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Utilizing the Hirsch index h and some of its variants for an exploratory factor 

analysis we discuss whether one of the most important Hirsch-type indices, 

namely the g-index comprises information about not only the size of the 

productive core but also the impact of the papers in the core. We also study the 

effect of logarithmic and square-root transformation of the data utilized in the 

factor analysis. To demonstrate our approach we use a real data example 

analysing the citation records of 26 physicists compiled from the Web of 

Science.  
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1. Introduction 

Prior to the introduction of the h-index by Hirsch (2005), individual scientific performance 

was assessed using traditional bibliometric indicators, such as the number N of articles 

published or the number S of all citations received by all the published articles. Many other 

indicators have been devised, such as the average number of citations per article, percentage 

of highly cited articles, impact indicators based on the impact factor of publication journals of 

the researcher etc. (For more on traditional bibliometric indicators see e.g. Costas and 

Bordons, 2007; Van Leeuwen, Visser, Moed, Nederhof, Van Raan, 2003). The h-index, based 

on the set of most cited articles published by a researcher and the citations received by those 

articles has immediately attracted the attention of the scientific community for assessing the 

scientific performance of a researcher based on bibliometric data. It is defined by: “A scientist 
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has index h if h of his N papers have at least h citations each, and the other (N - h) papers have 

at most h citations each”.  

  Besides its popularity, a lot of criticism has been raised (see, e.g., Adler, Ewing, & Taylor, 

2009; Schreiber, 2007; Vinkler, 2007; Meho, 2007), and various modifications and 

generalizations have appeared (see, e.g., Egghe, 2006a; Jin, Liang, Rousseau, & Egghe, 2007; 

Sidiropoulos, Katsaros, & Manolopoulos 2006; Tol, 2009). There are a number of situations 

in which the h-index may provide misleading information about a scientist’s output. For 

instance the lack of sensitivity of h to highly-cited papers in the h-core (the h most cited 

papers that are counted for h because they received h or more than h citations) is a frequently 

noticed disadvantage. To relax this “robustness” of the h-index, among others the g-index 

(Egghe, 2006b), the A-index (Jin, 2006), the R-index (Jin et al., 2007) and the hw-index 

(Egghe & Rousseau, 2008) were proposed. For a comprehensive and critical review of the h-

index and similar indices see Panaretos & Malesios (2009) and Schreiber (2010b). In the 

same vein, Alonso, Cabrerizo, Herrera-Viedma and Herrera (2009) describe a large set of h-

type indices, along with a presentation of the attempts for the standardisation of h-index for 

measuring scientific performance between different fields of research.    

After a comparison of some of the more important variants by means of a factor analysis 

(FA), Bornmann, Mutz, & Daniel (2008) came to the conclusion that there are two types of 

indices, one type of indices that “describe the most productive core of the output of a scientist 

and tell us the number of papers in the core” (p. 836) while “the other indices depict the 

impact of the papers in the core” (p. 836). The authors propose to use for evaluation purposes 

any pair of indices belonging to these two distinct groups, because each one of the two 

selected indices should represent one of the two dimensions. In particular, the h-index and the 

g-index were classified as belonging to the first category, while A and R certainly belong to 

the second group. To make the data suitable for the FA, the authors applied a logarithmic 

transformation to the raw data which moreover were shifted by 1 to avoid zero values. Along 

the same lines, Costas & Bordons (2008) performed exploratory factor analysis (EFA) on a 

dataset of 10 bibliometric indices, including h and g and also reported a factor structure where 

both indices, h and g, load on the same factor solely. Here too, however, the authors have 

applied a transformation to the data prior to the FA, namely the square root transformation.  

Although the aforementioned results are based on elaborate FA, at a closer look the 

distinction is not so convincing. Schreiber (2010a) has argued that the g-index also measures 

the impact of the papers in its core in the same way as the A-index does for the h-core and, 

therefore, g should be included in the second group as well; but, this does not mean that it 

should be deleted from the first group. This would make the g-index rather unique among the 
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various variants of the h-index and could be an explanation why “g has received most 

attention, whereas many other derivatives of the h-index have had little response” (Bornmann 

& Daniel, 2009c, p. 5). We investigate this in the following by an analysis of the citation 

records of 26 physicists, which were previously studied (Schreiber, 2008 and 2010b). 

Specifically, we will use EFA to discuss our assumption that the g-index can be classified as a 

bibliometric index that measures both the “quantity of the productive core” and the “impact of 

the productive core”.  

 

2. Data 

Data for the subsequent analysis were compiled between January and February 2007 from 

the Science Citation Index provided by Thomson Scientific in the Web of Science (WoS). As 

specified in Schreiber (2007), the 26 datasets comprise the citation records of all full, 

associate, and assistant professors from the Institute of Physics at Chemnitz university 

including recently retired professors. The datasets are labeled A, B, C, ….., Z in conformity 

with the previous analysis (Schreiber, 2007). The same data were utilized for an investigation 

of the g-index in comparison with the h-index, the A-index, and the R-index (Schreiber, 

2008). 

Details of the determination of the datasets have been described elsewhere (Schreiber, 

2007) in particular with respect to the precision problem, i.e. to establish that the considered 

publications have really been (co)authored by the investigated scientists and not by colleagues 

with the same name and the same initials. One may argue that the current analysis is based on 

a small sample from a single university. On the other hand, however, the great care that has 

been given by the author in establishing a correct database, that includes scientific staff of a 

typical institution – in contrast to most of studies that analyse the publication records of very 

prominent persons – constitutes a representative sample from an average institute and thus we 

believe that this sample has its specific merit.  In the current article we utilize 7 Hirsch-type 

indices (see Appendix A for the actual values and Appendix B for a brief definition of the 7 

indices) which were also used by Bornmann et al. (2008), namely h, m, g, h(2), A, R, hw thus 

enabling us to compare between the results of the current analysis and the one conducted by 

Bornmann et al. (2008). The selected indices do not involve any alteration of the original 

citation data like taking the age of the paper or the productive age of the scientist into account, 

such as for the AR-index or the m-quotient, or considering the number of coauthors as it is 

done for hm.   

 

 



 4

3. Methodology - Overview 

The goal of EFA is to identify the latent structure present in a set of observed variables, 

called the factors or latent variables, which are not directly measurable but represent certain 

features inherent in the data. In this way, EFA reduces the dimensionality of the data to a few 

representative factors, and therefore summarizes the multivariate information in a simpler 

form. 

There is a steadily increasing literature on applications of EFA in scientometrics in recent 

years. For example, in a comparative study of some of the most important h-type indices 

proposed in the literature, Bornmann et al. (2008) perform an EFA using as observed 

variables the g-, h(2)-, A-, R-, AR-, hw-, m-indices and m-quotient in addition to the h-index 

to identify possible subsets among these indicators that are more correlated to each other. The 

data described the 414 scientists from biomedicine who applied for BIF fellowships between 

years 1990 and 1995. The study concludes that more than 95% of the variability in the data is 

explained by two factors. The first factor was recognized to describe the size of the core 

(represented by h, g, h(2) and the m-quotient), whereas the second factor was recognized to 

describe the impact of the papers in the core (reflected by A, R, AR, hw, and the m-index). 

In a follow-up study, Bornmann, Mutz, & Daniel (2009a) re-ran the aforementioned EFA, 

adding to the previously described h-type indicators the two standard indicators in 

scientometrics, i.e., the total number N of articles published and the sum S of all citations 

received by these articles. Again the same factors were identified. As a tool for assessing the 

research performance of scientists, the authors proposed the use of any pair of indicators from 

the two factors, i.e. one indicator that is related to the number of papers in the researcher’s 

productive core and one indicator that is related to the impact of the papers in the researcher’s 

productive core. 

Similar results were reported in Bornmann, Mutz, Daniel, Wallon, & Ledin  (2009b) as a 

result of an EFA with, additionally to the previous analyses, two further variants recently 

proposed, namely the hm-index (Schreiber, 2009a) and the Maxprod-index (Kosmulski, 2007). 

The hm-index was found to relate to the number of papers in the productive core (first factor), 

Maxprod to the impact of the papers in that core (second factor). The data used for this 

analysis consisted again of young researchers, namely 693 applicants to the Long-Term 

Fellowship (LTF) programme of the European Molecular Biology Organization.  

Costas & Bordons (2007) also implemented EFA to investigate possible associations of 

the h-index with other measures of scientific research such as N, S, average number of 

citations per article C = S/N, percentage of highly cited papers, the median impact factor, the 

normalized position of the publication journal, the relative citation rate (RCR) and the 
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percentage of papers with an RCR above 1. Specifically, the authors used WoS data on the 

publication output of 348 Spanish scientists in the field of natural resources between 1994 and 

2004. Here, four factors extracted from the FA explained 93% of the total variance in the data. 

The first factor (explaining 29% of total variability) comprised N and S in addition to h, while 

the remaining three factors consisted of relative indicators of quality and quantity. Since the 

number of publications and citations were characterized as absolute indicators of quantity and 

impact, respectively, according to the authors’ opinion the h-index is confined to explain only 

a small portion of the information about a researcher’s work, leaving unexplained other 

important aspects of scientific performance, conveyed by the other relative indicators 

included in the analysis. 

The subsequent results of Costas and Bordons (2008) indicated that both, h and g express 

the same dimension of the research output of a scientist, together with N and S. In a 

complementary analysis, however, the authors deduce that the g-index is more sensitive in 

assessing the performance of selective scientists (i.e. scientists with low production of papers 

but of high impact) in comparison to the h-index tending to favor the big producers.    

In another recent application of data reduction methodology to bibliometric measures, 

Hendrix (2008) analyzed bibliometric data obtained from the WoS on the faculty of the 

Association of the American Medical Colleges member schools, covering the period between 

1997 and 2007, and a total of 123 researchers. The bibliometric variables collected, such as N, 

S, C, average number of citations per faculty member, combined with other institutional 

information (e.g., faculty size, total funding), and also an h-type index [the impact index of 

Molinari & Molinari (2008)], were analyzed using the method of principal components 

analysis (PCA). Three factors were extracted from the fit of the PCA model, the first of which 

accounted for the 31% of total variance, and was found to be highly correlated with the size-

dependent measures (i.e. N and S), whereas the second factor which explained 30% of total 

variance is associated with C, the impact index, and percentage of articles with zero citations. 

The third factor essentially accounted for the size-independent bibliometric variables, such as 

the average number of articles per faculty member and average number of citations per 

faculty member.    

In this paper we employ an EFA model in order to derive categorizations of the h-index 

and some of its variants. With 26 datasets the sample size is relatively small for the FA. But 

when certain conditions are fulfilled, in particular when communalities are high and the 

number of factors is small, then reliable FA results can be obtained even with very small 

sample sizes like 10 datasets as Preacher & MacCallum, 2002 have shown (see also 

MacCallum, Widaman, Zhang and Hong, 1999). The importance of large communalities in 
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diminishing the effects of small datasets for performing FA has been already pointed out in a 

series of studies (e.g. Pennell, 1968; Velicer, Peacock and Jackson, 1982; Velicer and Fava, 

1998). MacCallum, Widaman, Preacher and Hong (2001) added to the previous analyses by 

showing that communality level is still the most dominant factor in the stability of FA results, 

even under the most realistic situations. Specifically MacCallum et al. (1999) (p. 96) 

suggested that all communalities should be greater than 0.6, or the mean level of communality 

should be at least 0.7. As we utilize only two factors and as the determined communalities are 

extremely high (much higher than 0.9 for most variables, and a mean communality level as 

high as 0.978 for the raw data), we are confident that the subsequent analysis produces valid 

results. 

  

 

4. Distribution of the Index Values 
 

As mentioned above, in our EFA model the indices used as input for the analysis were 

most of the indices used for the FA by Bornmann et al. (2008). AR, hm, and the m-quotient 

were not included, because they require an alteration of the original citation data. 

Additionally to the raw index values x the logarithmically transformed data ln(x), and the 

logarithmically transformed shifted data ln(x+1) were utilized. Bornmann et al. (2008) used 

logarithmized shifted data, and thus it is of interest to check if there are any discrepancies in 

the results between the raw indices and the transformed ones1. We also analyzed the square-

root transformed data  in analogy to Costas & Bordons (2008). 

Bornmann et al. (2008) and Costas & Bordons (2008) have utilized transformations to 

make the data more suitable for the FA, since EFA techniques require that the variables 

should be normally distributed. In the case of our datasets there is no need, however, for 

applying such transformation, since the non-parametric Kolmogorov-Smirnov test for 

normality has shown that none of the 7 items deviate from normality at a 5% level of 

statistical significance (see Table 1 for the results of the test). This corresponds to the 

previous observation (Schreiber, 2009b) that h and 3 of its variants are approximately 

normally distributed for the present 26 datasets. 

 

 

                                                 
1 We have also performed the EFA of the 7 bibliometric indices, where instead of the h- and g-indices we use the 
interpolated h -index and the interpolated g -index. We hypothesized that the changes of the results by using the 
interpolated indices will not be significant. Indeed, by comparing the results of loadings of both EFA models we 
saw that the loadings are almost identical for both analyses. Slight differences were observed only in the EFA 
using the matrix of the ln(x). 
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Table 1: One-sample Kolmogorov-Smirnov test of the raw indices 
 

 h m g h(2) A R hw 
Mean 14.88 25.58 23.96 5 33.55 22.18 19.04 
Median 14 23.25 22 5 29.5 20.2 17.75 
Standard deviation 6.92 12.95 11.99 1.6 17.80 10.82 9.20 
Kolmogorov-Smirnov D (*) 0.186 0.198 0.202 0.230 0.217 0.199 0.186 
p-value (*) 0.332 0.260 0.241 0.125 0.174 0.255 0.331 
Kolmogorov-Smirnov D (**) 0.100 0.114 0.094 0.189 0.096 0.090 0.092 
p-value (**) 0.955 0.887 0.976 0.312 0.970 0.983 0.980 
(*) Test distribution is normal. 
(**)Test distribution is Student. 
 

 

Closeness of mean and median values of all indices as shown in Table 1 is also indicative 

of the approximate normality of the distributions. Nevertheless, transformed data were also 

investigated. In this case the mean and median values are nearly identical and the p-values of 

the Kolmogorov-Smirnov test are extremely large, see Tables A2 and A3 in the Appendix. 

We conclude that for the transformed data the assumption of normality is fulfilled with very 

high confidence. However, as Table 1 shows that we can be confident that already the non-

transformed index values are approximately normally distributed, we proceed with our 

investigation of the non-transformed data. We also studied the transformed data in the 

subsequent analysis to demonstrate that they should be used with caution. The EFA of the raw 

data will provide us with a baseline for assessing the effects of the three types of 

transformations.  

Due to the small number of datasets one would expect that the index values are better 

described by Student’s t-distribution. We have performed the respective Kolmogorov-

Smirnov test and the results in Tables 1, A2, and A3 confirm that especially the 

untransformed data are even better described by the t-distribution than by the normal 

distribution. For the transformed data the same conclusion can be drawn. 

One possible reason for which – in contrast to the data of Bornmann et al. (2008) – our 

data of each of the 7 indices are approximately normally distributed is the diversity of the 

status of the selected researchers. Indeed, among the 26 researchers there are young 

researchers (with comparatively low index scores) as well as senior professors with high 

values of most of their indices. On the other hand, Bornmann et al. (2008) study the data of 

young researchers, whose index values (especially the values of h and h(2)) are small and are 

concentrated within a very narrow field of values, with the direct consequence of giving 

extremely skewed distributions. It might also be an issue that the discrimination problem is 

more severe, because due to the small values there occur very many ties for these indices 
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which are restricted to integer values. In our current analysis the discrimination problem also 

occurs, in particular for h(2) where only 7 different values result for the 26 datasets. This 

leads to problems when one tries to compare with the normal or the t-distribution. It is 

therefore not surprising that the respective p-values in Tables 1, A2, and A3 are relatively 

small. However, if one applies a piecewise linear interpolation of the rank-frequency function 

one can interpolate between the integer values and thus discriminate all 26 datasets 

(Schreiber, 2008). For these interpolated values of h(2) the resulting p = 0.682 (test with 

normal distribution) and p = 0.997 (test with t-distribution) are significantly larger than p = 

0.125 and 0.312 for the non-interpolated h(2)-index. Similar observations have been made for 

the transformed data.  

The differences in the two analyses are obvious considering that the 414 scientists 

investigated by Bornmann et al. (2008) have altogether published a total number of 1,586 

papers, receiving a total number of 60,882 citations which means on average 3.8 papers and 

147 citations per scientist, whereas the 26 scientists in our study have published a much 

higher number of papers (2,373 papers) that received 25,554 citations, i.e. on average 91 

papers and 983 citations per person. The median values of 2, 2, and 3 for h(2), h, and g, 

respectively, show that the discrimination problem is quite severe, because at least half of the 

414 scientists share only 3, 3, or 4 values of the respective indices. The more recent study by 

Bornmann et al. (2009b) comprised 693 scientists with 3,351 papers, i.e. 4.8 papers per 

scientist which received 219 citations per scientist on average.  In this case, the median values 

of 3, 4, and 4 for h(2), h, and g again point to a substantial discrimination problem. 

 

 

5. Exploratory Factor Analysis 

For their EFA Bornmann et al. (2008, 2009b) used a maximum-likelihood factor 

extraction procedure which usually gives better and more robust estimates than the standard 

least-squares ansatz. However, for small sample sizes it has been argued that the least-squares 

method performs better (Ihara & Okamoto, 1985). For the FA we thus utilized least squares 

and a rotated varimax transformation to make our results more easily interpretable (statistical 

package SPSS 15.0 was utilized for the analysis; SPSS, 1999). In order to confirm the 

suitability of implementing EFA for the specific data and items selected, the Kaiser-Meyer-

Olkin (KMO) measure of model adequacy was used (Kaiser, 1974), which gave the 

acceptable value of 0.737 (see Table 2). The factor loading matrices for the factor models 

with the 7 indices can be found in Table 3.  The results of the analysis indicate the existence 
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of two factors as the best solution for explaining the variability in the data, as in Bornmann et 

al. (2008).  

 
Table 2: KMO test 

 
 Raw indices x ln(x) ln(x+1) √x 

KMO 0.737 0.830 0.813 0.744 
p-value < 0.001 < 0.001 < 0.001 < 0.001 

 
 

Table 3: Varimax rotated loading matrices (applying Kaiser normalization) for the 4 EFA 
models with values above 0.6 given in bold face 
 

Indices 

Raw indices x ln(x) ln(x+1) √x 

Component  Component  Component  Component  
1 2 1 2 1 2 1 2 

h 0.842 0.522 0.825 0.496 0.828 0.496 0.841 0.504 
m 0.752 0.597 0.721 0.525 0.728 0.524 0.742 0.561 
g 0.722 0.691 0.705 0.705 0.707 0.702 0.717 0.694 
h(2) 0.789 0.572 0.843 0.514 0.839 0.520 0.812 0.548 
A 0.536 0.844 0.491 0.871 0.494 0.870 0.514 0.858 
R 0.718 0.695 0.708 0.703 0.709 0.701 0.716 0.696 
hw 0.732 0.681 0.719 0.694 0.722 0.691 0.728 0.685 
Eigenvalues 3.755 3.094 3.667 3.017 3.688 3.01 3.739 3.042 

 

Table A4 shows the variance (communality) of each item explained by the factors 

extracted from the 4 models. Both factors accounted for 97.83%, 95.48%, 95.68%, and 

96.87% of the total variance in the raw data, the log-transformed data, the log-transformed 

shifted data, and the square-root transformed data, respectively. For the raw data, the first 

factor explained 53.64% of the total variance present in the data, whereas the second factor 

explained 44.19%. We have used the categorization of the indices among the factors by using 

factor loadings greater than 0.6 in agreement with Bornmann et al. (2008). As Table 3 shows, 

for the raw data the indices loading on the first factor are h, m, h(2), hw, g and R. The factors 

loading on the second factor are g, A, R, and hw. We cannot assign – in the way Bornmann et 

al. (2008) did – indices loading on the first factor as indicating the number of papers in the 

productive core of the researchers’ outputs, because m, hw, and R are surely based on the 

number of citations in the core. On the other hand, all the indices loading on the second factor 

reflect the impact of the papers in that core. We observe, that g, R, and hw are included in both 

factors. Indices solely loading on the first factor are h, m and h(2), whereas the only index 

loading solely on the second factor is A. In principle one could force a distinction by fine-
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tuning the threshold: a value 0.7 would lead to a separation of all indices except A loading on 

the first factor and only A on the second. But this is not convincing, because the factor 

loadings for the two components are rather close for g, R, and hw. 

By utilizing the transformed data we obtain rather similar results as Table 3 shows. The 

results of the FA utilizing the square-root transformation are in accordance with the factor 

loadings for the raw data. For the log-transformed data ln(g), ln(R), and ln(hw) the loadings on 

both factors are even closer than for the raw data, confirming the conclusion that these indices 

load on both factors. Shifting the data by 1 before logarithmizing yields only minor 

differences in comparison to the unshifted logarithmized data. Thus our categorization differs 

from that obtained by Bornmann et al. (2008), because there a clear separation into two 

groups appears. 

 

Table 4: Promax oblique rotated loading matrices for the 4 EFA models with values above 
0.6 given in bold face 
 

Indices 

Raw indices x ln(x) ln(x+1) √x 

Component  Component  Component  Component  
1 2 1 2 1 2 1 2 

h 0.842 0.183 0.824 0.173 0.829 0.170 0.848 0.164 
m 0.663 0.350 0.661 0.279 0.671 0.272 0.670 0.311 
g 0.556 0.504 0.519 0.543 0.524 0.537 0.546 0.515 
h(2) 0.732 0.290 0.838 0.186 0.829 0.196 0.778 0.246 
A 0.187 0.848 0.110 0.914 0.114 0.910 0.148 0.882 
R 0.547 0.514 0.524 0.538 0.528 0.534 0.542 0.520 
hw 0.577 0.484 0.546 0.518 0.552 0.512 0.568 0.495 
Eigenvalues 6.163 5.783 5.918 5.565 5.945 5.574 6.068 5.672 

 

The above utilized varimax rotation method is an orthogonal rotation which assumes that 

the factors in the analysis are uncorrelated. We have also applied an oblique rotation method, 

which allows factors to be correlated. Such techniques have been favored in comparison with 

orthogonal rotations (see e.g. McCroskey & Young, 1979). Specifically we employed the 

promax rotation with exponent 3. Tataryn, Wood & Gorsuch (1999) advise exponents 2, 3, or 

4 for optimal results. In our case we have also tested exponents 2 and 4 and did not get large 

differences. Results are presented in Table 4. Again h, m, h(2) load on the first factor and A on 

the second factor. Once more, g, R, hw load on both factors, although now their loadings are 

remarkably smaller than in Table 3 and turn out to be below the threshold value 0.6. The same 

observations can be made for the transformed data. In conclusion, the oblique rotation method 

does not improve the categorization.  
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6. Expanded Data Base  

As mentioned above, in subsequent FAs comprising also N and S Bornmann et al. 

(2009a; 2009b) again found a distinct categorization with respect to the two factors, with h, 

m-quotient, g, h(2), hm, and N loading on the quantity dimension, and A, m, R, AR, hw, 

Maxprod and S loading on the impact dimension. Bornmann et al. (2009b) conclude that “for 

measuring quantity and quality of research performance, the h-index and its variants do not 

necessarily have to be used”. However, the authors also note that their findings are referring 

to a dataset from a specific field of research, i.e. the area of biomedicine, and that further 

analyses are required before generalizing these conclusions. This has prompted us to re-run 

our EFA including N and S. The results are presented in Table 5. (The KMO test yields 

acceptable values between 0.799 for the raw indices and 0.844 for the log-transformed data. 

All p-values are below 0.001). Surprisingly, now all indices load on one component and N on 

the other. S also loads on the first factor but the value of the second factor loading is close to 

the threshold. This means that for our datasets N and S cannot be used in the EFA for 

distinguishing different categories of the index variants. It is interesting to note that the 

transformations yield changes in the loading matrix, for all the transformed data h clearly 

loads on both factors and S loads evenly on both factors. 

 

Table 5: Varimax rotated loading matrices as in Table 3, but comprising also N and S 
 

Indices 

Raw indices x ln(x) ln(x+1) √x 

Component  Component  Component  Component  
1 2 1 2 1 2 1 2 

h 0.815 0.545 0.672 0.711 0.680 0.705 0.738 0.640 
m 0.855 0.436 0.766 0.440 0.770 0.441 0.795 0.476 
g 0.902 0.434 0.847 0.528 0.849 0.525 0.869 0.494 
h(2) 0.846 0.463 0.779 0.566 0.784 0.563 0.805 0.535 
A 0.919 0.301 0.914 0.320 0.914 0.319 0.914 0.321 
R 0.907 0.422 0.853 0.520 0.855 0.516 0.876 0.481 
hw 0.898 0.443 0.854 0.522 0.855 0.520 0.868 0.498 
N 0.375 0.926 0.348 0.890 0.349 0.891 0.363 0.889 
S 0.765 0.592 0.702 0.712 0.703 0.710 0.715 0.687 
Eigenvalues 6.123 2.561 5.269 3.242 5.306 3.220 5.579 3.013 

 
 

In order to get a clearer distinction, we performed a further EFA including again two 

standard bibliometric indicators, namely the total number N of papers and the average number 

C of citations to all publications, in addition to the 7 indices of our first analysis. We now use 
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C rather than the sum S of all citations, because S can be expected to correlate stronger with 

the quantity of publications than C. (“More papers attract more citations.”) The results of the 

analysis are presented in Tables 6 and A5. (The KMO test yields acceptable values between 

0.758 for the raw indices and 0.819 for the log-transformed data. All p-values are below 

0.001). 

The high loadings of N and C on the first and the second factor, respectively, mean that 

by including N and C into the analysis we have successfully enforced a distinction of the 

quantity and the quality dimension. However, unfortunately this does not lead to a clear 

discrimination of the investigated indices, since the factor loadings are far from the ideal case 

where each item has a relatively large loading on one factor and a near-zero loading on the 

other factor. Rather most indices appear in both dimensions if we use the threshold of 0.6 for 

the categorization of factor loadings. This clearly indicates strong differences in comparison 

to the results derived by Bornmann et al. (2008, 2009a, 2009b). For most indices the loadings 

on the first factor are larger than those on the second factor so that increasing the threshold to 

the value 0.7 would distinguish A and C loading on the second factor and all others on the first 

factor for the raw data. The results for the square-root transformed data are somewhat 

different, with , , , and  clearly loading on both factors, and even  loading 

on both factors. More conspicuous are the deviations for the log-transformed data, because 

now ln(m), ln(g), ln(R), and ln(hw) are loading even more strongly on the second factor.  

 

Table 6: Varimax rotated loading matrices as in Table 3, but comprising also N and C 
 
 

Indices 

Raw indices x ln(x) ln(x+1) √x 

Component  Component  Component  Component  
1 2 1 2 1 2 1 2 

h 0.827 0.536 0.812 0.537 0.810 0.542 0.808 0.552 
m 0.729 0.620 0.591 0.658 0.597 0.659 0.666 0.644 
g 0.745 0.666 0.689 0.722 0.689 0.722 0.708 0.704 
h(2) 0.768 0.591 0.722 0.640 0.723 0.642 0.740 0.625 
A 0.601 0.769 0.500 0.825 0.502 0.824 0.544 0.803 
R 0.734 0.679 0.681 0.730 0.681 0.730 0.698 0.715 
hw 0.753 0.658 0.688 0.725 0.689 0.725 0.714 0.701 
N 0.909 0.095 0.970 0.131 0.969 0.130 0.948 0.116 
C 0.162 0.986 0.124 0.992 0.124 0.992 0.138 0.991 
Eigenvalues 4.680 3.931 4.148 4.395 4.156 4.399 4.359 4.248 
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We have also performed a further EFA comprising the 7 index variants and N, C, as well 

as S. We do not show the results here, because the loading matrices are very similar to those 

given in Table 6. This means that again N and C lead to a clear distinction of the quantity and 

the quality dimension. The total number S of all citations to all publications loads strongly on 

the same factor as N with matrix elements of the order of 0.83 in the 4 EFA models for the 

varimax and around 0.78 for the promax rotation, i.e. more strongly than all the index 

variants. We conclude that S is not very helpful for the present investigation while N and C 

can be used for categorizing the quantity and the quality dimension. Our results are in 

accordance with the conclusion of Costas & Bordons (2007, 2008), namely that one factor 

comprises N, S, and h as well as g, but not C. Our results also agree with the findings of 

Hendrix (2008) who extracted one factor correlated with N and S, and another factor 

associated with C. 

We have also investigated the 7 indices, N and C with the promax oblique rotation. 

Results are shown in Table 7. The extremely high loadings of N and C again show that the 

distinction of the quality and quantity dimension has been successful. For the raw indices one 

obtains a clear categorization of A and C belonging into the second category and all other 

indices into the first category. These results are in accordance with the varimax rotation 

method if the higher threshold is applied to the loading matrix in Table 6. We conclude that in 

this case the oblique rotation leads to a clearer distinction.  

Additionally we have followed our EFA with a confirmatory FA (CFA) (Jöreskog, 1969) 

to verify our results from the perspective of statistical testing, since CFA allows for tests of 

statistical significance for the parameters of the model tested, such as the obtained factor 

loadings. Tables A6 and A7 present factor loadings and the related tests. By fitting the 

specific CFA model structure2 obtained from EFA, we see that all items are significant at the 

5% significance level, with only the exception of N, which loads somewhat lower in 

comparison to the EFA results. Generally, however, both tests for factor loadings as well as 

the respective R2 values indicate the validity of the performed EFA).  

 

 

 

 

 

 

                                                 
2 Estimation for the CFA model was carried out using the LISREL (Jöreskog and Sörbom, 1999) software. 
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Table 7: Promax oblique rotated loading matrices as in Table 4, but comprising N and C  
 

Indices 

Raw indices x ln(x) ln(x+1) √x 

Component  Component  Component  Component  
1 2 1 2 1 2 1 2 

h 0.777 0.289 0.750 0.315 0.746 0.321 0.743 0.327 
m 0.623 0.433 0.439 0.547 0.445 0.545 0.534 0.497 
g 0.622 0.483 0.529 0.584 0.529 0.584 0.560 0.551 
h(2) 0.682 0.381 0.601 0.474 0.603 0.475 0.631 0.443 
A 0.403 0.670 0.264 0.782 0.266 0.780 0.322 0.738 
R 0.604 0.502 0.517 0.596 0.517 0.597 0.544 0.568 
hw 0.635 0.470 0.528 0.588 0.529 0.587 0.568 0.545 
N 1.065 -0.282 1.102 -0.233 1.101 -0.234 1.090 -0.254 
C -0.224 1.126 -0.252 1.133 -0.252 1.133 -0.243 1.132 
Eigenvalues 6.856 6.230 6.253 6.459 6.270 6.473 6.518 6.421 

 

For the transformed data in Table 7 the same deviations as in Table 6 occur. Although the 

loadings for , , and  are all below the threshold of 0.6, their values for the two 

components are not so different so that one might conclude that , ,   load on both 

factors, if the square-root transformed data are considered. Again for the log-transformed data 

ln(m), ln(g), ln(R), and ln(hw) are loading even more strongly on the second factor. Thus we 

have again found a remarkable difference between the EFA results for the raw data and for 

the transformed data. The CFA of the transformed data has also verified the validity of the 

tested structure, i.e. the structure indicated by the EFA and thus corroborated the deviations, 

see Tables A6 and A7. This discrepancy is an important finding. Problems when transforming 

(and especially log-transforming) non-normally distributed data prior to conducting a FA are 

not new. For instance, Chapman (1977) states that “factor analysis is very susceptible to 

scaling and transformations” and that “comparisons of factor models from the log-

transformed and untransformed data showed that after log-transformation widespread factor 

fusion and factor fission occurred and no factor model was completely satisfactory”. 

Although transforming the data to demonstrate normality is quite a common procedure, there 

are other alternatives too, depending on the degree of departure from normality in the specific 

dataset (see, e.g. Ferguson & Cox, 1993). But according to Muthen & Kaplan (1985), some 

degree of skew and kurtosis in the data is acceptable for conducting EFA, especially when the 

skew and kurtosis coefficients are below the value of 2. Other alternatives include to retain 

non-normally distributed items in the analysis if they account to less than 25% of the overall 

number of items since it is believed that below this percentage the distorted variables will not 
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affect the final solution of the model (Ferguson & Cox, 1993). When none of the above holds, 

based on the results of the current analysis, we recommend using square-root transformations 

instead of log-transformed datasets.  

In the case of bibliometric data, major discrepancies between results of a FA of skewed 

citation distributions and their log-transformed values (Leydesdorff & Bensman, 2011) of 

journals were found associated with a reduced dimensionality of the final factor solution, 

classification of the items, and their magnitude as concerns the factor loadings.  

Based on these findings, we believe that caution should be exercised when interpreting 

results based on EFA, if transformations have been applied to the data. In Tables 5-7 we 

found rather large changes due to the transformations, while there were only minor changes in 

Tables 3 and 4. Therefore we propose to avoid transformations, unless absolutely necessary or 

at least to compare the FA results for the raw data and the transformed data. 

 

7. Discussion  

An important consideration in evaluating research performance of a scientist is the 

multiple manifestation of his/her work. One of the main disadvantages of the traditional 

bibliometric indicators, such as the total number of papers or the total number of citations is 

that they do not account for the quality of scientific research, or that they can be 

disproportionately affected by a single publication of major influence. 

The h-index intends to measure simultaneously quality and quantity of scientific output, 

taking into account, to some extent, the diversity of scientific research. However, many 

authors have argued against the use of an index to assess a scientist’s work by one single 

number. Bornmann et al. (2008; 2009a; 2009b) propose to utilize two indices, one for the 

quantity of the productive core of a researcher and one for the impact of the core, basing their 

arguments on the EFA of specific datasets for young scientists from a specific scientific field 

of research with certain scientific experience. 

With more diverse datasets − comprising scientists of varying scientific age – we got quite 

different results. We have demonstrated that the logarithmic transformation can cause 

distortions in the results of EFA and subsequently in the interpretations.  

We have shown, that for our datasets, for some of the investigated indices no clear 

distinction was evident to one of the two dimensions of scientific performance. The argument 

(Schreiber, 2010a) that g measures the impact has not been corroborated. The nearly equal 

factor loadings for g in the EFA of the raw data in Table 3 seemed to confirm the assumption 

(Schreiber, 2010a) that the g-index measures both, the quantity and the impact. However, this 

was not substantiated by the more comprehensive FA in the previous chapter. Our results are 
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in agreement with the findings of Costas & Bordons (2007, 2008) and Hendrix (2008). Major 

differences to previous analyses of Bornmann et al. (2008, 2009a, 2009b) have been found. 

They might be due to the small number of papers per scientist in those studies with median 

values of 2, 3, or 4 for N, h, g, and h(2) which lead to problems of discrimination between the 

scientists especially for the integer-valued indices. On the other hand the present study suffers 

from the relatively small number of only 26 investigated scientists. 

Table 3 shows that the 7 indices under consideration cannot be easily categorized into two 

groups: A and h appear to define two categories, but most of the other indices load strongly on 

both factors. The oblique rotation results in Table 4 show the same bevavior, if the lower 

threshold is applied. Adding standard bibliometric indicators, namely the number of 

publications N and the total number of citations S, to the analysis does not help. As shown in 

Table 5, in this way one can force a distinction into 2 categories, but the second category 

comprised only N and therefore the distinction is not very helpful. Only the consideration of N 

and the average number of citations C leads (with or without including S) to a more useful 

separation into two categories. Now N defines one group with h and h(2) while C belongs to 

the other group together with A. All other indices load strongly on the first factor, but also 

show a remarkable share of the second factor, as demonstrated in Table 6. The oblique 

rotation in Table 7 makes the distinction more obvious.  

In conclusion we have clearly identified 2 categories of h-index variants and we 

propose to use the 2 complementary indices h and A in the research assessment of an 

individual scientist. Alternatively, the consideration of N and C would also reflect these two 

categories, but due to the usually long tail of the citation statistics these numbers are more 

difficult to obtain with good precision. Thus h and A appear to be the better choice. On the 

other hand, if it is the aim to utilize only a single index, then the variants m, g, R, and hw could 

be chosen, because they comprise information from both factors, as corroborated in Table 6. 

For R this is not surprising, as R combines h and A by definition. The hw-index is an 

interesting alternative, but its practical use is hindered by the relatively complicated 

definition. The m-index is favourable, because of its simplicity, but its calculation needs the 

precedent determination of h, just like hw and R do. In contrast g is defined in its own way and 

in its own right. In this context, it is interesting to note the similarity of the definition of A as 

the average number of citations received by the articles in the h-core and the fact that g can be 

determined by the average number of citations received by the articles included in the g-core. 

Thus we propose the use of g, if the assessment by a single number is wanted.  

However, it remains doubtful in principle, whether the scientific achievements of an 

individual researcher can or should be quantified with one or two numbers. Hirsch (2005) has 
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already expressed the caveat that “a single number can never give more than a rough 

approximation to an individual’s multifaceted profile”. Certainly one should better look at 

more than one indicator, because different citation records can yield the same h-index and/or 

the same values for some of the variants. This can easily lead to the underestimation of 

highly-cited but only intermediate-productive scientists (Costas & Bordons, 2007). That 

might influence the publication strategy of those so called selective scientists. There are other 

problems, because of which using only one or two indicators is inadequate for the research 

assessment of individuals, like the age effect and the dependence on the research field (van 

Leeuwen, 2008), or the influence of self-citations (Schreiber, 2009b). The h-index has also 

been criticized by a more theoretical consideration, because it may lead to inconsistent results 

(Waltman & van Eck, 2009) at least on the level of analysis of individual scientists. This 

finding makes the use of the h-index and most or all of its variants questionable from a 

fundamental point of view. 

The current analysis has shown that inferences based solely on specific datasets cannot be 

and should not be generalized. Other robust techniques are required for unifying and 

generalizing the results of EFA. More valid inferences could be drawn, for instance, by 

utilizing bootstrap methods (see Efron, 1979) that do not require any distributional 

assumptions and can perform adequately under both normal and non-normal distributions, 

even when the sample size is small. 

Topics for future research may also include the replication of our analysis for a wider 

range of h-type indices allowing us to gain from the benefits of a comparative study and the 

utilization of a more extensive and updated dataset. 
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Appendix A 
 
Table A1: Characteristics of the 26 datasets analyzed in the present study, see also Schreiber 
(2010b).  
 
 
data 
set g h(2) h A m R hw N S      C 

A    67    10    39   93.9     72  60.5  51.7 290 5,997 20.7 
B    45     8    27   62.6     47  41.1  35.3 270 3,177 11.8 
C    36     7    23   47.3     40  33.0  28.5 126 1,661 13.2 
D    29     6    20   35.5     30.5  26.6  23.6 322 2,124 6.6 
E     37     6    19   62.4     38  34.4  28.2 63 1,439 22.8 
F     26     5    18   32.2     29  24.1  20.7 131 1,127 8.6 
G     23     5    17   28.4     26  22.0  18.3 49 697 14.2 
H    26     6    16   35.9     30.5  24.0  21.4 70 749 10.7 
I    28     6    15   46.1     24  26.3  22.3 65 885 13.6 
J    23     5    15   32.1     23  21.9  18.1 51 574 11.3 
K    21     5    14   27.7     26.5  19.7  16.8 79 596 7.5 
L    22     5    14   30.6     23  20.7  17.8 88 681 7.7 
M    24     5    14   34.0     21  21.8  18.3 70 726 10.4 
N    22     5    14   27.7     26  19.7  17.7 72 687 9.5 
O    19     4    13   22.8     18  17.2  14.9 77 550 7.1 
P    24     5    13   41.5     27  23.2  20.5 47 631 13.4 
Q    15     4    13   17.1     17  14.9  13.0 86 422 4.9 
R    19     5    12   27.0     19.5  18.0  15.4 46 451 9.8 
S    18     4    12   22.8     18  16.6  13.8 61 439 7.2 
T    15     4    10   18.0     15.5  13.4  11.4 78 375 4.8 
U    17     4    10   23.7     23.5  15.4  13.4 44 351 8.0 
V    17     4    10   24.4     14.5  15.6  13.0 60 389 6.5 
W    13     3     9   15.6     12  11.8  10.1 53 261 4.9 
X    18     3     8   35.1     10.5  16.8  14.3 35 346 9.9 
Y     9     3     7   11.0     10   8.8   7.9 25 116 4.6 
Z    10     3     5   17.0     23   9.2   8.5 15 103 6.9 
 
 
 

 

 
Table A2: One-sample Kolmogorov-Smirnov test of the log-transformed indices 

(Results for the log-transformed shifted indices are very similar.) 
 

 ln(h) ln(m) ln(g) ln(h(2)) ln(A) ln(R) ln(hw) 
Mean 2.61 3.14 3.08 1.56 3.41 3 2.86 
Median 2.64 3.15 3.09 1.60 3.38 3 2.88 
Standard deviation 0.42 0.45 0.43 0.30 0.47 0.43 0.42 
Kolmogorov-Smirnov D (*) 0.113 0.114 0.111 0.174 0.121 0.110 0.106 
p-value (*) 0.892 0.885 0.908 0.408 0.838 0.912 0.933 
Kolmogorov-Smirnov D (**) 0.099 0.116 0.068 0.181 0.100 0.073 0.084 
p-value (**) 0.957 0.876 0.999 0.364 0.956 0.999 0.993 
(*) Test distribution is normal. 
(**)Test distribution is Student. 
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Table A3: One-sample Kolmogorov-Smirnov test of the square-root transformed data 
 

 √h √m √g √h(2) √A √R √hw 
Mean 3.77 4.93 4.78 2.21 5.63 4.60 4.26 
Median 3.74 4.82 4.69 2.24 5.43 4.49 4.21 
Standard deviation 0.82 1.15 1.10 0.34 1.39 1.04 0.95 
Kolmogorov-Smirnov D (*) 0.145 0.150 0.153 0.198 0.167 0.151 0.147 
p-value (*) 0.645 0.555 0.576 0.258 0.464 0.590 0.629 
Kolmogorov-Smirnov D (**) 0.099 0.110 0.081 0.183 0.078 0.076 0.080 
p-value (**) 0.958 0.908 0.995 0.346 0.997 0.998 0.996 
(*) Test distribution is normal. 
(**)Test distribution is Student. 
 

Table A4: Variance explained by the four EFA models 
 

Indices Raw indices x ln(x) ln(x+1) √x 

h 0.981 0.926 0.932 0.961 
m 0.921 0.795 0.804 0.866 
g 0.998 0.993 0.993 0.996 
h(2) 0.949 0.975 0.975 0.960 
A 0.999 0.999 0.999 0.999 
R 0.999 0.995 0.995 0.997 
hw 0.999 0.999 0.999 0.999 

 
 
 
 
 
 
Table A5: Variance explained by the four EFA models as in Table A4, but comprising N and 
C 
 

Indices Raw indices x ln(x) ln(x+1) √x 

h 0.971 0.948 0.951 0.957 
m 0.916 0.783 0.790 0.859 
g 0.998 0.995 0.995 0.997 
h(2) 0.939 0.931 0.935 0.938 
A 0.953 0.931 0.931 0.941 
R 0.999 0.996 0.997 0.999 
hw 0.999 0.999 0.999 0.999 
N 0.835 0.957 0.956 0.913 
C 0.999 0.999 0.999 0.999 
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Table A6: Confirmatory factor analysis matrix for the raw indices, but comprising N and C 
 

Indices 

Raw indices x ln(x) √x 
Component  Component  Component  
1 2 1 2 1 2 

h 0.97  0.98  1.00  
m 0.95   0.87 0.60 0.81 
g 1.00   1.00 0.52 0.52 
h(2) 0.96  0.96  0.95  
A  1.03  0.95  1.00 
R 1.00   1.00 0.51 0.53 
hw 1.00   1.00 0.51 0.53 
N 0.74  0.84  0.81  
C  0.83  0.81  0.85 

 

Table A7: Summary statistics of the CFA model fit 

Indices 
Raw indices x x, ln(x), √x x ln(x) √x 

Unstandardized 
loadings 

Standard 
error p-value R2 R2 R2 

h 6.69 1.01 <0.05 0.94 0.97 0.99 
m 6.46 1.90 <0.05 0.91 0.75 0.84 
g 7.06 1.70 <0.05 0.99 0.99 0.99 
h(2) 6.58 0.23 <0.05 0.93 0.93 0.93 
A 7.52 2.45 <0.05 0.99 0.92 0.99 
R 7.07 1.53 <0.05 0.99 0.99 0.99 
hw 7.06 1.30 <0.05 0.99 0.99 0.99 
N 4.33 13.52 n.s. 0.55 0.70 0.66 
C 5.10 0.74 <0.05 0.69 0.65 0.75 
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Appendix B: Definition of the discussed indices 
 
The h-index is the highest number h of articles that each received h or more citations (Hirsch, 

2005). 

The h(2)-index (Kosmulski, 2007) is the highest number h(2) of articles that each received 

[h(2)]2 or more citations. 

The g-index is the highest number g of articles that together received g2 or more citations 

(Egghe, 2006b). This is equivalent to the highest number of articles that received g or more 

citations on average (Schreiber, 2010a).  

The m-index (Bornmann et al., 2008a) is defined as the median number of citations received by the 

articles included in the h-core.  

The A-index (Jin, 2006) is defined as the average number of citations received by the articles 

included in the h-core.  

The R-index (Jin et al., 2007) is given by the square root of the total number of citations 

received by the articles included in the h-core. This is equivalent to AhR = .  

The hw-index (Egghe and Rousseau, 2008) is given by the square root of the total number s of 

citations received by the highest number of articles that each received s/h or more citations. 


