Stochastic spatio-temporal modeling with applications to animal infectious diseases

Valantis Malesios, Nikolaos Demiris, Kostas Kalogeropoulos, Ioannis Ntzoufras and Theodoros Koutroumanidis

AUEB, DUTH, LSE

Seminar series, Department of statistics, AUEB, June 2014

Motivating example

 2 cases of epidemics in livestock from the Evros prefecture

• A) foot-and-mouth disease (FMD)• B) sheep pox disease

Characteristics of epidemic data

- Spatio-temporal dependence
- o Environmental noise
- o Multicollinearity
- Presence of "excess" zeros

Foot-and-mouth disease A viral disease, infecting mainly cattle,

- A viral disease, infecting mainly cattle, sheep, goats, pigs.
- o Infection results in:
 - Reduced productivity (up to 70%)
 - Death (rare, mainly for young animals)

Transmission:

- Direct contact (animal-to-animal)
- Indirect contact (people, vehicles, etc.)
- •Airborne disease (less effective)

Epidemics in Evros, Greece

- 2 major epidemics in Evros region
- FMD epidemic (during July-September, 2000)
- Sheep pox endemic (1994-1998)
- FMD: ~10.000 dead livestock
 Sheep pox : ~35.500 dead livestock

Models for FMD & sheep pox

o <u>Data</u>:

- yt: total cases of disease occurrence for sheep pox/FMD (case: each infected farm)
- t: week/day for sheep pox/FMD
- Spatial information in the form of coordinates (xi,yi) for each farm i.

Explanatory Variables X's:

<u>Covariates referring to</u> <u>environmental/meteorological data</u>

- Temperature levels (min, mean, max)
- Rainfall
- Humidity
- Soil temperature (10cm)
- Wind speed

Other predictors:

- Spatial kernels
- Parameter T: yt=T*yt-1

Basic features of our modeling

- Point processes accounting for "excess" zeros
- Regression based upon a series of (environmental) covariates
- Stochastic component: Ornstein-Uhlenbeck (OU) process
- Spatial distance kernels
- Bayesian g-priors for dealing with correlated covariates
- A link to epidemic control

Model formulation

$$\begin{cases} y_i & \sim g(y_i|\theta_i, p_i) \\\\ g(y_i|\theta_i, p_i) &= p_i I_{\{y_i=0\}} + (1-p_i) f(y_i|\theta_i) \\\\ \theta_i &= h(\lambda_i) = \exp(\lambda_i) \\\\ d\lambda_t &= \phi(\lambda_t - \mu_t) dt + dB_t \end{cases}$$

Where Bt denotes Brownian motion, and µt is given by:

$$\mu_{t} = \mathbf{X}_{(i)} \boldsymbol{\beta} + \tau \cdot y_{i-1} + K(d_{i}, \boldsymbol{\Theta}_{K})$$
$$\log\left(\frac{p_{t}}{1 - p_{t}}\right) = \mathbf{X}_{(i)}^{t} \cdot \boldsymbol{\beta}^{z} + \tau^{z} \cdot y_{i-1} + K(d_{i}, \boldsymbol{\Theta}_{K}^{z})$$

pi ($0 \le p_i \le 1$) is the percentage of excess zeros at time ti.

Model framework

 Poisson, negative binomial, ZIP, ZINB are special cases of the above formulation.

• • The O-U process

 λt: an Ornstein-Uhlenbeck process around µt which in turn is determined by the covariates and kernels.

$$\lambda_{t_{i+1}} | \lambda_{t_i} \sim N\left(\mu^{(i)} + \left(\lambda_{t_i} - \mu^{(i)}\right) e^{-\phi \delta_i}, \frac{1 - e^{-2\phi \delta_i}}{2\phi}\right), \ \delta_i = t_{i+1} - t_i.$$

With each change in the covariates we have a shock to the system, of which the process λ_t adapts through the OU process, with rate of convergence driven by ϕ (Struthers and McLeish, 2011).

Spatial information

$$K(d_{i}, \boldsymbol{\Theta}_{\mathbf{K}}) = \begin{cases} \frac{1}{|d_{i}|} \sum_{k \in S_{i}} \sum_{k \in S_{i-1}} K(d_{k\ell}, \boldsymbol{\Theta}_{\mathbf{K}}) & \text{if } y_{i} > 0 \text{ and } y_{i-1} > 0 \\ K(1, \boldsymbol{\Theta}_{\mathbf{K}}) & \text{if } y_{i} > 0 \text{ and } y_{i-1} = 0 \\ K(d_{\min}, \boldsymbol{\Theta}_{\mathbf{K}}) & \text{if } y_{i} = 0 \end{cases}$$

K(•): predetermined function of average distance between farms of previous and current week/day (kernel functions).

dmin: minimum distance beyond which there is no transmission of disease

Summary of kernel functions compared

Table 1 Summary of transmission kernel functions included in spatio-temporal models.						
Notation	$\mathcal{K}(d_{k\ell}, \mathbf{\Theta}_K)$	$\mathbf{\Theta}_{K}$	Reference			
А	$\left(1 + \frac{d_{k\ell}}{a}\right)^{-c}$	(a,c)	Chis-Ster and Ferguson (2007)			
В	$\exp\left\{-\left(\frac{d_{k\ell}}{a}\right)^{c}\right\}$	(a,c)	Keeling (2001)			
С	$\exp\left\{-\left(\frac{d_{k\ell}}{a}\right)^c\right\}+r$	(a,c,r)	Diggle (2006)			
D	$a\exp\left(-ad_{k\ell}\right)$	a	Szmaragd (2009)			
Е	$\frac{\alpha}{\sqrt{\pi}}\exp\left(-a^2d_{k\ell}^2\right)$	a	Szmaragd (2009)			
F	$\frac{a}{4}\exp\left(-a^{\frac{1}{2}}d_{k\ell}^{\frac{1}{2}}\right)$	a	Szmaragd (2009)			

Variable selection

• We utilize the hyper g-prior (Liang, 2008), modified by Bové and Held (2011) for GLMs.

 Following Ntzoufras et al. (2003) use a slightly modified version of hyper g-prior that assigns a Beta density to the shrinkage factor g/(1+g) as:

$$\frac{g}{1+g} \sim Beta\left(1, \frac{\alpha}{2} - 1\right).$$

Variable selection

- We focus on hyper g-prior with α=4 however we employ sensitivity analysis for various α (αε[2, 4]).
- We also compare with other g priors (sensitivity analysis):
 - Hyper g/n prior
 - Zellner's g prior (g=n)
 - Zellner's g prior (g=p^2)
 - Empirical normal prior

Decomposition of infection rate

 Lending ideas from Meyer et al. (2012), we split the infection rate λt to endemic/epidemic components:

 $\lambda = \lambda_{\text{endemic}} \lambda_{\text{epidemic}} = \exp(\theta_{\text{endemic}} + \theta_{\text{epidemic}})$

- Endemic→ meteorological covariates
- Epidemic \rightarrow spatial kernels, # of cattle, sheep

Epidemic control

- Connection of the stochastic model with a suitable Branching Process
- Estimate probability of extinction (q)
- For Poisson distribution, the q's are calculated by solving: exp(qλ)=qexp(λ)
- Extend the above for the ZIP model by: q=min{1,q(λ)+p}

Results – covariate selection (sheep pox)

Sensitivity analysis for various α (hyper g-prior) for λ_t .

Sensitivity analysis for various α (hyper g/n-prior) for λ_t .

Results – covariate selection (sheep pox)

Graph presents posterior inclusion probabilities for the covariates under the various g-prior approaches (infection rate λ_t).

The results refer to applying a uniform prior for inclusion probabilities γ : $\gamma_j \sim \text{Bernoulli}(0.5)$.

Η εφαρμογή μιας beta-binomial prior $\gamma_j \sim \text{Bernoulli}(p)$ $p \sim \text{Beta}(1,1)$; έδωσε παρόμοια κατάταξη των covariates, αυξάνοντας όμως τις εκ των υστέρων πιθανότητες επιλογής για όλες τις μεταβλητές.

Results – model selection (sheep pox)

Model	\overline{D}	Kernel	\overline{D}
Poisson	310.2	A Chis-Ster and Ferguson (2007)	228
Negative	26 7 E	B Keeling et al. (2001)	228.5
binomial	307.5	C Diggle (2006)	231.3
ZIP	277.3	D Szmaragd et al. (2009)	240.4
ZIP_{h}	270	E Szmaragd et al. (2009)	231.9
ZINB	401.6	F Szmaragd et al. (2009)	234.6

Adding spatial information (under ZIP distribution) and utilizing the proposed OU formulation we achieve important improvement in model fit.

Results – model selection (foot-and-mouth)

Model	\overline{D}	Kernel	\overline{D}
Poisson	145.5	A Chis-Ster and Ferguson (2007)	115.2
Negative	140	B Keeling et al. (2001)	115.6
binomial	149	C Diggle (2006)	114.2
ZIP	141.3	D Szmaragd et al. (2009)	113.5
ZIP _h	124.5	E Szmaragd et al. (2009)	113.4
ZINB	145.2	F Szmaragd et al. (2009)	116.8

Similar improvement in model fit (ZIP distribution).

Results – model selection (sheep pox)

Model	Computati	% of reduction		
	Taylor model (Choi et al.,	SM model	in computational	
-	2012)		time	
Poisson	5.456 s	938 s	82.8%	
Negative binomial	3.489 s	986 s	71.7%	
ZIP	3.539 s	917 s	74.09%	
ZIPh	3.688 s	913 s	75.25%	
ZINB	3.956 s	967 s	75.56%	

•The OU component, under the proposed formulation reduces significantly the computational time for all models, in addition to having a much better fit.

•Reductions of similar magnitude in the running times were also observed for the FMD data.

Sheep pox data

- Infection rate (λt) is affected
 by:
 - Max temperature (+)
 - Humidity (-)
 - Distance
- <u>"Excess" zero probability (pt) is</u> <u>affected by</u>:
 - Min temperature (+)
 - Humidity (+)
 - Distance

Foot-and-mouth data

- Infection rate (λt) is affected by:
 - Distance

- <u>"Excess" zero probability (pt) is</u> <u>affected by</u>:
 - # of cattle (-)
 - # of sheep (-)
 - Distance

Results

- No effects for the meteorological covariates on FMD occurrences
- Conversely, temperature and humidity are significant for sheep pox occurrence
- <u>Sheep pox</u>: the movement from low to high temperatures probably increases incidence of sheep pox.
- Humidity reduces incidence of sheep pox

Results

Possible reason for this:

- FMD → epidemic outbreak (duration: July-September, 2000)
- Sheep pox \rightarrow endemic (duration: 1994-98)

• • Results – decomposition of λ_t (sheep pox)

	\min	median	\max
$\Theta_{endemic}$	1.961	4.045	16.506
	(1.904 - 2.017)	(4.021 - 4.068)	(16.309 - 16.703)
$\Theta_{epidemic}$	1.269	1.156	1.011
	(1.256 - 1.282)	(1.145 - 1.166)	(1.01 - 1.013)

Scenarios for future epidemic

Epidemic of 1994-1998

• • • Results – decomposition of λ_t (foot-and-mouth)

	min	median	max	
O _{endemic}	0.987	0.979	0.19	Scenarios for
onaonito	(0.983; 0.955)	(0.977; 0.98)	(0.069; 0.311)	future
O amidamia	0.184	0.572	0.831	epidemic
epiaemic	(0.165; 0.203)	(0.548; 0.595)	(0.808; 0.854)	_

• • • • Results – epidemic control q's and 95% credible intervals for scenarios of a future epidemic

> Hypothetical scenarios for future outbreaks (early stages of epidemic)

	min	aver	average max		distance	e	
	temperature	temperature		temperature			
min	0.567	0.9	98	0.536	0.152		
	(0.542; 0.592)	(0.972;	0.987)	(0.511; 0.562)	(0.135; 0.1	.68)	FMD data
max	0.56	0.0	23	0.577	0.572		
	(0.536; 0.585)	(0.017)	0.31)	(0.553; 0.601)	(0.548; 0.5	95)	
All	0.564						
covariates	(0.54; 0.587)						
at median							
values							
	hum	idity	maxin	num temperatur	e distan	ce	-
	0.0	01		0.878	0.018	8	-
min	(0.0007	-0.001)	(0.861 - 0.895)	(0.01-0.5	256)	
	0.4	85		0.076	0.195	õ	Sheep pox data
max	(0.456-	0.513)	(0.062-0.091)	(0.174-0.	.217)	-
all covariate	s 0.1	.73					
at median v	alues (0.153-	0.194)					_

Discussion

- Development of appropriate stochastic model, deals with "excess" zeros
- Link with policy-focused models
- Largely insensitive to the specific choice of kernel function
- Intuitive decomposition to endemic and epidemic components.

Limitations – future work

 Used deviance-based measures for model selection

- More natural/intuitive approach due to the sequential nature of the data: prequential methodology
- Also compare with recently developed information criteria due to Watanabe

Some references

- Bové, D.S. and Held, L. (2011). Hyper-g priors for generalized linear models. *Bayesian Analysis*, 6(3), 387-410.
- Choi, Y.K., Johnson, W.O., Jones, G., Perez, A., Thurmond, M.C., 2012. Modelling and predicting temporal frequency of foot-and-mouth disease cases in countries with endemic foot-and-mouth disease. *Journal of the Royal Statistical Society A*, 175(2), 619-636.
- Liang, F., Paulo, R., Molina, G., Clyde, M.A. and Berger, J.O. (2008). Mixtures of g priors for Bayesian variable selection. *Journal of the American Statistical Association*, 103(481), 410-423.
- Meyer, S., Elias, J. and Höhle, M. (2012). A space-time conditional intensity model for invasive meningococcal disease occurence. *Biometrics*, 68, 607-616.
- **Ntzoufras, I., Dellaportas, P. and Forster, J.J. (2003).** Bayesian variable and link determination for generalized linear models. *Journal of Statistical Planning and Inference*, 111(1-2), 165-180.
- Watanabe, S. (2010). Equations of states in singular statistical estimation. *Neural Networks*, 23(1), 20-34.

THANK YOU FOR YOUR ATTENTION