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Abstract—Historical document image binarization has been a
very important document image processing task. The task of
binarization can be viewed as a pre-processing step that attempts
to separate the printed/handwritten characters in the image
from noise and background, assisting in the Optical Character
Recognition (OCR) process. In this article, we propose a U-Net
style deep learning architecture that incorporates many other
developments of deep learning, including residual connections,
multi-resolution connections, visual attention blocks and dilated
convolution blocks. These concepts in the proposed DMVAnet
have shown to improve performance in our binarization experi-
ments. Finally, the proposed architecture is a lightweight network
that performs very close or even better than state-of-the-art
approaches with a fraction of the network size and parameters
used by other approaches.

Index Terms—image binarization, U-Net, Visual Attention,
Residual Networks

I. INTRODUCTION

Written language appears everywhere in our urban environ-
ments the ability to extract text from digital visual media is
critical in many applications, such as extraction of the text
from images and videos, digitisation of the written cultural
heritage, Optical Character Recognition and others. Document
Image Binarization is the process of separating the text from
its environment in a document image. The input image is seg-
mented into two layers of information, one for the background
and one for the text, becoming essentially a binary map.

One of the most well-known approaches is Otsu’s method
[1], which performs automatic global image thresholding in
its basic form. Sauvola [2] and Niblack [3] binarization algo-
rithms operate by calculating local thresholds for every pixel,
based on statistical information from the pixel neighbourhood.
Apart from these basic techniques, more methods have been
proposed in the past decade. Howe [4] binarizes the image
by minimising a global energy function, based on a Markov
Random Field model and performing automatic parameter
tuning. Su et al. [5] construct an adaptive contrast map and
based on that and the Canny edge detection map, the method
detects the text stroke edges, which are used to estimate
local threshold values for binarizing the image. Lelore and
Bouchara [6] introduce the FAIR algorithm, which applies
a modified Canny edge detection and clusters the resulting
pixels. To tackle the defects of parameter selection, the process

is applied twice with different parameters and the final results
are merged. Nachi et al. [7] use phase congruency feature
maps, based on Kovesi’s phase congruency model, as well as
a phase-derived denoised image in order to produce a final
binarized version of the input. Mitianoudis and Papamarkos
[8] address the Document Image Binarization problem by
first removing the background with a long-window low-pass
filtering process. The resulting image is binarized using Local
Co-occurrence Mapping (LCM), that exploits common local
character properties, when identifying the character pixels
and Mixture of Gaussians (MoG) clustering. As a last step,
a mathematical morphology step removes misclassified or
noisy items. In addition, Jia at al. [9] perform a background
removal process, compute a gradient map from the output and
extract the structural symmetric pixels (SSPs) to calculate local
thresholds for the binarization process. Finally, Bhowmik et al.
[10] employ Game Theory concepts, such as two-player non-
zero-sum non-cooperative game and the Nash equilibrium, in
order to extract image features that are further fed to a K-
means clustering step for classifying the pixels into foreground
and background groups.

We focus on recent deep learning methods, evaluate their
performance and suggest an innovative architecture for ad-
dressing the problem more efficiently. In [11], He and
Schomaker suggest an iterative deep learning framework for
improving the input images by removing noise and degrada-
tions that usually prevent efficient binarization. The framework
”learns” the noise and degradations of the original image
and iteratively produces a uniform variant that can be finally
binarized with any binarization method. Therefore, the pro-
posed framework acts as a deep learning augmentation pre-
processing step for any binarization process. Vo et al. [12] use
a multiscale hierarchical approach consisting of three Deep
Supervised Networks (DSN) in order to separate text from
the background noise. By using different feature scales, the
model tries to optimize the classification of image pixels over
large areas as well as those over the text boundaries. Zhao et
al. [13] employ conditional Generative Adversarial Networks
(cGANs) in order to synthesize the binarized output images
from degraded document images. A two-stage generator is
employed for producing binary maps, based on the learned
input and ground truth images. He and Schomaker [14]



multires block

multires block + dropout (D = dropout rate)

visual attention block

convolution 1x1 + sigmoid
skip connection + concatenattion +

dropout (D = Dropout Rate)

Residual path (1)

Residual path (1)

Residual path (3)

Residual path (4)

D D D D

D
 =

 0
.1

Residual path (2)

dilated multires block

dilated multires block +

dropout (D = dropout rate)

Fig. 1. The proposed Dilated MultiRes Visual Attention U-Net (DMVAnet)

describe the CT-Net, a novel T-net architecture that consists of
one encoder and two decoders, the first of which performs an
image enhancement task and the other a binarization task. The
T-net blocks are cascaded resulting in a CT-net model, where
the block connections placed along the enhancement outputs,
so that each T-net of the pipeline receives a more and more
enhanced input.

In this paper, we present a simple, lightweight and ef-
fective deep learning architecture that solves the binarization
problem without using pre- and post- processing or ensemble
of different networks. The proposed Dilated MultiRes Visual
Attention U-Net (DMVAnet) architecture is a composite U-
Net network that exhibits state-of-the-art performance in a
single-step approach with comparatively low complexity. The
proposed DMVAnet contains carefully selected features from
previous networks to form a new architecture that has not been
applied or tested in the context of image binarization before
to the best of our knowledge. A fundamental difference of
our proposal is that DMVAnet is a single network, trained
only once, while related SOTA methods, either consist of
multiple separate Deep Neural Networks, different pre- or
post- processing steps, or have to be applied iteratively. Due
to the above, they feature complex implementation steps or
serve as an enhancement step that should be followed by other
binarization methods. Finally, most SOTA networks feature far
more complex networks with up to 32 times the parameters of
DMVAnet, yielding no or minimal performance gain compared
to their added complexity.

The paper is organised, as follows. In Section 2, we describe
the proposed architecture with all the main structural details.
Section 3 compares the proposed approach with other state-of-
the-art methods on commonly-used datasets. Finally, Section
4 concludes the article and proposes steps for future work.

II. THE PROPOSED DILATED MULTIRES VISUAL
ATTENTION U-NET (DMVANET)

Fig. 1 shows the complete DMVAnet architecture. The
DMVAnet stems from a conventional U-Net and effectively
incorporates modern deep learning architectural traits. All
the selected blocks and modifications have been validated
through experiments. Apart from the selected changes, other
architectures (U-Net with dense connections [15], UNet++
[16] and DeeplabV3+ [17]) have been tested and led to no
performance improvement.

The first novel element is that it uses residual connections
along the paths of the encoder and decoder in the style of [18],
in order to combat the vanishing gradient problem.

Next, the encoder uses skip connections that are scaled with
visual attention blocks, with Channel attention and Spatial
attention modules ( [19], [20]). The details of the block are
shown in Fig. II.
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Fig. 2. The proposed Visual attention block.

In [21], Ibtehaz and Rahman proposed the replacement of
Inception blocks with MultiRes blocks in order to minimise the
additional memory overhead without sacrificing performance.
The MultiRes block replaces the larger convolutions with a
sequence of 3×3 convolutional layers. The block is shown in
Fig. II.
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From [21], the Residual paths (Res paths) are also incorpo-
rated here. Fig. II demonstrates that the Res paths balance the
incompatibilities in the semantic information, carried by the
concatenated encoder and decoder features maps.
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Fig. 4. The Residual path used in the MultiRes Visual Attention U-Net.

Inspired by the DeepLab network variants [17], [22], [23],
we also add dilated (a-trous) convolutions to our network
layers. Dilated convolutions remedy the spatial resolution loss
after a series of consecutive pooling layers, by retaining the
feature map dimension. The complete DMVAnet architecture
is depicted in Fig. 1.

III. PERFORMANCE COMPARISON

In this section, we evaluate the proposed DMVAnet model
against state-of-the-art binarization approaches. The competi-
tor architectures in our comparison contained both traditional
image processing based methods and deep learning based
methods. More specifically, the following methods were ex-
amined: Otsu [1], Sauvola [2], Su et al [5], Howe [4], Lelore
et al. [6], Nafchi et al. [7], Mitianoudis et al. [8], Jia et al.
[9], GiB [10], cGANs [13], DeepOtsu [11], DSN [12], PDNet
[24], CT-Net-3 [14] and CTada -Net-3 [14].

In all experiments, the network training input were ran-
domly cropped 256 × 256 patches of the dataset training
images.

The following augmentations were added to the training
samples in a cascaded manner:

• Random scale augmentation
• Random horizontal and vertical flip

• Rotation by random multiples of 90 degrees
• Random contrast, brightness, hue and saturation change

DMVAnet was trained for 150 epochs using the Adam
optimizer with a polynomial decay schedule (initial rate is
0.001, power is 0.9, decay steps are the total training steps).
Training and evaluation was done on an Ubuntu 20.04 PC
with 64GB RAM, an Intel i9 2.5 GHz 16-Core CPU and
an NVIDIA GeForce RTX 3090 GPU. The architecture was
developed in Python v3.8.10 and Tensorflow v2.10.0. The
developed code is available via the following url 1.

The lost function was Dice loss [25] which outperformed
Binary Cross-Entropy, Mean Square Error, Inverse Peak
Signal-to-Noise Ratio, a Differentiable F-Measure version and
linear combinations. Training batch size was set to 32 (per-
formance gains and hardware limitations trade-off). Finally,
random shuffling and ”save best only” training strategy were
employed.

TABLE I
COMPARISON ON INDICATIVE DATASETS (DIBCO 2009, H-DIBCO 2014,

DIBCO 2017 AND H-DIBCO 2018), FOLLOWING THE GUIDELINES OF
THE CT-NET EXPERIMENT. DASHES INDICATE MISSING METRICS.

(SOURCE [14])

DIBCO 2009

Method FM Fps PSNR DRD
DeepOtsu [11] - - - -

DSN [12] - - - -
cGANs [13] 94.1 95.26 20.30 1.82

CT-Net-3 [14] 92.08 94.31 19.77 3.58
CTada -Net-3 [14] 94.18 95.80 20.50 2.56

DMVAnet 95.7 96.84 21.42 1.35
Rank 1 1 1 1

H-DIBCO 2014

Method FM Fps PSNR DRD
DeepOtsu [11] 95.9 97.2 22.1 0.9

DSN [12] 96.66 97.59 23.23 0.79
cGANs [13] 96.41 97.55 22.12 1.07

CT-Net-3 [14] 97.70 98.74 23.92 0.65
CTada -Net-3 [14] 96.91 97.93 22.62 0.88

DMVAnet 97.55 98.58 23.62 0.71
Rank 2 2 2 2

DIBCO 2017

Method FM Fps PSNR DRD
DeepOtsu [11] - - - -

DSN [12] - - - -
cGANs [13] 90.73 92.58 17.83 3.58

CT-Net-3 [14] 92.72 94.31 19.17 2.79
CTada -Net-3 [14] 92.65 94.73 19.17 2.65

DMVAnet 92.2 95.14 18.73 2.6
Rank 3 1 3 1

H-DIBCO 2018

Method FM Fps PSNR DRD
DeepOtsu [11] - - - -

DSN [12] - - - -
cGANs [13] 87.73 90.60 18.37 4.58

CT-Net-3 [14] 88.90 91.45 18.84 5.58
CTada -Net-3 [14] 92.23 94.97 20.13 2.70

DMVAnet 85.9 89.45 18.16 6.99
Rank 4 4 4 4

1https://github.com/detsikas/DMVAnet



TABLE II
OVERALL RANKING (DASHES SHOW THAT THE METHOD IS NOT RANKED BECAUSE METRICS ARE MISSING).

Method 2009 2011 2014 2016 2017 2018 Overall
Otsu [1] 11 13 11 9 8 8 7

Sauvola [2] 10 12 12 12 7 7 8
Su et al [5] 7 11 10 11 - - -
Howe [4] 4 9 5 8 5 5 5

Lelore et al. [6] 5 7 8 10 - - -
Nafchi et al. [7] - - - - - - -

Mitianoudis et al. [8] 9 10 - - - - -
Jia et al. [9] 6 8 9 5 6 6 6

GiB [10] - - - - - - -
DeepOtsu [11] - 5 7 2 - - -

DSN [12] - 6 3 6 - - -
PDNet [24] - - - - - - -
cGANs [13] 2 4 6 1 4 3 3

CT-Net-3 [14] 8 1 1 7 1 2 4
CTada -Net-3 [14] 3 3 4 4 2 1 2

DMVAnet 1 2 2 3 3 4 1

A. Comparisons & results

In order to compare against the other approaches, we
replicate an experiment described in more detail in [14]. In
each of the experiments described in [14], a DIBCO dataset
is used as the evaluation dataset and the remaining are treated
as training datasets. In total, the DIBCO datasets used both
for training and evaluation purposes are DIBCO 2009, H-
DIBCO 2010, DIBCO 2011, H-DIBCO 2012, DIBCO 2013
[26], H-DIBCO 2014, H-DIBCO 2016, DIBCO 2017 [27] and
H-DIBCO 2018 [28].

The training sets also include the Bickley-diary dataset, the
Persian Heritage Image Binarization dataset (PHIDB) [29] and
the Synchromedia Multispectral dataset [30].

Our method is the top ranking method for DIBCO 2009. For
DIBCO 2011 and H-DIBCO 2014, it is outperformed only by
CT-Net-3, which is of much higher complexity. The proposed
DMVAnet consists of 6.5M parameters, whereas the CT-Net-
3 requires 45M parameters. In other words, the CT-Net-3
requires seven times more parameters than our proposed DM-
VAnet. For DIBCO 2017, our method exhibits the best pseudo
f-measure and DRD values, while it is outperformed only by
CT-Net-3 method variations. Finally, H-DIBCO 2018 dataset
experiment renders our method fourth among the examined
methods, all of which though have much higher complexity.
Again, H-DIBCO 2018 presents special challenges, such as the
strong bleed-through, strong paper stains and page margins not
seen in other datasets. Detailed results for indicative datasets
are listed in Table I.

To calculate the ranking, we rank all methods for each
metric and each evaluation dataset. We add the metric ranks
and calculate the total rank for each evaluation dataset by
sorting the sums from lowest to highest. We performed the
DIBCO 2009, DIBCO 2011, H-DIBCO 2014, H-DIBCO 2016,
DIBCO 2017 and H-DIBCO 2018 experiments. Table II shows
the overall ranking against the competitor methods over all
evaluation datasets. Despite, the fluctuation among datasets,
our method ranks first against all other experiment methods,

which implies that in general the proposed method outper-
forms more complex networks and offers a reliable lightweight
architecture for the problem of document image binarization.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a single-step one-shot light-weight deep
learning network for Document Image Binarization that re-
quires neither pre- nor post- processing steps. The proposed
DMVAnet combines a basic U-Net architecture with elements
from modern deep learning architectures, including visual
attention blocks, multi resolution blocks, residual connections
and dilated convolutions that enhances its performance without
inhibiting computational efficiency. The DMVAnet’s perfor-
mance was benchmarked with State of the Art methods on the
popular (H-)DIBCO datasets and demonstrated that it exhibits
better or comparable performance but with a much smaller
training parameters complexity.

The DMVAnet can easily be scaled up or down in order to
accommodate for different image input sizes. A change in the
number of encoder/decoder layers, proportionally changes the
residual path lengths. MultiRes blocks can be further extended
or compressed for more fine or coarse multi-resolution aggre-
gation. Scale changes may introduce performance overheads
which can be fine-tuned by altering feature map dimensional-
ity.

Further, continuing on the path of visual attention research,
we will investigate more complex deep learning attention
architectures, such as the transformer networks. Even though
transformer networks had been primarily introduced for se-
quential data problems, such as Natural Language Processing
(NLP), they process the entire input at once and take advantage
of contextual information through their innate attention mech-
anism. Due to these properties the transformer network adapta-
tion on image semantic segmentation task is a very promising
and challenging task that should be investigated and extended
with other successful and well established contemporary deep
learning architectural blocks.
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