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Motivating example

 2 cases of epidemics in livestock from 
the Evros prefecture

 Α) foot-and-mouth disease (FMD)
 B) sheep pox disease



Characteristics of epidemic data

 Spatio-temporal dependence
 Environmental noise
 Multicollinearity
 Presence of “excess” zeros



 A viral disease, infecting mainly cattle, 
sheep, goats, pigs. 

 Infection results in:
 Reduced productivity (up to 70%)
 Death (rare, mainly for young animals)

Foot-and-mouth disease

Transmission:
• Direct contact (animal-to-animal)
•Indirect contact (people, vehicles, etc.)
•Airborne disease (less effective)



2 major epidemics in Evros region
 FMD epidemic (during July-

September, 2000)
 Sheep pox endemic (1994-1998)

Epidemics in Evros, Greece

 FMD: ~10.000 dead livestock
 Sheep pox : ~35.500 dead livestock



Models for FMD & sheep pox

 Data:
 yt: total cases of disease occurrence for 

sheep pox/FMD (case: each infected farm)

 t: week/day for sheep pox/FMD

 Spatial information in the form of coordinates 
(xi,yi) for each farm i.



X’s:
Covariates referring to 

environmental/meteorological data
• Temperature levels (min, mean, max)
• Rainfall
• Humidity
• Soil temperature (10cm)
• Wind speed
Other predictors:
• Spatial kernels
• Parameter τ: yt=τ*yt-1

Explanatory Variables



Basic features of our modeling

 Point processes accounting for “excess” zeros
 Regression based upon a series of 

(environmental) covariates
 Stochastic component: Ornstein-Uhlenbeck 

(OU) process
 Spatial distance kernels
 Bayesian g-priors for dealing with correlated 

covariates
 A link to epidemic control 



Model formulation

Where Bt denotes Brownian motion, and μt is given by:

pi (0≤ pi ≤1) is the percentage of excess zeros at time ti.

   1 ,t i i Ki y K d     X β Θ



 Poisson, negative binomial, ZIP, ZINB 
are special cases of the above 
formulation. 

Model framework



The O-U process

 λt: an Ornstein-Uhlenbeck process around μt

which in turn is determined by the covariates 
and kernels.

With each change in the covariates we have a 
shock to the system, of which the process λt

adapts through the OU process, with rate of 
convergence driven by φ (Struthers and 
McLeish, 2011). 



Spatial information 

K(•): predetermined function of average 
distance between farms of previous and 
current week/day (kernel functions).

dmin: minimum distance beyond which there 
is no transmission of disease
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Variable selection
 We utilize the hyper g-prior (Liang, 2008), modified 

by Bové and Held (2011) for GLMs.

 Following Ntzoufras et al. (2003) use a slightly 
modified version of hyper g-prior that assigns a Beta 
density to the shrinkage factor g/(1+g) as:



 We focus on hyper g-prior with α=4 however 
we employ sensitivity analysis for various α 
(αϵ[2, 4]).

 We also compare with other g priors
(sensitivity analysis):
 Hyper g/n prior
 Zellner’s g prior (g=n)
 Zellner’s g prior (g=p^2)
 Empirical normal prior

Variable selection



Decomposition of infection rate

 Lending ideas from Meyer et al. (2012), we split 
the infection rate λt to endemic/epidemic 
components:

λ=λendemic λepidemic =exp(θendemic + θepidemic)

 Endemic meteorological covariates
 Epidemic spatial kernels, # of cattle, sheep



Epidemic control
 Connection of the stochastic model with a suitable

Branching Process

 Estimate probability of extinction (q)

 For Poisson distribution, the q’s are calculated by 
solving: exp(qλ)=qexp(λ)

 Extend the above for the ZIP model by:
q=min{1,q(λ)+p}



Results – covariate selection 
(sheep pox)

Sensitivity analysis for various 
α (hyper g-prior) for λt.

Sensitivity analysis for various 
α (hyper g/n-prior) for λt.



Results – covariate selection 
(sheep pox)

Graph presents 
posterior inclusion 
probabilities for the 
covariates under the 
various g-prior 
approaches (infection 
rate λt).

The results refer to applying a uniform prior for inclusion probabilities γ:

Η εφαρμογή μιας beta-binomial prior 
έδωσε παρόμοια κατάταξη των covariates, αυξάνοντας όμως τις εκ των 
υστέρων πιθανότητες επιλογής για όλες τις μεταβλητές.



Results – model selection 
(sheep pox)

Kernel

A Chis-Ster and Ferguson (2007) 228

B Keeling et al. (2001) 228.5

C Diggle (2006) 231.3

D Szmaragd et al. (2009) 240.4

E Szmaragd et al. (2009) 231.9

F Szmaragd et al. (2009) 234.6

DModel

Poisson 310.2

Negative 

binomial
367.5

ZIP 277.3

ZIPh 270

ZINB 401.6

D

Adding spatial 
information (under ZIP 
distribution) and utilizing 
the proposed OU 
formulation we achieve 
important improvement 
in model fit.



Results – model selection 
(foot-and-mouth)
Model

Poisson 145.5

Negative 

binomial
149

ZIP 141.3

ZIPh 124.5

ZINB 145.2

Kernel

A Chis-Ster and Ferguson (2007) 115.2

B Keeling et al. (2001) 115.6

C Diggle (2006) 114.2

D Szmaragd et al. (2009) 113.5

E Szmaragd et al. (2009) 113.4

F Szmaragd et al. (2009) 116.8

Similar improvement in 
model fit (ZIP 
distribution).

D D



Results – model selection 
(sheep pox)

Model Computational time % of reduction
in
computational
time

Taylor model 
(Choi et al., 

2012)

SM model

Poisson 5.456 s 938 s 82.8%

Negative binomial 3.489 s 986 s 71.7%

ZIP 3.539 s 917 s 74.09%

ZIPh 3.688 s 913 s 75.25%

ZINB 3.956 s 967 s 75.56%

•The OU component, under the proposed formulation 
reduces significantly the computational time for all 
models, in addition to having a much better fit.

•Reductions of similar magnitude  in the running times 
were also observed for the FMD data. 



Sheep pox data
 Infection rate (λt) is affected 

by:
 Max temperature (+)
 Humidity (-)
 Distance 

 “Excess” zero probability (pt) is 
affected by:
 Min temperature (+)
 Humidity (+)
 Distance

Results

Foot-and-mouth data
 Infection rate (λt) is affected 

by:
 Distance 

 “Excess” zero probability (pt) is 
affected by:
 # of cattle (-)
 # of sheep (-)
 Distance



Results

 No effects for the meteorological covariates on 
FMD occurrences 

 Conversely, temperature and humidity are 
significant for sheep pox occurrence

 Sheep pox: the movement from low to high 
temperatures probably increases incidence of 
sheep pox.

 Humidity reduces incidence of sheep pox



Possible reason for this:
 FMD  epidemic outbreak (duration: July-

September, 2000)
 Sheep pox  endemic (duration: 1994-98)

Results



Results – decomposition of λt (sheep 
pox)

Epidemic 
of 1994-
1998

Scenarios for 
future 
epidemic



Results – decomposition of λt (foot-
and-mouth)

Epidemic 
outbreak 
of 2000

Scenarios for 
future 
epidemic



q’s and 95% credible intervals for scenarios of a future 
epidemic
Hypothetical scenarios for future outbreaks (early stages of 
epidemic)

Results – epidemic control

Sheep pox data

FMD data



Discussion
 Development of appropriate stochastic 

model, deals with “excess” zeros
 Link with policy-focused models
 Largely insensitive to the specific choice 

of kernel function
 Intuitive decomposition to endemic and 

epidemic components.



Limitations – future work

 Used deviance-based measures for 
model selection

 More natural/intuitive approach due to 
the sequential nature of the data: 
prequential methodology

 Also compare with recently developed 
information criteria due to Watanabe



Some references
 Bové, D.S. and Held, L. (2011). Hyper-g priors for generalized linear models. 

Bayesian Analysis, 6(3), 387-410.
 Choi, Y.K., Johnson, W.O., Jones, G., Perez, A., Thurmond, M.C., 2012.

Modelling and predicting temporal frequency of foot-and-mouth disease cases in 
countries with endemic foot-and-mouth disease. Journal of the Royal Statistical 
Society A, 175(2), 619-636.

 Liang, F., Paulo, R., Molina, G., Clyde, M.A. and Berger, J.O. (2008). Mixtures of 
g priors for Bayesian variable selection. Journal of the American Statistical 
Association, 103(481), 410-423. 

 Meyer, S., Elias, J. and Höhle, M. (2012). A space-time conditional intensity model 
for invasive meningococcal disease occurence. Biometrics, 68, 607-616.

 Ntzoufras, I., Dellaportas, P. and Forster, J.J. (2003). Bayesian variable and link 
determination for generalized linear models. Journal of Statistical Planning and 
Inference, 111(1-2), 165-180.

 Watanabe, S. (2010). Equations of states in singular statistical estimation. Neural 
Networks, 23(1), 20-34.



THANK YOU FOR YOUR ATTENTION


