements on the given indi-
viduals are nonlinear in their parameters is the general nonlinear mixed-effects model.
To establish notation for the NLME model, let us suppose once more a typical longitudi-
nal (either balanced or unbalanced) design, where n; repeated observations are taken on
subject 7, for i = 1,2, ..., m subjects in total. The total number of observations for all m
subjects is denoted by N = i n;. In addition, let y; = (i1, %2, ---, %in,)* be the response
vector that comprises the m::l}ciple observations for the ith subject (i = 1,2,...,m). The

general nonlinear mixed-effects model may be written in the following form:
yi=f(Tibu)+e  (i=12,..,m), (6.1)

where:

e bis a (p x 1) fixed-effects parameter vector
e u, is a (g x 1) vector of (between-subjects) random effects
e T, is a (n; X 7) matrix of covariates and

e ¢, is the (n; x 1) vector of (within-subjects) random errors

The function f (-) is assumed to be nonlinear and is used to model the relationship
between the individual’s responses and the covariates. Also, it is assumed that f is
common for all individuals ¢ (i = 1,2, ...,m).

The nonlinear model (6.1) can be considered as a straightforward generalization of
the general linear mixed model (5.1). Indeed, in the case where function f (-) is linear in

the parameters b and u;, that is of the form:

f (T’i1 b7 ui) F X‘I-b + Z'iui7
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where X; and Z; are, respectively, (n; x p) and (n; X q) design matrices of known con-
stants determined by T;, then, the nonlinear model (6.1) reduces to the already discussed
GLMM for longitudinal and repeated measures data of Laird and Ware (1982). In other
words, the nonlinear mixed model is similar in form to the GLMM (5.1), except that the
expression X;b + Z;u;, which is linear in both the fixed effects b and the random effects
u; (1=1,2,...,m), is now replaced by the nonlinear expression f (T}, b, u;).

To complete the description of the NLME model, what remains is to specify the
distributional behavior of the between- and within-subjects random terms u; and e;,
respectively. By analogy to the linear case, parametric specifications for u;, €; is the
most common approach for the nonlinear model. In particular, the Gaussian distribution
is mostly used to characterize the distributional form of u; and ;. Thus, very often (see
e.g., Lindstrom and Bates (1990); Hirst et al. (1991); Wolfinger and Lin (1997) among
others), the random effects u; are assumed to have a g-variate normal distribution with
mean vector 0 and variance-covariance matrix Var (u;) = D. The measurement errors
€, are assumed to be distributed independently of the u;’s with a n;-variate normal

distribution with mean vector O and variance-covariance matrix Var (¢;) = R;, i.e.:
u; ~ N, (0,D) and e; ~ N, (0O,R;). (6.2)

The (g % ¢) matrix D is positive (semi)definite, and is assumed to be unknown. Also,
as in the linear mixed model, most often R; = ¢?I,,,, the conditional-independence model
(02 > 0 and I, is the identity matrix of order n;). As an alternative to normality, a
distribution such as the multivariate t ( Wakefield, 1996) or a mixture of normal distrib-
utions (Beal and Sheiner, 1992) may be assumed to describe the shape of the population
distribution of the between-subject random effects u;. However, in general, whenever a
fully parametric distributional assumption is made for the random effects u; it is almost
always taken to be the normal model. The variance 02 and the elements of matrix D,
namely vector @ = (0%, D), are usually called the variance parameters (or the variance

components). The parameters to be estimated in the NLME model defined by (6.1),
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(6.2) are the fixed effects vector b, and the variance components. In most applications,
however, the random effects parameters u; (i = 1,2,...,m) are also of interest.
Alternatively, nonparametric (or semiparametric) approaches may be used, where no
assumptions about the form of the population parameter distributions are made. Most
of these nonparametric and semiparametric approaches are based on the methods pro-
posed by Mallet (1986). A typical nonparametric model specification allows the model’s
random parameters (in our case w;, €;) to arise from virtually any distribution, while in
a semiparametric framework a flexible distributional form for the random effects u; is

assumed (e.g., Davidian and Gallant 1992; 1993).

6.2.1 The NLME Model as a Two-Stage Model

Similarly to the linear mixed-effects model case, the standard (parametric) NLME model
defined by (6.1), (6.2) can be undoubtedly re-expressed as a two-stage (hierarchical)
model. In the first stage, we may summarize the data for the ith subject (i = 1,2, ...,m)

as (Vonesh, 1996; Davidian and Giltinan, 1995; Sheiner and Beal, 1985):

stage 1 : (describes the within — subject variation)
vi=f(B)+e (i=1,2,..,m), (6.3)
&. ~ N, (O,R;(8))),

where y; = (vi1, Yo, ...,y,-m)t, B, an unobservable (¢ x 1) vector of random parameters
specific to the 7th subject and associated to the covariates, and &; = (g1, €9, ..., €in;) the
(n; X 1) error vector. Stage one implicitly accounts for the within-individual variabil-
ity (through the distributional specification of, within-subject, random errors €;). The

between-subject variation is incorporated into the model in the second stage:

stage 2 : (describes the between — subject variation)
ﬂi =d (T‘i) b7 ui) ) (64)
u,; Nq (O, D) y
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where T; is a (n; X r) matrix that comprises both the within- and between-subject co-
variates, b is a p-dimensional vector of fixed population parameters, u; is a g-dimensional
vector of between-subjects random effects and d (-) is a ¢t-dimensional vector of possibly
nonlinear functions of T;, b and u;. Random effects u; and common error terms g;, as
usual, are assumed independent to each other and between individuals. D and R; (3;) are
(¢ x q) and (n; x n;) variance-covariance matrices for the Gaussian distributed vectors
u; and €;, respectively. As concerns the between-subject variance-covariance structure,
the only restriction imposed on matrix D is that it is positive (semi)definite. The ma-
trix R; = R; (8;) = R; {d (T, b, u,)} is analogous to the matrix R; defined in (5.2) to
represent the (within-subject) variance-covariance in the GLMM for longitudinal data.
However, while in the linear case R; was assumed to depend on i only through its di-
mension, here we choose a more flexible model, allowing R; to depend on ¢ through the
subject-specific information (namely the u;) and mean response (namely vector b), given
by the vector of random parameters 3;.

As one can observe, the second stage allows a nonlinear dependence of the 3; on the
fixed and random effects and further allows the possibility that the dimensions of the
random effects u; and B, may not coincide. A simpler variation of the two-stage NLME
model (considered by many authors) hypothesizes a linear relationship between 8, and

fixed and random effects, by specifying the second stage as:

stage 2': (describes the between — subject variation)
B = X;b + Z;u,, (6.5)
u; ~ N, (0,D),

where X, Z; are (¢t X p) and (¢ x ¢) known design matrices of the fixed and the random

parameters, respectively.
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6.2.2 An Important Variation of the Standard NLME Model

While the main focus has been on the NLME model (6.1), various models considered in
the literature as special cases of (6.1), have received analogous attention by many authors.
For instance, Vonesh and Carter (1992), Gumpertz and Pantula (1992) and Hirst et al.
(1991) suggest models where f (-) is still nonlinear in the fixed effects b, but linear in
the random effects u;. The motivation behind this alternative specification is mainly
simplicity, since that the distribution theory of their proposed models is significantly
simpler than that of nonlinear model (6.1) because the response vectors y; (i = 1,2, ...,m)

are now linear in the random effects. Both sets of authors consider a model given by:
vi=fb,T)+Zuw+e; (i=12,...,m), (6.6)

where y;, b, u;, €;, T; and Z; are as already given, and f a nonlinear function in the fixed-
effects vector b. Observe that now the random effects enter model (6.2) linearly (through
the additive part Z;u;). Nevertheless, it is important to note that model (6.2) does
not coincide with the original model (6.1) and, consequently, estimation and inferential

methods for the latter does not remain true for the former model, and vice-versa.

6.3 The First-Order Method of Beal and Sheiner

Nonlinear mixed effects models for longitudinal data have received a great deal of atten-
tion in recent years, and many authors have proposed different estimation and inferential
procedures for those models: Most of these approaches have appeared in the specific field
of the population pharmacokinetics literature. Traditional approaches to fitting nonlin-
ear mixed models for estimation of the model’s parameters basically involve methods
based on linearization using a Taylor series expansion. Two main linearization methods
are popular, and both use Taylor series expansions in the random effects u;. One of

them is the well-known first-order method proposed by Beal (1984), Beal and Sheiner
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(1982; 1988; 1992), and Sheiner and Beal (1980; 1985) in which a Taylor series is taken
about u; set to zero (the expected value of u;). The second is a first-order method, based
on the method of Sheiner and Beal, proposed by Lindstrom and Bates (1990). By a
first-order Taylor series expansion, a model is obtained that is linear in all random effects
and approximates the nonlinear model.

Here, we consider first-order approximation of the nonlinear mixed effects model, de-
veloped by Sheiner and Beal. In doing this, let us assume having n; repeated observations
on subject %, (i =1,2,...,m); m is the number of subjects and N = i n; denotes the
total number of observations. The data on each subject 7 can be s&gmarized to the
vector yi = (i1, %2, -, Yin,)'- To model longitudinal, continuous response, data of the
above form, in the case where the hypothesized relationship between responses y; and
some specific covariates is nonlinear in unknown parameters of interest, one typically
assumes a (two-stage) NLME model as given in (6.3), (6.4).

The usual objective in fitting nonlinear models such as the one described by (6.3)
and (6.4), is to come up with estimates of the fixed effects parameter b and the variance
components [namely the unique elements of matrices D and R;, usually denoted by
the vector @ = (D, R,)!]. The additional difficulty in estimating the above parameters,
compared to the estimation problem in the GLMM for longitudinal data, is that random
effects u; and random errors €; are no longer enter the model in an additive, linear
fashion.

Similarly to the linear case (see Section 5.3), the most viable approach to inference
on b, D and R; is probably through the use of maximum likelihood, which is based on
the maximization of the likelihood function of all measurements y = (y1,ya, ..., ¥m)'. Let
L (b,D,R;;y) denote this (full-data) likelihood. To obtain L (b, D,R,;y) we need the

marginal likelihood of each ith subject’s response vector:

yi=f(B;) + &, (6.7)

namely L (b,D,R;;y,), which coincides with the marginal probability density function
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of y;, given by?:
p(y:b,D,R,) = / p(y: | w;b, Ry) - p (u;; D) dus, (6.8)

where p(y; | w;; b, R;) and p(u;; D) are the conditional density of response vector y;
given u; and the probability density function of u;, respectively. (Notice that under the
two-stage nonlinear model described by (6.3), (6.4), both density functions inside the
integral are normal).

Then, using the independence assumption for the ¢ subjects (z = 1,2, ...,m), it is:

m

L(b,D,R;y) = [[L(b.D,R;y,)=]]p(v:b,D.R)

=1 =1

= H/P(Yz‘ | u;; b, R,) - p(u;; D) du,. (6.9)

For maximum likelihood (or restricted maximum likelihood) estimation of the para-
meters, the immediate objective is to maximize the above likelihood function for all data
alone, over the parameters. [Equivalently, one may maximize the log-likelihood function
A=1InL(b,D,R;;y), or minimize £ = —2In L (b, D, R,;y) (known and as the objective
function), to obtain ML or REML estimates of b and the variance components].

There is an obvious practical problem in treating (6.9) as a likelihood function for the
parameters; evaluating (6.9) involves m integrations, and due to the fact that function f
is nonlinear in the random effects u;, the required integrals are almost always intractable
even when the random effects distribution is the Gaussian distribution. To circumvent
this integration problem, Beal and Sheiner approximate the nonlinear model of (6.3),

(6.4) by one that is linear in the random effects u;. They achieve this by expanding y; =

2For X, Y continuous random variables with joint probability density function fx,y (z,y), the mar-

+oo
ginal probability density function of r.v. X is given by: fx (z) = [ fx,v (z,y)dy =

“4c0
J fy @) fxjy (X | Y)dy, where fx;y (X |Y) denotes the conditional density function of X given
—OC

Y =y.
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f(B,)+e:= f{d(T:,b,u;)} +¢; using a Taylor series expansion about the expectation
vector of u;, £ (u;) = 0. Their approach was initially advocated in the pharmacokinetics
literature in the early 1980’s, and since then is known as the ‘first-order method’.

To outline the first-order approximation method, let us define (see, e.g. Davidian,
2000):

e=R e = Ryi—f{d(Tibu}l, (6.10)

where R; /2 is the square root matrix of variance-covariance matrix R; [e.g. the Cholesky
decomposition (see, e.g. Gentle, 1998) of matrix R;]. By performing straightforward
calculations it may be shown that the previously defined vector e; has zero mean vector
and identity variance-covariance matrix, i.e. E (e;) = 0 and Var (e;) = I,,.

Then, using (6.10), equation y; = f {d (T;,b,u,)} +&; can be rewritten as:
yi = f{d(Ti,b,u,)} + R %e,. (6.11)

The pioneering work by Sheiner and Beal was based on Taylor series expanding the
above re-expressed first stage (6.11) of the NLME model, in u; about the mean value
FE(u;) = 0. As is well-known, the general form of the Taylor series expansion of a
function f(z) about a point zp (that belongs to the domain of f), for approximating

that function, is simply:

2 ™) (z0) (2 — zo)"
RN LI IEe oo

n=0
where f( (z;) represents the nth derivative of the function f (-) evaluated at the point
zo. (Naturally, in the case where f is a function of more than one variables, derivatives
appearing in 6.12 are replaced by partial derivatives of f). The first-order approximation
of f (z) about zy essentially consists of using only the two leading terms of the Taylor

series expansion (6.12), that is:

(6.13)




This is generally known as the linearization of f(z) around zy. Thus, analogously
to the above, in order to linearize (6.11), we consider the first-order approximation of
yi= f{d(Ti,b,u;,)} + R,Vze,- with respect to u;, about the mean of the u;, 0. That is,
we expand (by using only the first two terms of a Taylor series) with respect to u;, about

u; = 0 the terms f {d (T;,b,u,)} and R} I, respectively. This yields:

yi ~ f{d(T;b,0)}+ gi—f{d (T:,b,0)} (w; — 0) + R/*{d (T, b,0)} e,
)

+5=R;* {d (T, b,0)} (u: ~ 0)e;
= f{d(T;b,0)} + 8if{d (T:,b,0)} u; + R* {d (T:,b,0)} e;
+5%R§/ 2{d (T;,b,0)} we;. (6.14)

Now, if we omit from (6.14) the cross product term involving ue;:

aiuiR}/Z {d (T'i: b, 0)} u;e;,

as relatively ‘small’ compared to the leading three terms and, moreover, if we set:

0

Z,‘ {d (Ti, b, 0)} = au

f {d (Ti7 b’ O)} )

and
e’ =R} {d(T;,b,0)} e,

then the first-order approximation for y; can be re-expressed as:

Yi zf{d (Tl,b,O)}'f'Zl {d (Tz,b,O)}ulﬁ—e: (615)

The usefulness of the first-order linearization of response vector y; = f {d (T;, b, u;)}+
R, /%e;, through (6.15) is obvious; comparing the approximate model (6.15) with the lin-
ear mixed effects-model (5.1) of Laird and Ware (1982), shows that the two models have
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a similar form. The random effects u; and the within-subject error term e} enter model
(6.15) in the same linear, additive fashion as is the case with the random terms of the
Laird-Ware model. .

From linear approximation (6.15) it evidently follows that the ‘approximate’ mean

vector and variance-covariance matrix of y; is given by:
E(y:;) ~ f{d(T:,b,0)}, (6.16)
and
Var (y;) ~ 2;{d (T;,b,0)} DZ} {d (T;,b,0)} + R; {d (T;,b,0)}, (6.17)

respectively. Essentially, the basis for the proposed methodology of Sheiner and Beal
depends on assuming that approximation (6.15) is exact and consequently (6.16) and
(6.17) are the actual mean and the actual variance-covariance matrix of y; (and not
some approximations). So, under the assumptions of normality of the random effects
vector u; and the error term e it follows that the (marginal) distribution of y; is also
the normal distribution, with parameters given by equations (6.16) and (6.17). Thus, we
may write:

Yi Nm [f {d (Ti) b, 0)} , Vi (b7 o, 9)] ) (618)

whereby V; (b, 0,0) = Var (y;) = Z; {d (T;,b,0)} DZ} {d (T;,b,0)} + R, {d (T;, b, 0)},
and @ = (D, R,) denotes the variance components. Accordingly, the probability density

function of the (normally distributed) response vector y; is readily specified as:

p(y:b,D,R,) = (27)"7 | Vi (b,0,6) | "% x

X exp {—% [yi = f{d(T:,b,0)})' V' (b,0,6) [y; — f {d(T;,b, 0)}]} . (6.19)

The likelihood function of all (m in total) individuals is then calculated as (see 6.9):

237



L(b,D,R;y) =[] L(®,D,R;;y,)=]]p(vi;b,D,R,)

tas] t==]

(yi— £{d (T, b, 0} Vi [y — £ {d (T, b, om}

m

- Tlen ¥ virtes{-

=]

= (@m) &7 (H |V, l)

i=1

| =

N

exp {-g D[y = £{d (T b, 0} Vi by — £ {d (T.,b,0)

Calculation of the corresponding log-likelihood function, denoted by A (b, D, R,;y) =
In L (b,D,R,;y) proceeds as follows:

A = InL=
%nl 1 -
= —‘/_dgln(27r)——2—ln H|Vi{ -

=] =1

_% S v — £{d (T b0} V! [y — £ {d(T;,b,0)}]

= const. — % Y In| Vi —% ; [yi = £{d(T:,b,0)}]" Vi [y — f {d (T, b,0)}].

=1

As emphasized earlier, the ML/REML zero-expansion estimation of Sheiner and Beal
proceeds by (numerically) maximizing A (b, D, R;;y) (instead of the intractable 6.9) over
b and 6 = (D,R,)’ to derive ML/REML estimators of the above parameters. Equiva-
lently, ML (or REML) estimates b, @ can be obtained by minimizing the objective

function:

¢ = -2InL(b,D,R;;y)

= const. + }'-": In | V; | +Z [yi = f{d(Ti,b,0)}]* Vit [y: — f{d(T:, b,0)}],

1] i=1

which is twice the negative marginal log-likelihood of y.

Due to the non-closed nature of the above optimization problem, numerical iterative

238



techniques (i.e. Newton-Raphson algorithm and its variants or quasi-Newton® algorithm)
are inevitably implemented for achieving the required maximizations. For details on these
computational techniques the interested reader is referred to Beal and Sheiner (1992)
and Boeckmann et al. (1992).

Along the same lines, Hirst et al. (1991) advocated the use of Taylor series expan-
sion about the expectation vector of the u;, £ (u;) = 0, for the approximation of the
intermediate (compared to the nonlinear model 6.7) model y; = f (b, T,) + Z,u; + &;
where the response vectors y; (¢ = 1,2, ...,m) are for simplicity taken to be linear in the
random effects u; (cf. subsection 6.2.2). Subsequently, the authors use the EM algorithm
discussed by Laird and Ware (1982) to obtain ML/REML estimates of the fixed effects

b and the variance parameters.

6.4 The ‘Lindstrom-Bates’ Linearization Method

As already demonstrated in the previous section, the basic idea of the Beal and Sheiner

estimation method consists in approximating nonlinear model:
yi = f{d(Ti,b,u,)} + RV, (6.20)

where u; ~ N, (0,D) and e; ~ N, (O, Ini), by taking a first-order Taylor series expansion
(i.e. linearization) that expands (6.20) with respect to random effects u;, around its mean
vector E (u;) = 0. However, under this setting, one may argue on the degree of accuracy
of such approximation, mainly due to that individual aspect of the actual (nonlinear)
model (6.20) is removed by replacing u; with zero. In an attempt to improve on the
“first-order’ method of Beal and Sheiner, Lindstrom and Bates (1990) suggested a first-

order approximation of the nonlinear function f () of (6.20) not around O as Beal and

3Quasi-Newton procedures are methods that essentially use the same strategies with the N-R method,
only that replace the Hessian matrix, namely H, of N-R method by an approximation of H. For more
details on quasi-Newton algorithms see e.g. Dennis & Moré (1977).
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Sheiner did, but around 1;, where {; is an estimate of u; [i.e., Gi; could be either the best
linear unbiased predictor (BLUP) of u;, or the ML estimator of u;]. Moreover, they define
estimators of the parameters of their proposed (approximated) model, by combining the
least squares estimators for nonlinear fixed effects models and estimators for linear mixed
effects models.

In the sequel, we illustrate the methodology of the approach described by Lindstrom
and Bates, (which has come to be known as the ‘Lindstrom-Bates’ method in the litera-
ture), as well as the two-step iterative scheme developed by the aforementioned authors
for the implementation of their estimation method in practice. As before, let us consider
the modified model (6.20). We proceed in a similar fashion to the method of Beal and
Sheiner, in the present case though we expand y; = f{d (T: b,u,)} + R}/ %e, (by the
use of a first-order Taylor series expansion) with respect to random effects u; near the

estimate @; of u;, rather than near 0. This can be done in the following way:

. 0 . . .
y: = f{d (Tivbaui)} + auf{d (Ti’b’ui)} (ui = ui) +Rzl/2 {d (T'i7b7ui)}ei
+iR}/2 {d(T;,b,d,)} (u; — @) e;. (6.21)

0 u;

As with the approximation methodology followed by Beal and Sheiner, we may omit
the term involving cross-product (u; — 4;) e; as relatively small compared to u;, e;. More-

over, if we define:

0
aui

Zi {d (T'i7 b; ﬁz)} = [f {d (T‘iabaﬁi)}] )

and treating 1i; as a fixed constant, it is straightforward to verify that first-order approx-

imation (6.21) yields:

0 0 .
yi = f{d (Tivb’ﬁi)}'*_ auzf{d (Tiabaﬁi)}ui - a_uzf{d (Ti,b,ﬁi)}ui

+R11/2 {d (Tia ba ﬁz)} €;
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= [f {d (Tia b) ﬁz)} —Z; {d (Ti’ b, ﬁz)} ﬁi] + Z; {d (Ti7 b, ﬁz)} u;
+R,/?{d (T;,b, 1)} e;. (6.22)

Finally, setting e} = R} /2 {d(T;,b,1,)} e; in the above yields the following approxi-

mate (linearized) model:
Yi = [f {d (Tia b, ﬁz)} —Z; {d (Ti? b, ﬁz)} ﬁ%] +Z; {d (Tia b, ﬁz)} u; + e:' (623)

Hence, if the assumed distribution for u; and e} is normal, then from the above

approximate model we easily deduce (since 4; is considered to be a constant):
E(y) = f {d (T, b,0,)} — Z{d (T;, b, &)} @, (6.24)
and
Var (y:) ~ Z; {d (T;,b,1,)} DZ! {d (T;, b, &,)} + R; {d (T;, b, @,)} . (6.25)

As Lindstrom and Bates (1990) point out, the specific method of approximation has
been previously used in a similar setting by Stiratelli et al. (1984). Approximations
(6.24), (6.25) for the mean vector E (y:) and the variance-covariance matrix Var (y;) of
response vector y; allow for estimation of the model’s parameters via a two-step alter-
nating algorithm.

Before proceeding with the description of the iterative algorithm considered by Lind-
strom and Bates (1990), note that both approximations of the moments given by (6.24)
and (6.25) require a suitable estimate @; for u;, in order to lead to estimates of b and
6 = (D, R,)". The authors suggest the following strategy for obtaining an estimate ; of
u;: Let p (u; | y:; D) denote the posterior density of u; given y;, p (y: | wi; b, R;) denote
the conditional density of y; given the random effects, and p (u;; D), p(y:; b, D,R;) be
the (marginal) densities of u; and y;, respectively. Typically, the conditional density
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p(u; | y;; D) is proportional to p(y: | w;b,R;) X p(u;; D). This may be easily seen,

since the joint probability density function of u; and y; can be written as:

p(yow) =p(w | yi; D) xp(yi;;b,D,R;) = p(y: | wi; b, R;) x p(u; D),

and consequently it is:
p(ui |y D) x p(yi | u; b, R) x p(u;; D). (6.26)
Now, as a result of the normality assumptions for both u; and y; | u;, we obtain:
-1 -1 |
p(u)=027)"2 | D | 2expq — -2-uiD w ., (6.27)
and

) _1 1 -
p(y: 1) = (20)7% | Rl enp {5 s = £ {4 (Tubyw)) R b = (T b} |
(6.28)
Correspondingly, by combining (6.26), (6.27) and (6.28) and performing straightfor-

ward calculations yields:

p(ui | yi) o p(y: | w) x p(w)
_nit+q -1 -1
o« (2m)"7z Ry 2 |DJ?

X exp {—% [yi - f {d (Ti’ bﬁui)}]t Rz—l [Yi - f {d (Thb’ ui)}] - %uﬁD_lui} )

and taking logarithms in the above, ignoring the terms that are constants with respect

to u; (i.e. do not involve u;), we get:

Inp (| y:) o —51n | Rl = 2 [y = £ {d(To b, w)} R [y — £ {d(Ti b, )]
~SuiD "y, (6.29)
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Moreover, the term —1/21In | R;| involving the within-subject variance-covariance
matrix R; may be also omitted from the above (as a constant with respect to u;), due
to the fact that in the specific setting assumed by Lindstrom and Bates, matrix R; does
not depend on B; [i.e. R;# R, (8;) = R;{d(T;,b,u;)}], hence R; does not depend on

u;. As a result, analogy (6.29) can be re-expressed (ignoring all constants) as:

Inp (s | ) o< 3 [y = £ {d (To, b, w)} R [y ~ f {d (T, b, w)}] ~ zuiD ",
(6.30)

Lindstrom and Bates (1990) utilize Inp (u; | y;) and minimize it with respect to u,
for each i = 1,2, ...,m in order to deal with the problem of estimating random effects u;
(i=1,2..,m).

Now, having cleared out the issue on how to estimate u;, we are in a position to
illustrate the iterative two-step estimation scheme proposed by Lindstrom and Bates.
Obviously, as with all numerical optimization algorithms, initial values (estimators) of
the parameters to be estimated (in the current situation b and @) are needed. Let us
denote these initial values with b(©® and 8, respectively. (As usual, b® and 8® will
denote the value of the parameters obtained at the kth iteration of the algorithm). For
instance, b©@, 8© could be obtained from fitting the approximate model of Sheiner
and Beal, i.e. the model derived by application of the standard first-order Taylor series
expansion with respect to w;, about E (u;) = 0. Having found initial values b(® and
0 by the above procedure, as a next step, we substitute these in (6.30), and holding
them fixed (treat them as constants) we maximize Inp (u; | y;) with respect to each u;
(1=1,2,...,m) to acquire initial starting points for the u,’s, say uz(-o) (t=1,2,...,m).
Hence, with starting points b, 0© and u§°), (t=1,2,...,m) at hands, the ‘Lindstrom-
Bates’ two-step iterative scheme, say at the (k + 1)st iteration, may be formally expressed

as follows:

1st step : Substitute ul® (obtained at the kth iteration) for 0, in the approzimate

)
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linear expressions (6.24), (6.25) . Now, treating u\") as fized, in a similar manner to
the GLMM, update ML estimations of b and 0 using approzimate linear mod el
(6.23) by means of numerical iterative optimization algorithms, such as N — R

algorithm and EM algorithm. Call the updated estimators b%*+1) and *+1),

2nd step : Substituting b**+1 0%+ obtained from the previous step, in equation
(6.30) and holding these fired, maximize Inp (u; | y;) with respect to u; for each i
i m separate maximizations to obtain “new” estimates ul(-k“), (1=1,2,...,m). Set

k = k + 1 and move back to the first step.

The preceding algorithm alternates between these two steps until convergence is
reached. The achieved (stabilized) values at convergence would evidently be the desired
maximum likelihood (ML) estimates BML, 0,1 for fixed-effects vector b and variance
components 6, respectively. Wolfinger (1993) points out that the two steps agree at
convergence. He also shows that the above numerical procedure can be derived by the
use of the Laplace approximation®. Though different from a theoretical point of view, the
Laplacian approach has proven to be equivalent to the Lindstrom-Bates method, leading
to the same approximate moments given in (6.24), (6.25), leading thus to the same ap-
proximate linear model (6.23). The specific results have been also confirmed in Vonesh
(1996), and Wolfinger and Lin (1997). (The close-related to the Lindstrom-Bates ap-
proximate estimation method, Laplacian approximation of Wolfinger is the subject of the
ongoing section 6.5).

Finally, it is interesting to note that Lindstrom and Bates (1990) refer to step 1 as
the ‘pseudo-data’ step, because joint estimation of b and u; by maximizing Inp (u; | y;)
may be accomplished simultaneously by specifying an augmented-data nonlinear least

squares problem (see Lindstrom and Bates (1990); Davidian and Giltinan (1995) for

4The use of this type of approximation originates with Laplace, thus these approximations are usually
called Laplace approximations. Laplace approximation has been alternatively called by Physicists the
saddle-point approximation.

244



more details on the topic).

6.5 The Laplacian Method and Its Relation to the

Lindstrom-Bates Method

The Laplace method for integrals (cf. De Bruijn, 1961) is a standard, widely applied,
large-sample procedure for approximating integrals. Its popularity stems from the fact
that the method can perform remarkably well in practice, even for modest amounts
of data, despite that is based on large data limits, thus one should expect to perform
very poorly for small data sets. A discomforting feature of the method, however, is
its computational complexity [of O (d°N), or greater, where d is the dimension of the
model, and N the sample of the data]. As a result, the Laplace approximation can be a
computational burden for large models.

In particular, Laplace’s method approximates the integral of a function f (), namely:

[r®ras,

by fitting a Gaussian at the value @ that maximizes f (), and computing the volume

under that Gaussian (Mackay, 1996). This results in the following approximation:

1

/f(e) 46 ~ f (é) (2m)3 | =VV1n f (é) -3, (6.31)

where ¢ is the dimension of (vector) parameter 8 and VVIn f (9) denotes the matrix of
second-order partial derivatives of In f (@) (with respect to ) evaluated at the maximum
8, ie. VVInf (é) = 9%/8006"[In f (8)

In a statistical context, now, Laplacian approximations as described in (6.31) have

] IO:a.

been extensively used in Bayesian inference for the estimation of marginal posterior den-

sities and predictive distributions. A vast literature on the specific field exists, including
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Tierney and Kadane (1986); Tierney et al. (1989); Leonard et al. (1989) and Kass and
Raftery (1995) among others.

Typically, the same approximation techniques applied in the above-mentioned Bayesian
discussions can be adequately used for approximating NLME model (6.7) to derive esti-
mates of the parameters of the nonlinear model. To demonstrate this, we need to consider

again the marginal probability density function of y;, namely:
p(y;b,D,R,) = /:D(yi | wi;b,R,) - p (u;; D) dus. (6.32)

Recall that to perform ML estimation of the parameters (b and ) of the nonlinear
model, one needs to calculate the above integral over the random effects u;. Unfortu-
nately, a closed-form expression of (6.32) is typically not available, thus the need for
numerical integration becomes evident. Approximate linearization methods described
in sections 6.3 and 6.4 respectively, attempt to circumvent the problem by approximat-
ing the nonlinear response vector y;, (¢ = 1,2,...,/m) by a linear one, using standard
first-order Taylor series expansions.

The Laplacian approach to estimation of b, 8, proceeds in a more straightforward
manner, approximating integral (6.32) via Laplace’s approximation (6.31). Before de-
veloping the latter approximation we need some preliminaries. First, notice that for

f(8) = e™9  asymptotic approximation (6.31) becomes:

/e”“‘”do =% ene(g) (ZE>%| o lneng(g) I

[N

n 0006
A g
_ ) (%i—r)z | 898;0tn€ (8) 1%, (6.33)

where ¢ the dimension of 6, and £(6) a real-valued function of 8. Additionally, in the
above and the following, we assume that the g-dimensional random effects vector u;
(i=1,2,...,m) as well as the n;-dimensional conditional response vector y; given u; are

normally distributed, with corresponding p.d.f.’s given by (6.27) and (6.28), respectively.
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Thus, substituting (6.27), (6.28) in (6.32) yields [for notational convenience, we write
p (), p(y: | w;) and p(y:) instead of p (u;; D), p(y: | ui;; b, R;) and p (y;; b, D, R,)] :

p(y:) = /P(Yi | ) - p(u;) du;
= (2m)"% (2m) 7! |R|7?|D| % x (6.34)
1 t -1 -1
<[ exp{—i[y,- £ {d(Ta b W)} R [y: — £{d (Ts, b,u)}] - 2ulD uz}dui.

The crucial idea in developing a Laplacian approximation of the NLME model, is to
substitute the integral contained in the above expression for the marginal p.d.f. of y;,

namely p (y:), using the Laplace formula (6.33). To this end, let us set:
£(u) = 5 {lvs = £ {d (T by} R [y — £ {d (To by}l + wiD ui}. (639
As a consequence, integral included in p (y;) may be re-expressed as:

/ exp {n:f (w;)} du;. (6.36)

It is easily seen that the above integral is of similar form with the integral of (6.33),
and we may thus utilize the lag,er formula to derive Laplacian approximation of the
specific integral of interest. Clearly, as implied by the right-hand side of (6.33), we have
to specify the second-order partial derivative §2/8w;0ut {f (u;)} of function £ (w;) with
respect to u;. The evaluation of derivative 82/8u;0u’ {£ (w;)} requires the calculation of

first-order partial derivative 8/0u; {£ (u;)}. The latter is calculated as:

1 i1
= o (9u1 {u D u,} )
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and using once more the matrix derivation result (3.32), we get:

0 0 1t
5;;5(111') = = 2; {—2 [auif{d(Ti,baui)}} R'i—l [yi— f{d (Ti1b1ui)}]}
1 -1
—E {2D ui}
= n;-l [aif{d (Ti’b)ui)}} R’z—l [yi - f {d (Tivb7ui)}]
—le_lD_'Llui,

or equivalently, due to that we have already set Z, {d (T;, b, u,)} = 8/0u; [f {d (T:,b,u,)}],

2 (w) = n7Z¢ {d (To b, )} B [ys — f{d (T b,u)}] —n7'D 7w, (63)

It is now possible to derive an analytic expression for 82/8u;0u’ {£ (u;)}, using stan-

dard matrix algebra, as follows:

d? 0 0
auiauje(“") - Ou; {8ui£(ui)} (6.—_3_7)
., 0 _ _; 0 _
= n, 1(9_ui {Zi {d(T:,b,u)} R [y - f{d(Tivbaui)}]} -y 1%‘; (D lui)
= RZH{A(T, b )} R o v — £ {d (T, b )]
+n;! —a—Z7§ {d (T;,b,u,)}| R [y: — f{d(Ti,b,u,)}] —n‘lD—l%
(3 aui 2 1y My M (3 3 1y My Mg 1 aui
= —n7Z{d (T b u)} R - f {d (Ti,by )
-1 [ 6 t ] -1 ~-17y-1
+n; E;Z-i {d(Ti,b,u;)}| Ry [y: = f{d(Ts,b,u;)}] = n7°D

= —n'Z8{d (T b,u)} R7'Z: {d (T;, b, u,)}

aiZﬁ {d(T;,b,u)}| R [y: — f{d(Ti,b,u,)}] — n,'D™L. (6.38)

+n;!

Now, as Vonesh (1996) points out, it is more appealing in the specific case to use the

(common) version of Laplace’s approximation, where §2/8u;0u; {£ (u;)} is replaced by
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its expectation E [62 JOu;0ut {£ (uz)}] The latter is not difficult to compute. Indeed:

A ‘ —lrpt 1
E{anauzf(Ui)} = —n, Z;{d(T;,b,u,)} R;"Z; {d (T;,b,u,)}

0
aui

oy [ 2 {d (T, b, ui)}} R7'E {[y: — £ {d(Ts, b,u)}]} —n;y "D,

and since FE {[y; — f {d (T:, b, u;)}]} = 0, it is readily available that:

2
E {3 66——tf (uz‘)} = —n'Z H{d (Ti,b,u,)} R7'Z {d (T4, b,u;)} — n'D7L (6.39)
u,;ou;

Thus, recalling (6.33), the Laplacian-type approximation of integral (6.36), with
E [6%/0u,0u{€(u;)}] in place of 5%/0u;0u; {£ (u;)} though, is computed as follows:

/exp {ni (u;)} du;
= /eXp {—% [yi = F{d(Ti, b, W)} R ys — f {d (T, b, u,)}] - %uﬁD_lui} du;

R

q
@T-) |- (-7 ZH{d (To b, )} R Z {d (T, b, )} — ny D7)

n;
e {_% [yi = f{d(Ti, b, 8)} Ry [y — / {d (Ts, b, &;)}] - %ﬁED"lﬁ
= @m)in;?|n12¢{d (T, b, )} R7'Z; {d (T, b, &)} + ny D™} 72
u

x exp 4 = [yi = {d (T b, 8} R i = £ {d (Ty, b, 8)}] - 50D a

—N

— @n)ininf|Zt {d(T,, b, &)} R71Z: {d (T;, b, &)} + D[ 2

X exp {—% [yi = F{d (Ti, b, 0)}) R [yi ~ f {d (T3, b, &,)}] - ‘;‘ﬁfD_lﬁi}
= (2m)* |2 {d (T;, b, 8)} R7'Z: {d (T, b,5)} + D]
X exp {—% [yi— f{d (Ti,b’ﬁi)}]tRi_l [yi — F{d(T:,b,4,)}] - %ﬁﬁD—lﬁi} ’

where 1;, likewise to the ‘Lindstrom-Bates’ method, is chosen to maximize function £ (u;).

Hence, correspondingly, it is easy to verify (combining 6.34 and the above Laplace’s
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formula) that marginal density p (y;) is approximated via the Laplacian method as:

p(Y‘L7b7D7R1) &~
(2m)"% (2m)7% |Ry|"F | D |77 (2n)3

12

Z:{d (T, b, )} R7'Z; {d (T;, b, d,)} + D[
1 R _ . |
X exp {-5 [vi — £{d(Ty,b,0)}I'R7 [y: — £ {d (Ti,b,0,)}] - §U§D lui}

N
2

= (2m)% | R} | D2 {d(T:,b, &)} R'Z {d (T;, b, &)} + D[ 2

X €Xp {_% [Yi - f{d (Tivbvﬁi)}]t Rz_l [Yi - f {d (Ti’b)ﬁi)}] = %AED‘_lﬁi} 0 (640}

Now, as already noted, observe that estimator @; is defined as the value that maxi-

mizes £ (u;). Consequently, to obtain an exact expression for 4, it suffices to solve:

0
aui

£(u;) =0,
or equivalently, from (6.37), to solve:
n ' Zi{d (Ti,b,u)} R [yi — f{d (Ti,b,w,)}] = ny'D7'u; = 0,
with respect to u;, which yields the following expression for the 4; estimator:
@, = DZ; {d (T;,b, &)} R " [y — f {d (T3, b, &)} (6.41)

From (6.40), (6.41), and by applying appropriate general matrix results it is possible
to derive (see, e.g. Davidian, 2000) the following modified form for p (y;; b, D, R;):

p (yza b, D) Rz) =
~ (2m)"% |Z:{d(T:,b,8,)} DZ! {d (T, b, &)} + Ri|
X exp {—-—;' [yz — f {d (Ti, b, ﬁz)} + Z.,; {d (Ti, b, ﬁl)} ﬁi}t 0 (642)

-[2:{d (T:,b, @,)} DZ {d (T;, b, @)} + R -

250



) [Yi - f {d (Ti’b7ﬁi)} + Z; {d (Ti’bvﬁi)} ﬁz]} :

Since each y; (¢ = 1,2, ..., m) has (approximately) marginal density of the above form,
which obviously is the density function of a n;-variate, normally distributed random

variable, we easily deduce from (6.42) that mean and variance-covariance of y; are:
E(y:) ~ f{d(Ty,b,0,)} - Z; {d (T;, b, &,)} &, (6.43)

and

Var (y;) ~ Z;{d (Ti,b,q,)} DZ; {d (T,b,q,)} + R, (6.44)

respectively. Notice that the above resulting moments are identical to the mean and
variance-covariance approximations Lindstrom and Bates (1990) derived by their first-
order linearization method (equations 6.24, 6.25), constituting thus the Laplacian ap-
proximation method as an appealing alternative to the ‘Lindstrom-Bates’ method. In
terms of the above approximations for E (y;) and Var (y;), Wolfinger (1993) derived
the same two-stage algorithm of Lindstrom and Bates (1990), described in the previous
section.

We conclude our brief discussion on the current approach with some additional contri-
butions and references that exploit the Laplacian approximation method for application
to the NLME model. These include Vonesh (1996), Pinheiro and Bates (1995), Bres-
low and Clayton (1993), Wolfinger and Lin (1997), Davidian and Giltinan (1995) and
Vonesh and Chinchilli (1997).
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6.6 The Method of (Gaussian Quadrature

Among the principal methods for the numerical computation of a (definite) integral of a
real-valued continuous function f (-), defined on a compact interval [, ] which may be

infinite in either or both directions, i.e. an integral of the form:

B
/ f () dz, (6.45)

is the so-called method of ‘quadrature rule’. The specific numerical integration technique
approximates the integral of f from the ordinates of the function at particular absissae
(the z values of the function) which are weighted and summed in order to give an approx-
imation of the integral. More formally, a quadrature rule approximates a given integral,

such as (6.45), by the weighted summation:
S wif (), (6.46)
=1

where the z;'s (i = 1,2, ...,n) denote the nodes (or abscissas) and the w;’s are the weights
(or coefficients) of the quadrature rule. Also, n denotes the number of evaluation points.
As one can easily deduce, the basic problem in quadrature theory is to choose nodes and

weights (independent of function f) so that:

ﬁ n
/ f@)dz =Y wif (z:). (6.47)

Various quadrature rules have been proposed in the duration of time [see, e.g. Conte
and deBoor (1981), Chapter 7]. A significant place among these rules is possessed by
the Gaussian quadrature rule (Gauss, 1816). The specific quadrature method for the
numerical (approximate) evaluation of integrals utilizes orthogonal polynomials, such as

the Legendre, the Laguerre, the Chebyshev and the Hermite polynomials and their roots.
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In short, the general form of a Gaussian quadrature rule may be written as:

B n
Ju@f@de=Y ws @), (6.48)
: =1
where w () is a weighting function (conveniently chosen to ensure the convergence of the
integral of w (z) f (z)), and w;, z; (¢ = 1,2, ..,n) are as previously defined. The basic idea
of this approximation lies in the fact that we can find appropriate weights w; and nodes z;
such that the rule (6.48) is exact if f (z) is a polynomial of order less than 2n. The nodes
{z;};_, of this rule are then the zeros of the (orthogonal) polynomial. For a detailed
discussion of the general theory of Gaussian quadrature methods, see Abramowitz and
Stegqun (1964), Davis and Rabinowitz (1984) and Golub and Welsch (1969).

With the latter background theory in mind, we can now proceed in describing how the
Gaussian quadrature methodology finds application in the current context of nonlinear
modeling for longitudinal data, by the (approximate) computation of the marginal like-
lihood function L (b, D, R,;y) of all repeated measurements y = (y1,¥2, ..., Ym)’, given
by (see Section 6.3):

m m

L(b,D,R;y) = [[p(ysb,D,R,) = H/p(yi | ui;b, R,) - p(ui;; D) du;.  (6.49)

i=1 i=1

In the above, p(y;;b,D,R,;) represents the marginal probability density function
of yi;, and p(y; | w;;b,R;), p(u;; D) denote the conditional density of response vector
y: given u; and the probability density function of u;, respectively. Essentially, what is
required is the calculation of integral [ p (y; | w; b, R;) p (u;; D) du;, which unfortunately
does not have a closed-form expression in most situations. Assuming once again normality
of the random effects u;, (2 = 1,2, ...,m) and the within-subject errors g;, (i = 1,2, ..., m),
with a slightly modified structure for their variance-covariance matrices though, Pinheiro
and Bates (1995) suggested a Gauss-Hermite quadrature procedure to calculate integral

that appears in (6.49). The Gauss-Hermite quadrature rule is often used to approximate
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integrals in statistics, because of its relation to Normal densities.
Specifically, Gauss-Hermite integration evaluates infinite integrals (i.e. integrals hav-
ing both their limits infinite) of a function that contains a term of the form exp (—z?).

Thus, Gauss-Hermite quadrature is strictly defined in terms of integrals of the form:
+oo
/ f (z) exp (—2°) dz. (6.50)

The above general form of the Gauss-Hermite quadrature approximation, associated

with integration in the range (—o0, +00), may, then, be written as:

+o0 n
/ f (z) exp (—2*) dz ~ Z w; f (z;), (6.51)
— 00 =]

n
i=1

where the nodes {z;}._, are now the zeros of the mth order Hermite polynomial and the

weights {w;}._, are suitably corresponding weights (Liu and Pierce, 1994). The above

formula is exact for any function of the form:

2n-1

f(z) =exp[-b(z - a)2] Z cx'.
=0

Appropriate values for the nodes z; and weights w; (n = 1,2,...,10,12,16,20) are
tabulated in Abramowitz and Stegun (1972). Alternatively, one may use an algorithm
developed by Golub (1973). The appropriateness of using formula (6.51) resolves from
the fact that integral [ p(y: | wi;b;R;)p(u; D) du;, under- the normality assumption
for vectors u; and ¢;, should contain factors of the form exp (—z2). To clarify things,
let us consider nonlinear mixed effects model of Pinheiro and Bates (1995). In words,
their model resembles (two-stage) NLME model as described by (6.3), (6.4), with the
only exception being that the aforementioned authors adopt a different parameterization
to express the variance-covariance matrices of u;, ;. That is, instead of assuming the

Gaussian multivariate vectors u;, €; be distributed as u; ~ N, (0,D) and €; ~ N,, (0,R;)
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respectively, they propose the following model:
yi=f{d(Ti,b,u)} +e&; (i=1,2,..,m), (6.52)

with
u, ~ N,(0,6°D) and €; ~ Ny, (0,06%L,)), (6.53)

whereas now 02D denotes the variance-covariance matrix of u;, and oI, denotes the
variance-covariance matrix of €;. As usual, I,, is the identity matrix of order n;. Ev-
idently, considering (6.53), probability density functions for vector u; and conditional

vector y; | w; (1 = 1,2,...,m), namely p(u;; D) and p (y; | u;; b, R,) are given by:
- _1 1, —
p(w) = (2m) g | o°D | 2 exp {—Euf (c°D) ' ui} )
and

p(y: | w)
= (27T)_%i | JQITHI—% exp {_% [Yi - f {d (Ti’ b’ui)}]t (0-21711')—1 [Yi - f {d (Ti’ b)“i)}]} )

respectively. It is not difficult to verify that the above pdf’s, after some trivial manipu-

lations become:

p(w) = (270%) | D [ Fexp {_%U_‘I;_m} , (6.54)
and
plyi | w)= (QWUZ)‘%eXP{_%[Yi f{d (Tz',b,ui)}]a;[}’i - £{d (T, b.u)}]

(6.55)
Thus, from (6.54), (6.55), the integral that we want to calculate for the marginal
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distribution of y; is easily seen that can be written as:

p(y;b,D,R,;) = /p(yz- | ui; b, R;) p (u;; D) du;
= (2#02)_%/(27ra2)_% |D |—%exp{—[yi‘ f{d (T, b, u;)}] [yi—f{d(Ti,b,ui)}]}

20?2
ufD_l u;
-exp§ — — g7 du;,

or, equivalently, as:

ah _ b2 -1y,
(27_‘.0,2)'— ) /(27.{.0.2)_521 I D |_% exp {_HY‘l f{d (Thb’uz)}H }exp {_uzD ul}dui,

202 202
(6.56)

since, by definition,

”yi = f{d (Ti’biui)}”2 = Z[yi - f{d (Ti’baui)}]2

= [y F{d(Ti, b, W)} s — £ {d (Ti, b, u))]

Pinheiro and Bates (1995) in their approach, use successive applications of one-
dimensional Gauss-Hermite quadrature rules, to obtain an approximation of (6.56). Specif-
ically, to illustrate the ideas, let (z;, wj; j = 1,2,...,p) denote the nodes and weights of
the pth-order (one dimensional) Gauss-Hermite quadrature rule, based on the N (0,1)
kernel. Then, the Gauss-Hermite quadrature approximation (transforming first u; as

u, = aD%x), proceeds as follows:

n iy . . 2 t -1 5
(27(‘0‘2) 2 /(27!'0'2)-% ID I-% exp {_ Ilyz f{d (Tz;byuz)}” }exp{—l—lg—ui}du,

202 202

osfo(een ) ),

21 _g ’
= (2m0?) 2 /(271') Zexp —- 53
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2
= i~ £ {d(TuboDix;,,.5) }
= (271'0) 2? Zexp = Y { ( 2020 Bk J)} fijk, (6.57)
k=1

Jl Jq

.....

with elements (a;jl,xj2, ...,a:jq). Thus, for the resulting approximation to the overall

likelihood function L (b, D, R,;y) [i.e. the likelihood of the complete set of N = Y n;
i=1

measurements y =y = (¥1,¥2, .- ym)t] required for parameter estimation, we have from

(6.57) the following:

L(b,D,R;y)=[[r(ysb,D,R,)
=1

:

m n P i — d Ti, b, Dl 150005 Kl
~ H(27r0_2)—-2"i”-zexp _ A f{ ( 20;3' 2X5, Jq)} ijk
i=1 J1 Jq J k=1

n [ -7 {d(TuboDix, )}

_tm q
= (27rcr2) H Z ZGXP - 552 ijk d
k=1

=1 [ 51

and the corresponding approximation to the log-likelihood function of L (b,D,R;;y),
namely A =InL (b,D,R,;y) is:

A=InL(b,D,R;y)

™ Ld Yi d (T, 3x; wd d -
= In 271'0' ' H Z S Zexp = 952 H Wik
i=1 Jq

= —Tln(2W0)+lnH Z--Zexp = 552 ijk
Jg

N m ‘ p P ; 4q
5 In (27m2) + z In Z . Zexp - 202 H wj,

==l J1 Jq k=1
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In addition to the standard Gaussian quadrature approximation described above,
Pinheiro and Bates (1995) (see also Liu and Pierce, 1994), suggested an adaptive’
Gauss-Hermite quadrature procedure to calculate integral [ p (y; | u; b, R;) p(u;; D) du,.
According to this modified Gauss-Hermite procedure, the integral is centered on the
empirical Bayes estimate of u; [recall from section 6.5 that estimator @; is defined as the
value that maximizes function (6.35)]. Further, matrix G {d (T;,b,u;)} is used in place

of D for the scaling of the quadrature abscissas, where G is given by:

5}
w=i | Ju,

or, alternatively, due to that Z; {d (T;,b,u;)} = 8/0u; [f {d (T, b,u,)}], by:

G =

21

(T:,b, ui)}} t

9 et +D

G = Z;{d(T;,b,u,)} u

1=

o - Zi{d (Ti,b,u,)} |u . +D™ (6.58)

(In fact, G {d (T;, b, u;)} corresponds to the approximate second-order partial deriv-
ative of [y; — f {d (T;, b, w,)}’ [yi — f {d (T4, b, u,)}] +utD~'u;, with respect to u; eval-
uated at the estimator @; of u;). Thus, by the above it is suggested to use the transfor-
mation u; = @&; + 0 [G {d (T}, b,u,;)}] “2x. With this modification under consideration,
the adaptive Gauss-Hermite quadrature approximation to the integral over u, is then

derived as follows:

p(y:;b,D,R;) =/p(yiluz-;b,Rz)p u;; D) du;

= (2n0?) %/(27r02)_% |D|—%exp{ ly: = F{d( ’IQ‘“b )ik }exp{—uﬁI;T_:ui}dm

f{d T,;,b,u, )}|| u'D 'y, uDlu;

_ (271—0-2)—%/(271')_%IGDl_%exp{ ly: = - i202 + i202 }

u‘D'y;
X exp —7 dui

5Standard quadrature rules are all based on n subintervals of equal size. Quadrature rules which adapt
the length of the subintervals to the local behavior are called adaptive (Conte and de Boor, 1981).
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- 1{a(Tobra + oG )

202

= (27rc72)_%i /(2%)_% | GD |"% exp —‘

1 t 1
(8 +0G7Hx) D (8 +0Gha) e I
— 53 T 5 xexp{— 5 }dx

yi—=1r {d (Ti: TRt i UG_%le"“’j")}Hz

p p

. o) el

o~ (27ra) 2Z Zexp 752
J1 Je

t o
~ _1 - | N _1
(u"' + O-G 2Xj1,---qu) D { (Llz + UG 2le»-~-7jq) ”X]l J ”2 4
—=N N T e S /e S A D) q
50 + g [ [ wi
k=1

and, via similar to the standard Gauss-Hermite approximation manipulations, the ap-
proximation to log-likelihood function A = In L (b, D, R;; y) is readily calculated as (see
Pinheiro & Bates, 1995, p. 9):

)‘(baDiRUY) = lnL(b)DyRUY)

= —% [Nln(sz)+mln]D[+Zln|G| +

1=1

P Yi=—f {d (T“b’ a; + UG_%le"“’jq> }HQ

" P ’
+Zln Z--Zexp — 557
=1 Jq

J1

t .
) i e 1 2
(uﬁ-oG Zle,...,jq) D <ui+UG *Xgrda e %5, | |q|
_ w
20.2 2 =il i

Clearly, as is the case with the preceeding approximation methods, the usual ap-
proach once the (standard/adaptive) Gauss-Hermite quadrature for the evaluation of the
log-likelihood function of the (complete) data is obtained, is to invoke the maximum like-
lihood (ML) or the restricted maximum likelihood (REML) method for the estimation

of the parameters of interest in the nonlinear mixed-effects model.
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6.7 Nonparametric/Semiparametric Methods

All approximate methods for parameter estimation, considered up to this point, are ap-
propriate under fully parametric model specifications. In particular, the fully parametric
model that imposes Gaussian distributions for the random parameters u; and ¢; defined
in equations (6.3) and (6.4), is essential for estimation and inference via the preceding
methodology.

In general, with parametric models in statistics, each parameter of the model is as-
sumed to arise from a specific parametric family of distributions. A commonly used
distribution, as already seen, is the Normal distribution. In many settings, however,
it is unrealistic to assume that the distribution of the parameters belongs to a specific
parametric distributional family. For this reason, alternatively, one may wish to avoid
any distributional assumptions.

In the nonparametric approach, no parametric assumptions about the assumed shape
of a parameter distribution are made. In this sense, nonparametric (as well semiparamet-
ric) model specifications provide a more flexible framework for estimation and inference.
On the other hand, the main disadvantages are that such approaches are usually compu-
tationally intensive, and result in a discrete estimate of a possibly continuous distribution.

In an effort to reach a compromise between the very restrictive parametric models and
the rather loose and very general nonparametric models (as concerns their distributional
assumptions), semiparametric models that essentially borrow features from both para-
metric and nonparametric specifications have been proposed. In many settings, however,
it is unrealistic to assume that the distribution of the parameters belongs to a specific
parametric distributional family. For this reason, alternatively, one may wish to avoid
any distributional assumptions. In the sequel, we briefly review the existing literature

on these frameworks, appearing in the longitudinal data context, in turn.
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6.7.1 Nonparametric Model Specification

As previously mentioned, with methods based on nonparametric specifications, no para-
metric assumptions (e.g. normality) about the form of the parameter distributions are
made. In particular, the only assumption made is that parameters are random variables
with common distribution function H, where H is a completely unspecified distribution.
'H has come to be known as the mixing distribution. Inference for fixed /random parame-
ters is based on the (marginal) likelihood of the data, which in turn is associated with the
unknown distribution H. Thus, the obvious consequence is that H need to be somehow
estimated. This is accomplished by the distribution that yields the highest likelihood of
all distributions. From this estimated distribution, the means, standard deviations and
covariances can be derived along with any other statistics of the distribution. The specific
method is referred to as the nonparametric maximum likelihood (NPML in abbreviation)
method of the mixing distribution [we refer to Laird (1978), Kiefer and Wolfowitz (1956),
Lindsay (1983; 1995), McLachlan and Basford (1988), McLachlan and Peel (2000) and
Béhning (2000) for a discussion of mixture distributions and their estimation through
NPML method in a general context].

The nonparametric ML approach in the context of longitudinal studies, and espe-
cially in the population pharmacokinetic modeling, was initially introduced by Mallet
(1986). Mallet proposes a model formulation that is completely nonparametric, in the
sense that no parametric form is assumed for the random parameters vectors 3; in terms
of fixed effects b, nor is any assumption made about their distribution. In other words,
the distribution of each 8; (i1 =1,2,...,m) is assumed to lie in a wide class of proba-
bility functions which must be determined. Specifically, 3; is assumed to follow an H
distribution, where H remains completely unrestricted. Estimation of H is achieved by
(nonparametric) maximum likelihood.

As concerns now the other remaining random part of the NLME model, under the
nonparametric specification of 3;, within-subject error term e, is specified by a parametric

form [e.g. take €; to be normally distributed with &; ~ N,, (0,R;)]. Thus, in this respect,
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the (two-stage) NLME model under the nonparametric specification is as follows:

stage 1 : (describes the within — subject variation)

y: = f(ﬁz) + & (2 = 1127 1m) )
€ ~ Nni (O’Ri) )

and
stage 2 : (describes the between — subject variation)

B:~H,

where, as usual, ¥; = (¥i1, ¥i2 ---» ¥in; ) » B; is an unobservable (¢ x 1) vector of random pa-
rameters specific to the ith subject and associated to the covariates, €; = (1, €2, -, Ein; )’
is the (n; x 1) error vector, and R, denotes the variance-covariance matrix of €; under the
Gaussian assumption. Also, as already stated, H is an entirely unrestricted distribution
function. Note that the between-subject variation (stage 2) is uniquely accommodated
through the distribution H.

Only a few basic nonparametric maximum likelihood methods for the estimation of
distribution H (and consequently the estimation of the complete data log-likelihood),
have appeared in the literature; one is the sequential algorithm of Fedorov (1972), also
known as the Basic Algorithm. Another one is the NPML method of Mallet (1986),
which basically constitutes a refinement of the Basic Algorithm of Fedorov. An alter-
native approach, namely the nonparametric expectation-maximization (NPEM) method
is described by Schumitzky (1991, 1993). As its name suggests, the NPEM method is
a maximum likelihood approach based on the nonparametric EM algorithm. The spe-
cific method has now been implemented as a computer program [cf. Schumitzky et al.,
(in preparation)]. A good review of the preceding approaches is given in Davidian and
Giltinan (1995).

Modifications to the above methods suggest smoothing the obtained discrete estimate
of distribution H, due to that in many occasions in pharmacokinetics it is fairly possible

for distribution H to be smooth. Thus, a common approach is to smooth the discrete
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estimate, for example, using a normal kernel function (see, e.g. Mallet, 1986; Schumitzky,
1993). Furthermore, Mallet (1988) suggested a modification of the NPML approach of
Mallet (1986). The consequence is that a separate maximization is required to estimate
unknown fixed parameters, resulting though in an increase in computational effort and

consuming time.

6.7.2 Semiparametric Model Specification

In the sense that the nonparametric approach allows the random parameters to arise
from virtually any distribution and the fully parametric approach determines specific
distributional behavior for the random parameters, semiparametric specification may be
seen as a compromise between these two distinct methods. According to the semipara-
metric specification for the NLME model, a parametric model is assumed for the 3,’s
(i =1,2,...,m), while for the random effects u; (i = 1,2,...,m) a more flexible distribu-
tional form is typically chosen. Specifically, it is assumed that the random effects u; arise
from a class of probability densities that includes the normal density, densities with mul-
tiple modes, skewed densities, but excludes densities that are unlikely to be suitable for
real-world population pharmacokinetic experiments. In addition, as in the nonparamet-
ric approach, the normal distribution is mostly used to parameterize the random errors
€, but it is likely to use other parametric forms as well.

Davidian and Gallant (1992; 1993) following ideas of Gallant and Nychka (1987),
originated this approach proposing a particular inferential method, which is referred to as
the smooth nonparametric maximum likelihood (SNP) method in the pharmacokinetics
literature. In this setting, the semiparametric specification for the (two-stage) NLME

model is given as follows:

stage 1 : (describes the within — subject variation)

y:. = f(ﬁz) +€i (7' = 1’27 1m) )
61: ~ Nni (O, R‘l)’
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and
stage 2 : (describes the between — subject variation)

ﬁz = d(Ti’b’ui)1
u, ~h, heH

with d (T;, b, u;) denoting a parametric model for the 3,’s, and with h being a density
belonging to a class H of ‘smooth’ densities. In defining the class of densities H, a number
of various alternatives exist. See Davidian and Gallant (1992; 1993) for more details on
the topic. In the following years, further papers concerning nonparametric and semipara-
metric models were published. For instance, other non- and semiparametric approaches
appeared in the recent literature include Zeger and Diggle (1994) and Mandema et al.
(1992).

6.8 Bayesian Approaches to the NLME Model

By far, the common approaches to fit nonlinear longitudinal data are, prima;rily, clas-
sical parametric and secondarily nonparametric/semiparametric approaches, previously
illustrated. However, to circumvent the integration problem occurring in NLME models,
the Bayesian approximate methodology may be alternatively used. In fact, due to the
recent advances in Bayesian computational techniques, NLME models are nowadays very
naturally implemented within the Bayesian framework.

In the current section, we briefly overview Bayesian methodology that finds appli-
cation to longitudinal data (and more specifically pharmacokinetic data), appeared in
the literature. Before proceeding, however, it would be instructive to express the non-
linear mixed-effects model from a Bayesian framework. Specifically, as already has been
seen, parametric as well as nonparametric/semiparametric specifications of NLME model
include the formulation of two-stage models (where stage 1 is used to describe the within-
subject variability, and stage 2 addresses between-subject variation). To follow a Bayesian

framework, a third stage, at which prior distributions are specified for the (population)
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parameters from the first and second stages, is incorporated. In this setting, a paramet-
ric general (three stage) Bayesian NLME model is expressed as (see, e.g., Davidian and

Giltinan, 1995):

stage 1 : (describes the within — subject variation)

yi=f(B)+e (i=12,..,m),
€~ (OaR‘i))

stage 2 : (describes the between — subject variation)
B;=d(T;b,u,),
u; ~ (0,D),
and
stage 3 : (hyperprior distribution)
(b,R;,D) ~p(b,R,,D).

whereby, stage 3 essentially specifies a prior distribution p for all parameters (i.e. b, R,
and D) in stages 1 and 2. The most common distributional choice for both stages 1 and
2 is that of the multivariate Normal distribution, while the prior distribution is chosen
to be noninformative. Generally, the prior distribution is assumed to be the product of
independent conjugate priors for each of these parameters.

In recent years several authors have been employed Bayesian analysis for the esti-
mation of parameters in pharmacokinetic models involving longitudinal data. A fully
parametric Bayesian approach, for instance, was used by Berkey (1982); Racine-Poon
(1985); Wakefield and Racine-Poon (1985); Wakefield (1996); Wakefield and Bennett
(1996); Tierney and Kadane (1986); Geweke (1989) and Wakefield et al. (1994) among
others. Most of these population pharmacokinetic analyses concern nonlinear hierarchi-
cal population models (as described, for example, in Longford; 1993 or Goldstein; 1995),
which naturally extend the NLME models in the sense that mixed models may be viewed

as hierarchical models with a s'ingle level of grouping.
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As already emphasized in the previous sections, estimation of the models’ parame-
ters is not straightforward due to the integration problem caused by the nonlinearity of
response function f (-). In this context, Markov chain Monte Carlo (MCMC) methods
have been shown to be useful. In particular, a special Markov chain technique, namely
the Gibbs sampling algorithm introduced in Geman and Geman (1984) and brought to
the attention of statistical community by Gelfand and Smith (1990), has proven to be
extremely useful with Bayesian nonlinear hierarchical models. As an example, consider
Wakefield et al. (1994) and Wakefield (1996) who provide descriptions of Markov chain
approaches to Bayesian calculations for hierarchical models. Wakefield et al. (1994), il-
lustrate an application of a Gibbs sampler variant to analyze the pharmacokinetic data on
the plasma concentration of the drug Cadralazine measured in 10 cardiac failure patients
at various times, using a nonlinear population model (they also analyze the famous Pot-
thoff and Roy, 1964 data, considering a Normal-linear population model). In a similar
fashion, Wakefield (1996) has used the general Hastings-Metropolis algorithm (Hastings,
1970) to implement Bayesian inference for the drug quinidine data.

Another interesting work on the specific area was done by Geweke (1989) who pro-
posed the use of importance sampling (IS) for Bayes models. IS provides a simple and
efficient way of performing Monte Carlo integration. It relies on much the same calcu-
lations as the Gibbs sampler, however, it does not rely on an underlying Markov chain
as Gibbs sampling algorithm. Instead, many independent and identically distributed
replicates are run in order to create an importance sample. See also Pinheiro and Bates
(1995) for a detailed description of the IS approximate method.

Two alternative approaches for the analysis of nonlinear mixed(-effects) models within
the general context of Bayesian inference, are the EM-type approximations [see, e.g.,
Racine-Poon (1985); Racine-Poon and Smith (1990)], and the Laplace approximation
method [cf. Tierney and Kadane (1986); Kass and Steffey (1989)]. More recently,
Achcar and Smith (1990) attempted on improving the Laplace method of Tierney and

Kadane by suggesting suitable parameter transformations. Finally, in another context,
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Berkey (1982) fits a well-known nonlinear growth model, namely the Jenss model (Jenss
and Bayley; 1937), to child repeated measurement data and estimate parameters, by
means of an empirical Bayes approach (following methodology of Lindlay and Smith
(1972) for linear mixed models).

In summary, as a final remark, it is important to note that Markov chain and other
related Bayesian sampling techniques have generally shown to be very useful and appeal-
ing for the analysis of complicated nonlinear models, caution however is required when

applying the latter methods due to their complexity and computational extensiveness.

6.9 Software for Nonlinear Mixed-Model Analysis

The development of statistical procedures for impiementing nonlinear mixed effects mod-
els has been an active area of research in the past two decades, mainly due to the signif-
icant advances in computing hardware and software. As a result, a variety of software
is currently available that enables researchers to analyze longitudinal /repeated measures
data, (especially population pharmacokinetic/pharmacodynamic data), using nonlinear
mixed model methodology.

For instance, SAS (Littell et al., 1996) procedure NLMIXED, fits nonlinear mixed mod-
els using likelihood based methods. In particular, PROC NLMIXED maximizes an approx-
imation to the, difficult to calculate, likelihood of the data. Different methods for ap-
proxirhating the likelihood are available, the principal ones being adaptive Gaussian
quadrature (see section 6.6), and the first-order linearization method (see section 6.3) of
Beal and Sheiner (1982; 1988; 1992) and Sheiner and Beal (1980; 1985). The default
method in PROC NLMIXED is adaptive Gauss-Hermite quadrature. However, the proce-
dure enables the user to implement the ordinary Gaussian quadrature in request. Also,
as already mentioned, the well-known first-order method of Beal and Sheiner is option-
ally available in PROC NLMIXED. The estimation method of Lindstrom and Bates (1990)

(Section 6.4), is not available. However, the closely related Laplacian approximation is
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an option.

As is known, the need for maximization of the approximated likelihood requires im-
plementation of numerical optimization techniques. Several iterative optimization algo-
rithms are currently available in PROC NLMIXED for this purpose. The default is a dual
quasi-Newton algorithm. Successful convergence of the optimization algorithm results
in parameter estimates along with their approximate standard errors computed from
the second derivative matrix of the likelihood function. Thereby, PROC NLMIXED readily
computes efficient estimates of the model’s parameters and valid standard errors of the
latter estimates. Finally, we note that due to the general nonlinear formulation, no direct
analogue to the REML method is available in the NLMIXED procedure. Only standard
maximum likelihood methods are used.

An alternative for the analysis of NLME models as concerns commercial packages,
is provided by the S-PLUS (Mathsoft Inc., 1997) function nlme, written by Pinheiro
et al. (1998). The nlme function fits nonlinear mixed-effects models using the two-
stage algorithm, as is defined in Lindstrom and Bates (1990) in the special case where
R, = ¢%I,,, [with the modification though, that for the PNLS step of the two-stage algo-
rithm the loosely coupled structure of the nonlinear least squares minimization problem
as described in Soo and Bates (1992), is used]. Either maximum likelihood (ML) or re-
stricted maximum likelihood (REML) may be used as the plausible estimation method.
More precisely, a list of starting values for the fixed-effects parameters are required for
the two-stage iterative algorithm. The default starting values for the random effects are
zero. Also, starting values for the variance parameters are automatically generated using
a formula from Laird et al. (1987), in the case they are not supplied. As is the case with
the linear relative of nlme function, namely the 1me set of functions, various structures
may be used for the parameterization of the between-subject variance (i.e. parame-
terization of matrix D). A useful reference describing the different variance-covariance
parameterizations is Pinheiro and Bates (1996).

A program, entirely devoted to nonlinear mixed model analysis, is the software pack-
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age NONMEM (Beal and Sheiner, 1992). The specific program has been widely used by
practitioners in the area of pharmacokinetic and pharmacodynamic analysis. NONMEM
performs maximum' likelihood estimation based either on the first-order linearization
method of Beal and Sheiner, or on the conditional first-order linearization method of
Lindstrom and Bates. It has the characteristic of supporting a quite general modeling of
the within-subject covariance structures. The core of the NONMEM program is a set of
subroutines written in the FORTRAN programming language, thus NONMEM can run
on any platform supporting a FORTRAN compiler.

As concerns the fit of nonparametric NLME models (see section 6.7.1), nonparametric
maximum likelihood estimation using a continuous version of the EM algorithm of Schu-
mitzky (1991; 1993) is implemented in the NPEM program, which is available as part of
the USC*PACK suite of PC programs (for more details on the USC*PACK collection of
PC progrums the interested reader is referred to Jelliffe et al., 1994).

Similarly, the NPML program, using the Basic Algorithm of Section 6.7.1 as described
by Mallet (1986), computes the nonparametric ML estimate of the unknown distribution
density H. NPML was the first program to compute the entire discrete distribution
function H, without making any parametric assumptions.

A program for analyzing longitudinal data using the ideas of semiparametric mod-
eling (see section 6.7.2) is NLMIX. NLMIX is a FORTRAN program that implements
the smooth nonparametric maximum likelihood method (SNP) of Davidian and Gallant
(1992; 1993). The interested reader may be referred to Davidian and Gallant (1994) for
a detailed description of NLMIX program.

Finally, as far as Bayesian analysis of NLME models is concerned, many standard non-
linear Bayesian models can be implemented in the software package BUGS (Spiegelhalter
et al., 1995).
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Table Al

The Potthoff and Roy (1964) data

age
8 10 12 14
female 21.0 20.0 21.5 23.0
female 21.0 21.5 24.0 25.5
female 20.5 24.0 24.5 26.0
female 235 24.5 25.0 26.5
female 21.5 23.0 22.5 23.5
female 20.0 21.0 21.0 22.5
female 21.5 22.5 23.0 25.0
female 23.0 23.0 23.5 24.0
female 20.0 21.0 22.0 21.5
female 16.5 19.0 19.0 19.5
female 24.5 25.0 28.0 28.0
male  26.0 25.0 29.0 31.0
male  21.5 22.5 23.0 26.5
male  23.0 22.5 24.0 27.5
male  25.5 27.5 26.5 27.0
male  20.0 23.5 22.5 26.0
male  24.5 25.5 27.0 28.5
male  22.0 22.0 24.5 26.5
male  24.0 21.5 24.5 25.5
male  23.0 20.5 31.0 26.0
male  27.5 28.0 31.0 31.5
male  23.0 23.0 23.5 25.0
male  21.5 23.5 24.0 28.0
973 (continued)



Table Al (continued)

male
male
male

male

age
8 10 12 14
17.0 24.5 26.0 29.5
22.5 25.5 25.5 26.0
23.0 24.5 26.0 30.0
22.0 21.5 23.5 25.0
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Table A2

The rat body weight data of Box (1950)

week

1 2 3 4 )

57 86 114 139 172
60 93 123 146 177
52 77 111 144 185
49 67 100 129 164
56 81 104 121 151
46 70 102 131 153
51 71 94 110 141
63 91 112 130 154
49 67 90 112 140
57 82 110 139 169
59 85 121 146 181
54 71 90 110 138
56 75 108 151 189
59 85 116 148 177
57 @z 97 120 144
92 73 97 116 140
52 70 105 138 171
61 86 109 120 129
39 80 101 1Ll 122
53 79 100 106 133
59 88 100 111 122
51 75 101 123 140
51 75 o 100 119
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Table A2 (continued)

week
1 2 3 5
56 78 95 103 108
58 69 93 116 140
46 61 78 107
53 72 89 104 122
Table A3

The theophylline data of Pinheiro and Bates (1995)

patient 1
patient 2
patient 3
patient 4
patient 5
patient 6
patient 7
patient 8
patient 9
patient 10
patient 11
patient 12

0.74
0.00
0.00
0.00
0.00
0.00
0.15
0.00
0.00
0.24
0.00
0.00

2.84
1.72
4.40
1.89
2.02
1.29
0.85
3.05
7.37
2.89
4.86
1.25

6.57
7.91
6.90
4.60
9.63
3.08
2.35
3.05
9.03
5.22
7.24
3.96

10.50 9.66

3.31
8.20
8.60
11.4
6.44
5.02
7.31
7.14
6.41
8.00
7.82

8.33
7.80
8.38
9.33
6.32
6.58
7.56
6.33
7.83
6.81
9.72

8.58
6.85
7.50
7.54
8.74
9.53
7.09
6.59
5.66
10.2
5.87
9.75

8.36
6.08
6.20
6.88
7.56
4.94
6.66
5.88
5.67
9.18
5.22
8.57

7.47
5.40
5.30
5.78
7.09
4.02
5.25
4.73
4.24
8.02
4.45
6.59

6.89
4.55
4.90
5.33
5.90
3.46
4.39
4.57
4.11
7.14
3.62
6.11

5.94
3.01
3.70
4.19
4.37
2.78
3.53
3.00
3.16
9.68
2.69
4.57

3.28
0.90
1.05
1.15
1.57
0.92
1.15
1.25
1.12
2.42
0.86
1.17
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