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Abstract—This study investigates the potential of using low-cost
infrared cameras for non-contact monitoring of blood pressure
(BP) in humans. Previous research has shown that robust contact-
less BP monitoring using RGB cameras is possible. In this study,
the Eulerian Video Magnification (EVM) technique is employed
to enhance minor variations in skin pixel intensity in the forehead
and palm regions captured by an infrared camera. The primary
focus of this study is to explore the possibility of using infrared
cameras for contactless BP monitoring under low-light or night-
time conditions. Results show that the proposed approach has
surpassed the stringent accuracy standards set forth by the
British Hypertension Society (BHS) and the Association for the
Advancement of Medical Instrumentation (AAMI) protocol.

Index Terms—Blood Pressure, Hypertension, Generalized Ad-
ditive Model (GAM), iPPG

I. INTRODUCTION

Contactless measurement techniques have made significant
breakthroughs recently in the monitoring of several physi-
ological parameters, including heart rate, oxygen saturation
and blood pressure. Most importantly, contactless measuring
techniques are non-invasive and therefore eliminate the risk of
infection and discomfort, compared to more commonly-used
invasive procedures. More specifically, contactless measure-
ment techniques have even more significant benefits for the
elderly. Aging is often accompanied with a decline in health
and functional status, making the elderly more prone to age-
related diseases, including cardiovascular diseases [1].

Hypertension and hypotension are two medical conditions
that are related to blood pressure levels. Blood pressure is
the force exerted by circulating blood against the walls of
the blood vessels. Hypertension refers to a condition where
elevated blood pressure occurs frequently, while hypotension
refers to the contrary condition, where low blood pressure
is more frequently observed. Thus, tracking blood pressure
levels is imperative for elderly people due to the increased
frequency of these conditions and their association with other
important health risks. Hypertension, also known as ‘“high”
blood pressure, is defined as a systolic blood pressure (SBP)
of 130 mmHg or higher or a diastolic blood pressure (DBP)
of 80 mmHg or higher [2]. This condition is a leading risk
factor for cardiovascular diseases, such as stroke, heart attack,
heart failure, and kidney disease. Hypertension can result from
multiple factors, such as genetic predisposition, unhealthy

lifestyle choices, and age-related changes in blood vessel
function [3]. More specifically, for the elderly population,
hypertension is highly prevalent and has distinct characteristics
compared to younger population. Statistics show that almost
46% of adults in the United States have hypertension [2].
Human blood vessels become stiffer due to aging, and thus
the risk of developing hypertension is more prevalent in older
people [4]. Hypertension in older adults is also associated
with a higher risk of cardiovascular events, cognitive decline,
kidney disease, and unfortunately mortality [5].

Hypotension is officially defined as a systolic blood pressure
below 90 mmHg or a diastolic blood pressure below 60
mmHg [6]. Elderly people, diagnosed with hypertension, may
experience transient hypotensive episodes, which essentially
translate to temporary drops in blood pressure that can cause
significant clinical implications. These episodes may indicate
compromised blood flow to vital organs including the brain
and heart, and they can be associated with acute cardiovascular
and cerebrovascular incidents [7]. Thus, BP monitoring is
essential for tracking hypertension or hypotension incidents
in elderly as well as normal people.

A contactless system is based on optical techniques, such
as image photoplethysmography (iPPG) and remote photo-
plethysmography (rPPG), that can capture physiological sig-
nals from the skin’s surface. Consequently, the use of contact-
less methods minimizes the psychological and physiological
stressors. Contactless measuring techniques also offer the
advantage of continuous monitoring, which allows for real-
time monitoring of physiological parameters, without the need
for frequent interruption of the person’s everyday life. This can
be particularly helpful for critically-ill patients, who require
constant vital-sign monitoring.

Prior research has been particularly dedicated to the inves-
tigation of contactless methods for blood pressure estimation
and monitoring [20], [26]-[29]. Most of these techniques
involve the use of an RGB camera in the capturing process.
In contrast, our approach distinguishes itself through the
utilization of an infrared camera in conjunction with motion
magnification. There have been contactless methods, primarily
based on facial signals [26], [28], [29] or, in some cases, the
combined utilization of facial and raised hand signals [20],
[27].



This study attempts to quantify the feasibility of using
single-channel infrared videos of facial and hand regions for
accurate blood pressure estimation. The motivation behind
this research is the potential benefits offered by the single-
channel infrared wavelength, such as reduced computational
complexity, lower hardware requirements, and immunity to
varying light conditions (day, evening or night). Our goal is to
enhance eldercare by providing healthcare professionals with
a reliable tool for unobtrusive and accurate blood pressure
monitoring. This methodology demonstrates a high degree of
adaptability for integration within hospital and health clinic
settings, particularly in non-ICU (intensive care units) where
monitoring capabilities may be constrained.

II. PROPOSED METHODOLOGY
A. Facial & Palmar Segmentation

It is common in contactless BP monitoring to process
signals extracted from two body regions. Commonly with
other approach, we chose to use the face and hand regions of
the body in order to extract signals useful for BP measurement.

The forehead region was deliberately chosen, due to its well-
established association with reliable cardiovascular signals,
including pulse rate and blood flow. Simultaneously, the upper
palm region was also selected for blood pressure estimation,
mainly due to the fact that its consistent blood supply, provided
by the superficial palmar arch [31], and stable skin character-
istics contribute to its stability for contactless blood pressure
estimation.

At first, we employed OpenCV’s deep learning Single Shot
Detector (SSD) model, as a fundamental component of our
facial detection process in the captured video clip. The next
step was to isolate the forehead region. The isolation process
is facilitated by utilizing standard ratios between essential
face landmarks typically found in the average human face,
as elaborated in more detail in [8]-[10]. In our previous work
[25], we described the process of isolating the forehead region
through the employment of several equation that were derived
from the standard ratios between essential face landmarks.
This constituted a stable framework to accurately extract and
segregate the forehead region from the remaining face.

Next, we use a hand detection framework, which allows to
track hand landmarks in an image. The mediapipe approach
[11] infers 21 3D keypoints of a hand from a single frame,
enabling real-time hand and finger tracking. Figure 1 visually
demonstrates the accurate and precise localization of 21 3D
hand-knuckle coordinates [11]. In the context of this applica-
tion, our primary focus lies in the specific area formed by the
landmarks 0, 1, 5, 9, 13, and 17. These key landmarks serve
as critical reference points, precisely marking the boundaries
and spatial extent of the upper palm area that is relevant for
our analysis.

B. Post-Processing & Peak Detection

For every recorded video segment we focus on the forehead
and palm regions. The next step involves the application of
the Eulerian Video Magnification (EVM) technique [12] is
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Fig. 1. The analytical localization of 21 3D hand-knuckle coordinates by the
mediapipe approach.

employed to enhance minor variations within the frequency
spectrum of 0.4 to 4 Hz. The primary objective of this
procedure is to eliminate unwanted noise and artifacts from
the signal and boost non-visible information. Consequently,
we compute both the mean and standard deviation metrics
for each individual frame in order to quantify the temporal
characteristics of the physiological signals embedded within
the video sequences. This yields two time series for the
forehead and two for the palm region.

Next, we must detect and compare the position of similar
discrete between the signals extracted from the forehead and
the palm region. Two peaks in the forehead and the palm
region that are correlated constitute a peak pair. A discerning
criterion is applied whereby pairs of detected peaks, should
their temporal separation exceed 5 frames, are omitted from
further consideration. Drawing inspiration from the work of
Fan et al. [20], who similarly endeavored to compute pulse
transit time between facial and palm regions, we recognize
that pulse transit time spans a range of approximately 60
milliseconds (ms) in their study. Our methodology involves
the systematic accumulation of median time intervals among
peak pairs for each individual video recording. Subsequently,
an averaging procedure is employed to compute the mean
value of these individual median time intervals across all video
recordings within a given volunteer’s dataset. Ultimately, a
comprehensive summation of our investigative process results
in the derivation of dual definitive measurements per individual
volunteer. The objective therein is the formulation and refine-
ment of two distinctive functions, each characterized by a dual-
input configuration via regression. Specifically, we endeavor
to construct a two-input function tailored to prognosticate
systolic blood pressure, and another one for diastolic blood
pressure.

C. Generalized Additive Models

This study delves into the utilization of Generalized Ad-
ditive Models (GAM) for regression, as discussed by Hastie
et al [30]. The primary contrast between a GAM and con-
ventional Generalized Linear Models, such as Linear Re-
gression, lies in the fact that GAMs have the capacity to
capture non-linear connections between independent and de-
pendent variables. Unlike Generalized Linear Models, GAMs
can furnish regression outcomes that involve the summation
of multiple adaptable functions for each feature, known as
splines. These splines are intricate non-parametric functions



that unveil the non-linear aspects inherent in each feature.
Consequently, a GAM allows the interpretation of a random
variable Y’s inference as the sum of predictive random vari-
ables X1, Xo,..., X, as formulated below:

EY|X1, Xa,. ., Xp} = fo+ D> fi(X)) (1)

j=1

Here, the functions f;(-) represent smooth nonparametric
functions that are standardized to ensure that £{f;(X,)} =0,
following Hastie et al.’s work [30]. GAMs are especially well-
suited for regression tasks due to their ability to compre-
hend nonlinear associations and trends, while retaining the
advantage that the impact of an individual variable remains
uninfluenced by the values of other variables. The framework
of GAMs also empowers us to modulate the smoothness of
predictor functions, effectively preventing the risks of overfit-
ting.

D. Polynomial Regression

Linear Regression, Quadratic Regression, and Cubic Re-
gression are fundamental statistical techniques that serve as
powerful tools for modeling and analyzing the relationships
between variables in empirical data, each offering distinct
degrees of complexity and flexibility.

Linear Regression entails fitting a straight line to the data
points, thus establishing a linear relationship between the
independent (predictor) variable, usually denoted as x, and
the dependent (response) variable, typically denoted as y. The
equation takes the form:

y=P0o+Bix+e 2

where (3 is the intercept, 3, is the slope, and € represents
the residual error. The goal is to find the best-fit line that
minimizes the sum of squared residuals, effectively capturing
the overall trend between the variables.

Quadratic Regression, building upon the foundation of Lin-
ear Regression, introduces curvature to the model by incorpo-
rating a quadratic term. The equation becomes:

y = Bo+ Bz + frr? +¢ 3)

where (3, represents the coefficient of the quadratic term. This
technique accommodates situations where the relationship
between variables is more nuanced, potentially exhibiting a
parabolic pattern (upward or downward curvature).

Cubic Regression further extends the repertoire by incorpo-
rating cubic terms, enabling the representation of even more
intricate curves within the data. The equation takes the form:

y=Bo+ Biz+ Bax® + Baz® + ¢ (€]

where (33 signifies the coefficient of the cubic term. This tech-
nique is invaluable when the underlying relationship demon-
strates pronounced curvature, including scenarios where the
data follows an ’S” or ”U” shaped trajectory.

III. EXPERIMENTS

In order to assess the performance of the proposed method
for estimating systolic and diastolic blood pressure, a dataset
of infrared videos with blood pressure measurements was cre-
ated in which fifteen (15) participants took part. The reference
point for each participant’s blood pressure was a clinically vali-
dated commercial automatic upper arm blood pressure monitor
(Omron M6 Comfort (HEM-7360-E)) that monitored the blood
pressure levels continuously throughout the trials. All the
subjects were filmed in a room with natural sunlight using an
infrared camera. We employed a carefully designed approach
that involved taking three consecutive readings within a span
of two minutes, with a 30-second interval between each mea-
surement, totalling 3 minutes. The participants were instructed
to remain as motionless as possible during the recordings. To
avoid potential registration issues, the participants were seated
at a fixed distance from the camera, strategically chosen to
include the forehead region and the upper palm region within
the field of view. All data and blood pressure reference values
are publicly available and can be found on the paper’s GitHub
page.

In this study, we utilized a wired Google Nest Cam to
record video footage of the participants. The camera settings
were configured to “Infrared Always” mode, providing a
resolution of 1920 x 1080 Full HD and a frame rate of 30
fps. To minimize potential distortion caused by the camera’s
wide-angle lenses, the camera was positioned at eye level,
maintaining a distance of 85 cm from the participants. To
obtain the video clips, the researchers downloaded them from
Google’s Cloud service, where they had been uploaded. It is
important to note that the video clips obtained from the cloud
service contained compression noise, which had the potential
to impact the accuracy of the process. Despite the presence of
compression noise in the video clips, the proposed approach
still yielded satisfactory results, thereby validating the proof
of concept put forth by this study.

Motion magnification tasks were executed using MATLAB
R2018b, primarily due to the availability of the original
motion magnification code by Wu et al. [12] in MATLAB.
On the other hand, the proposed machine learning regression
approaches were implemented using Python v3.8.10, employ-
ing the scikit-learn package. For the face/hand detection and
segmentation algorithm, Python v3.10.8 was employed. For
conducting the experiments, we utilized a high-performance
Ubuntu 22.04 PC equipped with 64GB RAM, an Intel 19 2.5
GHz 16-Core CPU, and an NVIDIA GeForce RTX 3090 GPU
with 24GB of RAM .

A. Validation Standards

The American Association for the Advancement of Medical
Instrumentation (AAMI) and the British Hypertension Society
(BHS) have independently published comprehensive standards
pertaining to sphygmomanometers, encompassing rigorous
protocols for evaluating the accuracy and performance of

IThe developed code can be found at [32]



TABLE I
GRADING CRITERIA EMPLOYED BY THE BRITISH SOCIETY OF
HYPERTENSION (BSH)

Model <5mmHg <10mm Hg <15 mm Hg
A 60% 85% 95%
B 50% 75% 90%
C 40% 65% 85%
D < 40 < 65 <85
TABLE II

MODELS’ ACCURACY REGARDING SYSTOLIC BLOOD PRESSURE (ToOP) &
DIASTOLIC BLOOD PRESSURE (BOTTOM) USING BSH PROTOCOL

<5mmHg <10mmHg <15 mm Hg

Linear Regression 20% 53.33% 66.67%
Quadratic Regression 60% 60% 86.67%
Cubic Regression 80% 93.33% 100%
GAM 58% 92.35% 100%

Linear Regression 40% 86.67% 93.33%
Quadratic Regression 66.67% 100% 100%
Cubic Regression 80% 100% 100%
GAM 68.4% 100% 100%

these medical devices [13], [14]. The BHS protocol assigns
grades to devices based on their agreement with the mercury
standard for systolic and diastolic pressures. The highest level
of agreement is denoted by grade A, while the lowest level is
indicated by grade D. For a sphygmomanometer to fulfill the
BHS protocol, it must achieve at least grade B for both systolic
and diastolic readings, reflecting a clinically acceptable level
of accuracy and agreement with the mercury standard [14].
Similarly, the American Association for the Advancement
of Medical Instrumentation (AAMI) has formulated its own
evaluation criteria for sphygmomanometers. According to the
AAMI protocol, the test device’s measurements should closely
match the mercury standard, with a mean difference from
the standard not exceeding 5 mm Hg for blood pressure
readings. Additionally, the standard deviation, which repre-
sents the variability of differences between the test device
and the mercury standard, should not exceed 8 mm Hg [13].
Compliance with both of these standardized criteria provides
confidence in the reliability of these medical devices for blood
pressure measurement. It is noteworthy that not all examined
papers incorporate both accuracy protocols; certain studies
utilize both protocols [26], while others exclusively employ
one of the two [20], [28], [29], with a preference for the AAMI
protocol.

B. Results

Through experimentation, we evaluated four distinct re-
gression models, and our findings reveal that the Cubic
and Generalized Additive Model (GAM) regression models
have demonstrated consistent adherence to the established
criteria outlined by both the British Hypertension Society
(BSH) and the Association for the Advancement of Medical
Instrumentation (AAMI) protocols. Notably, the substantial R?

TABLE III
MODELS’ ACCURACY REGARDING SYSTOLIC BLOOD PRESSURE (ToP) &
DIASTOLIC BLOOD PRESSURE (BOTTOM) USING AAMI PROTOCOL

Model MAE SD  R? Score
Linear Regression 12.01 843 0.1664
Quadratic Regression 7.04 541 0.6948
Cubic Regression 3.8 3.11 0.9068
GAM 499 337 0.8598
Linear Regression 6.38 391 0.2311
Quadratic Regression 3.86 2.71 0.6944
Cubic Regression 2.08 2.33 0.8658
GAM 4.03 2.48 0.6924

scores attained by these models serve as robust indicators of
the considerable correlation achieved between the estimated
blood pressure values and the reference standards, thereby
substantiating the efficacy and potential clinical relevance of
our approach. Detailed results and model performance metrics
are provided in Table II and III.

IV. CONCLUSIONS

Our study has effectively demonstrated ample evidence sup-
porting the feasibility of contactless, non-invasive blood pres-
sure monitoring utilizing data derived from a single-channel
infrared stream. The method put forth in this study leverages
precise facial and palmar segmentation, combined with the
technique of motion magnification. Through this approach, we
successfully deduce the pulse transit time between the corre-
sponding signals acquired from each video within our dataset.
This transit time data is further aggregated and analyzed to
compute the average transit time specific to each participant.
Leveraging an array of regression tools, the obtained results
were subjected to validation against internationally recognized
health protocols, exceeding the stipulated criteria. This ap-
proach lends itself readily to potential application within a
hospital or healthcare clinic setting.
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