Comparing Prequential Selection Criteria for CIR and Continuous-type Spatio-temporal Models for Infectious Disease Data

Malesios C¹., Demiris N². and Kalogeropoulos K³. ¹Department of Rural Development, Democritus University of Thrace, Orestiada, Greece ²Department of Statistics, Athens University of Economics and Business, Athens, Greece ³Department of Statistics, London School of Economics, London, UK

Introduction

- In finance, the Cox-Ingersoll-Ross (CIR) model describes the evolution of interest rates.
- We model foot-and-mouth epidemic data, comparing a spatiotemporal regression-type model with a newly developed CIR model.
- We investigate the advantages of one-step-ahead predictions for assessing model fit in a Bayesian framework (Dawid, 1984).

Prequential methodology

- Examines each model's prediction for the next data point x_{n+1} after fitting the model to data x1, x2,...,xn.
- Criterion for model selection: distances, known as scoring rules, measuring the discrepancy between the forecasts and the data.
- The best model is the one with the smallest average score among the entertained models. We utilize four scoring rules for the evaluations:

Single-valued predictions:

AES = |x|

SES = (x

$$\begin{array}{ll} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Probabilistic predictions:} \\ \hline t_t - \mu_{p_t} \end{array} \end{array} & \begin{array}{l} \begin{array}{l} \mbox{Probabilistic predictions:} \\ \mbox{log } S = S\left(x_t, F_t\right) = -\log q(x_t) \\ \hline t_t - \mu_{p_t} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{RPS} = \sum\limits_{k=0}^{\infty} \left(P\left(X \leq k\right) - 1\left(x \leq k\right) \right)^2 \end{array} \end{array} \end{array}$$

Spatio-temporal models

The models are described by: Infections in $[t_i, t_{i+1}]$ ~Poisson(Λ_i)

$$\Lambda_i = \int_{t_i}^{t_{i+1}} \lambda_s ds$$

Model1:

$$\lambda_{i} = \mu_{i} = \mathbf{X}_{(i)} \cdot \mathbf{\Theta}_{\beta} + K(d_{i}, \mathbf{\Theta}_{\mathbf{K}}) = \mathbf{X}_{(i)} \cdot \mathbf{\Theta}_{\beta} + \left(1 + \frac{d_{i}}{\alpha}\right)$$

Model 2: *CIR*

 $d\lambda_i = \phi(\mu_i - \lambda_i)dt + \sigma\sqrt{\lambda_i}dB_i$ $\Theta = (\Theta_B, \Theta_K)'$

with model parameters including environmental factors, transmission kernel.

Results

Inference and sampling from the predictive distributions was performed in WinBUGS. Prequential analysis was done in R2winBUGS, a tool developed for combining WinBUGS and R. <u>Continuous type-model</u>:

Model	Distribution	SES	AES	$\overline{\log S}$	\overline{RPS}	\overline{D}
Continuous- type spatio- temporal model	Poisson	2.933	1.025	0.887	10.436	4569

the epidemic is significantly associated with the spatial spread of the disease.

>Principled advantage of the prequential approach is that it respects the time ordering of the data and allows for the temporal assessment of each model's performance.

>We prefer the probabilistic one-step-ahead predictions based on logS and RPS since they properly account for uncertainty.

