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Image fusion systems aim at transferring “interesting” information from the input
sensor images to the fused image. The common assumption for most fusion
approaches is the existence of a high-quality reference image signal for all image
parts in all input sensor images. In the case that there are common degraded
areas in at least one of the input images, the fusion algorithms can not improve
the information provided there, but simply convey a combination of this degraded
information to the output. The authors propose a combined spatial-domain
method of fusion and restoration in order to identify these common degraded
areas in the fused image and use a regularised restoration approach to enhance
the content in these areas. The proposed approach was tested on both multi-focus

and multi-modal image sets and produced interesting results.
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1. INTRODUCTION

Data fusion is defined as the process of combining
data from sensors and related information from several
databases, so that the performance of the system can
be improved, while the accuracy of the results is also
increased. In other words, it refers to the procedure of
incorporating essential information from several sensors
to a composite result that will be more comprehensive
and thus more useful for an operator or other computer
vision tasks.

Closely to data fusion, image fusion can be viewed
as the process of combining information in the form
of images, obtained from various sources in order to
construct an artificial image that contains all “useful”
information that exists in the input images. Each image
has been acquired using different instrument modalities
or capture techniques, and therefore, it has different
features, such as type of degradation, thermal and
visual characteristics and others. The main concept
behind all image fusion algorithms is to detect strong
salient features in the input sensor images and fuse these
details to the synthetic image. The resulting synthetic
image is usually referred to as the fused image.

Let x1(r), . . . , xT (r) represent T images of size M1×
M2 capturing the same scene, where r = (i, j) refers

to pixel coordinates (i, j) in the image. Each image
has been acquired using different sensors that are
placed relatively close and are observing the same
scene. Ideally, the images acquired by these sensors
should be similar. However, they are bound to have
some translational motion, i.e. miscorrespondence
between several points of the observed scene. Image
registration is the process of establishing point-by-point
correspondence between a number of images, describing
the same scene. In this study, we will assume that
the input images have negligible registration problems,
which implies that the objects in all images are
geometrically aligned.

As already mentioned, the process of combining the
important features from the original T images to form
a single enhanced image y(r) is usually referred to as
image fusion. Fusion techniques can be divided into
spatial domain and transform domain techniques [1]. In
spatial domain techniques, the input images are fused in
the spatial domain, i.e. using localised spatial features.
Assuming that g(·) represents the “fusion rule”, i.e. the
method that combines features from the input images,
the spatial domain techniques can be summarised, as
follows:

y(r) = g(x1(r), . . . , xT (r)) (1)
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The main motivation behind moving to a transform
domain is to work in a framework, where the image’s
salient features are more clearly depicted than in the
spatial domain. Hence, the choice of the transform
is very important. Let T {·} represent a transform
operator and g(·) the applied fusion rule. Transform-
domain fusion techniques can then be outlined, as
follows:

y(r) = T −1{g(T {x1(r)}, . . . , T {xT (r)})} (2)

Several transformations were proposed to be used
for image fusion, including the Dual-Tree Wavelet
Transform [1, 2, 3], Pyramid Decomposition [4]
and image-trained Independent Component Analysis
bases [5]. All these transformations project the input
images onto localised bases, modelling sharp and abrupt
transitions (edges) and therefore, represent the image
into a more meaningful representation that can be used
to detect and emphasize salient features, important
for performing the task of image fusion. In essence,
these transformations can discriminate between salient
information (strong edges and texture) and constant or
non-textured background and also evaluate the quality
of the provided salient information. Consequently, one
can employ the information provided in the transform
domain and select the required information from the
input images to construct the “fused” image, following
the criteria presented earlier on.

In the case of multi-focus image fusion scenarios, an
alternative approach has been proposed in the spatial
domain, exploiting current error estimation methods
to identify high-quality edge information [6]. One
can perform error minimization between the fused and
input images, using various proposed error norms in
the spatial domain in order to perform fusion. The
possible benefit of a spatial-domain approach is the
reduction in computational complexity which is present
in a transform-domain method due to the forward and
inverse transformation step.

In addition, following a spatial-domain fusion
framework, one can also benefit from current available
spatial-domain image enhancement techniques to
incorporate a possible restoration step to enhance areas
that exhibit distorted information in all input images.
Current fusion approaches can not enhance areas that
appear degraded in any sense in all input images.
There has to be some pure information for all parts
of the image in the various input images, so that the
fusion algorithm can produce a high quality output.
In this work, we propose to reformulate and extend
Jones and Vorontsov’s [6] spatial-domain approach to
fuse the non-degraded common parts of the sensor
images. A novel approach is used to identify the areas
of common degradation in all input sensor images.
A double-regularised image restoration approach using
robust functionals is applied on the estimated common
degraded area to enhance the common degraded area in
the “fused” image. The overall fusion result is superior

to any traditional fusion approach since the proposed
approach goes beyond the concept of transferring
useful information to a thorough fusion-enhancement
approach.

2. ROBUST ERROR ESTIMATION
THEORY

Let the image y(r) be a recovered version from a
degraded observed image x(r), where r = (i, j) are
pixel coordinates (i, j). To estimate the recovered image
y(r), one can minimise an error functional E(y) that
expresses the difference between the original image and
the estimated one, in terms of y. The error functional
can be defined by:

E(y) =
∫

Ω

ρ (r, y(r), |∇y(r)|) dr (3)

where Ω is the image support, ∇y(r) is the image
gradient. The function ρ(·) is termed the error norm
and is defined according to the application, i.e. the
criterion the algorithm needs to fulfill in order to remove
the degradation. For example, a least square error
norm can be appropriate to remove additive Gaussian
noise from a degraded image. The extremum of the
previous equation can be estimated, using the Euler -
Lagrange equation. The Euler-Lagrange equation is an
equation satisfied by a function f of a parameter t which
extremises the functional:

E(f) =
∫

F (t, f(t), f ′(t)) dt (4)

where F is a given function with continuous first partial
derivatives. The Euler-Lagrange equation is described
by the following ordinary differential equation, i.e. a
relation that contains functions of only one independent
variable, and one or more of its derivatives with respect
to that variable, the solution t of which extremises the
above functional [7].

∂

∂f(t)
F (t, f(t), f ′(t))− d

dt

∂

∂f ′(t)
F (t, f(t), f ′(t)) = 0

(5)
Applying the above rule to derive the extremum of (3),
the following Euler-Lagrange equation, we derive:

∂ρ

∂y
−∇

( ∂ρ

∂∇y

)
= 0 (6)

Since ρ(·) is a function of |∇y| and not ∇y, we
perform the substitution ∂∇y = ∂|∇y|/sgn(∇y) =
|∇y|∂|∇y|/∇y. Consequently, the Euler-Lagrange
equation is given by:

∂ρ

∂y
−∇

( 1
|∇y|

∂ρ

∂|∇y|∇y(r)
)

= 0 (7)

To calculate y(r) directly from (7) is not straightfor-
ward. Hence, one can use numerical optimisation meth-
ods to estimate y. Gradient-descent optimisation can be
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applied to estimate y(r) iteratively using the following
update rule:

y(r, t) ← y(r, t− 1)− η
∂y(r, t)

∂t
(8)

where t is the time evolution parameter, η is the
optimisation step size and

∂y(r, t)
∂t

= −∂ρ

∂y
+∇

( 1
|∇y|

∂ρ

∂|∇y|∇y(r, t)
)

(9)

Starting with the initial condition y(r, 0) = x(r),
the iteration of (9) continues until the minimisation
criterion is satisfied, i.e. |∂y(r, t)/∂t| < ε, where ε is
a small constant (ε ∼ 0.0001). In practice, only a finite
number of iterations are performed to achieve visually
satisfactory results [6]. The next question is the choice
of the error norm ρ(·) in the Lagrange-Euler equation.

2.1. Isotropic diffusion

As mentioned previously, one error norm candidate ρ(·)
is the least-squares error norm. This norm is given by:

ρ(r, |∇y(r)|) =
1
2
|∇y(r)|2 (10)

The above error norm smooths Gaussian noise and
depends only on the image gradient ∇y(r), but not
explicitly on the image y(r) itself. If the least-squares
error norm is substituted in the time evolution equation
(9), we get the following update:

∂y(r, t)
∂t

= ∇2y(r, t) (11)

which is the isotropic diffusion equation having the
following analytic solution [8]:

y(r, t) = G(r, t) ∗ x(r) (12)

where ∗ denotes the convolution of a Gaussian function
G(r, t) of standard deviation t with x(r), the initial
data. The solution specifies that the time evolution
in (12) is a convolution process performing Gaussian
smoothing. However, as the time evolution iteration
progresses, the function y(r, t) becomes the product of
the convolution of the input image with a Gaussian
of constantly increasing variance, which will finally
produce a constant value. In addition, it has been
shown that isotropic diffusion may not only smooth
edges, but also causes drifts of the actual edges in
the image edge, because of the Gaussian filtering
(smoothing) [8, 9]. These are two disadvantages that
need to be taken into account when using isotropic
diffusion.

2.2. Isotropic diffusion with edge
enhancement

Image fusion aims at transferring salient features to
the fused image. In this work we interpret saliency as

edge information and therefore, image fusion aims at
highlighting edges in the fused image. An additional
desired property can be to smooth out any possible
Gaussian noise. In order to achieve the above tasks
using an error estimation framework, the objective is
to create an error norm that will enhance edges in an
image and simultaneously smooth possible noise. The
following error norm, combining isotropic smoothing
with edge enhancement, was proposed in [6]:

ρ(r, y(r, t), |∇y(r, t)|) =
α

2
|∇y(r, t)|2 + (13)

+
β

2
Jx(r)(y(r, t)− x(r))2

where α, β are constants that define the level of
edge enhancement and smoothing respectively that is
performed by the cost function, t is the time evolution
and Jx is commonly termed the anisotropic gain
function, which is a Gaussian smoothed edge map. One
possible choice for implementing a Gaussian smoothed
edge map is the following :

Jx(r) = κ

∫
|∇x(q)|2G(r− q, σ)d2q (14)

where G(·) is a Gaussian function of zero-mean and
standard deviation σ and κ is a constant. Another
choice can be a smoothed Laplacian edge map. The
anisotropic gain function has significantly higher values
around edges or where sharp features are dominant
compared to blurred or smooth regions.

Substituting the above error norm into the gradient
descent update of (9) yields the following time evolution
equation with anisotropic gain:

∂y(r, t)
∂t

= α∇2y(r, t)− βJx(r)(y(r, t)− x(r)) (15)

The above equation smoothes noise while enhancing
edges. The parameters α and β control the effects
of each term. The parameter α controls the amount
of noise smoothing in the image and β controls the
anisotropic gain, i.e. the preservation and enhancement
of the edges. For noiseless images, we can choose α = 0
and β = 1. In this case, for short time intervals, the
anisotropic gain function Jx induces significant changes
dominantly around regions of sharp contrast, resulting
in edge enhancement.

There is always a possibility that in some regions
of interest, the anisotropic gain function is not
high enough and therefore the above update rule
can potentially degrade the quality of information
that is already integrated into the input image and
consequently in the enhanced image. To prevent such
erasing effects, however small they might be, John
and Vorontsov [6] introduced the following modified
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anisotropic gain function:

J(r, t) = Jx(r)− Jy(r, t) (16)

The general update formula to estimate f(r) becomes
then:

∂y(r, t)
∂t

= α∇2y(r, t)− (17)

− Θ(J(r, t))J(r, t)(y(r, t)− x(r))

where

Θ(J) =
{

1 , J ≥ 0
0 , J < 0 (18)

The new term Θ(J)J allows only high quality
information, interpreted in terms of edge presence,
to transfer to the enhanced image. In the opposite
case that Jx(r) < Jy(r), the information in the
enhanced image has better edge representation than the
original degraded image for several r and therefore, no
processing is necessary. In the case of a single input
image, the above concept might not seem logical or
practical. In the following section, the proposed concept
is employed in a multiframe input scenario, where the
aim is to transfer only high quality information to the
enhanced image y(r). In this case, this thresholding
mechanism is absolutely vital to ensure information
enhancement.

3. FUSION WITH ERROR ESTIMATION
THEORY

In this section, we propose a novel spatial-domain fusion
algorithm, based on the basic formulation of John and
Vorontsov. In [6], a sequential approach to image fusion
based on Error Estimation theory was proposed. In
other words, assuming that we have a number of T
input frames xn(r) to be fused, one can easily perform
selective image fusion, by iterating the update rule (18)
for the estimation of y(r) using each of input images
xn consecutively for a number of K iterations. In a
succession of intervals of K iterations, the synthetic
frame finally integrates high-quality edge areas from the
entire set of input frames.

The possibility of data fusion occurring in regions
where the anisotropic gain function is not high enough,
can potentially degrade quality information already
integrated into the synthetic frame. To prevent
such erasing effects, as mentioned in the previous
section, we can introduce a differential anisotropic gain
function, where the aim is to transfer only high quality
information to the fused image y(r). The proposed
approach by John and Vorontsov can be applied mainly
in the case of a video stream, where we need to enhance
the quality of the observed image, based on previous
and forthcoming frames. However, this framework is
not very efficient in the case of fusion applications,
where the input frames are simultaneously available for
processing and fusion. In this case, a reformulation of

the above procedure is needed and is described in full
in the following section.

3.1. A novel fusion formulation based on error
estimation theory

Assume there are T images xn(r) that capture the same
observed scene. The input images are assumed to be
registered and each image contains exactly the same
scene. This assumption is valid, since in most real-
life applications, the input sensors are arranged in a
close-distance array and similar zoom level in order to
minimise the need for registration. Different parts of the
images are blurred using different amounts and types
of blur. The objective is to combine the useful parts of
input information to form a composite (“fused”) image.

The described setup can model a possible out-of-focus
scenario of image capture. We have all witnessed the
case, where we want to take a photograph of an object
in a scene and the camera focuses on a background
point-object by mistake. As a result, the foreground
object appears blurred in the final image, whereas
the background texture is properly captured. In a
second attempt to photograph the object correctly, the
foreground object appears properly and the background
appears blurred. Ideally, we would like to combine the
two images into a new one, where everything would
appear in full detail. This is an example of a real-life
application for the fusion of out-of-focus images. The
same scenario can also appear in military surveillance
and general surveillance applications, where one would
like to enhance the surveillance output, by combining
multiple camera inputs at different focal length.

The fused image y(r, t) can be constructed as a linear
combination of the T input registered images xn(r).
The fusion problem is usually solved by finding the
weights wi(r, t) that transfer all the useful information
from the input images xi to the fused image y [5, 10].

y(r, t) = w1(r, t)x1(r) + . . . + wT (r, t)xT (r) (19)

where wn(r, t) denotes the nth weight of the image
xn at position r. To estimate these weights, we
can perform error minimisation using the previously
mentioned approach of Isotropic Diffusion with edge
enhancement. The problem is now to estimate the
weights wn simultaneously, so as to achieve edge
preservation. This cannot be accomplished directly by
the scheme proposed by Jones and Vorontsov.

In other words, we need to estimate the derivative
∂wn/∂t simultaneously, for all n = 1, . . . , T . We can
associate ∂wn/∂t with ∂y/∂t that has already been
derived before.

∂y

∂t
=

∂y

∂wn

∂wn

∂t
= xn

∂wn

∂t
(20)

Therefore, we can use the previous update rule to
estimate the contribution of each image to the fused
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one:
∂wn(r, t)

∂t
=

1
xn(r)

∂y(r, t)
∂t

(21)

The fusion weight wn(r, t) of each input image can then
be estimated using sequential minimisation with the
following update rule ∀n = 1, . . . , T :

wn(r, t + 1) ← wn(r, t)− η
∂wn(r, t)

∂t
(22)

where

∂wn(r, t)
∂t

= − 1
xn(r)

Θ
(
Jn(r, t)

)
Jn(r, t)

(
y(r, t)− xn(r)

)

(23)
and Jn(r, t) = Jxn

(r) − Jy(r, t). To avoid possible
numerical instabilities, for those r that xn(r) = 0,
a small constant is added to these elements so as
to become nonzero. All weights are initialised to
wn(r, t) = 1/T , which represents the “mean” fusion
rule. As this scheme progresses over time, the weights
are adapting and tend to emphasise more the useful
details that exist in each image and suppress the
information that is not very accurate. In addition, all
the fusion weights are estimated simultaneously using
this scheme. Therefore, after a couple of iterations the
majority of the useful information is extracted from the
input images and transferred to the composite image.

3.2. Fusion experiments of out-of-focus and
multimodal image sets using error
estimation theory

In this section, we perform several fusion experiments
of both out-of-focus and multimodal images to evaluate
the performance of the proposed approach. Most test
images were taken from the Image Fusion server [11].
The numerical evaluation in most experiments was
performed using the metrics proposed by Piella [12] and
Petrovic [13].

In the first experiment, the system is tested with an
out-of-focus example, the “Disk” dataset. The ICA-
based fusion algorithm, proposed in [5], was employed
as a benchmark to the new proposed algorithm. We
used 40 TopoICA 8 × 8 bases, trained from 10000
patches that were randomly selected from natural
images. Then, the “Weighted Combination” rule was
selected to perform fusion of the input images. On the
other hand, for the spatial-domain fusion scheme, the
parameters were set to α = 0 (no visible noise), β = 0.8
and the learning parameter was set to η = 0.08. The
Gaussian smoothed edge map of (14) was calculated by
extracting an edge map using the Sobel mask, which
was subsequently smoothed by a Gaussian 5× 5 kernel
of standard deviation σ = 1. The fusion results of
the two methods are depicted in Figure 1. We notice
that the proposed approach produces sharper edges
compared to the ICA-Based method. The difference is
more visible around the edges of the tilted books in the

(a) Input Image 1 (b) Input Image 2

(c) TopoICA Fusion (d) Proposed Scheme

(e) TopoICA Fusion (f) Proposed Scheme

FIGURE 1. An out-of-focus fusion example using the
“Disk” dataset available by the Image Fusion server [11].
We compare the TopoICA-based fusion approach and the
proposed Diffusion scheme.

bookcase and the eye on the cover of the book that is
in front of the bookcase. In Figure 2, the convergence
rate of the estimation of one of the fusion weights is
shown. The proposed algorithm demonstrates almost
linear convergence, which is expected for a gradient
algorithm.

In Table 1, the performance of the proposed method
is compared with the ICA-based method, in terms of the
Petrovic and Piella method. The metrics give slightly
higher performance to the proposed methodology.
However, we can observe an improvement in the visual
representation of edges using the proposed method
in the particular application of fusion of out-of-focus
images.

The estimated fusion weights w1(r), w2(r) are
depicted in Figure 3. It is clear that the weights w1, w2

highlight the position of high-quality information in the
input images. The cost function that is optimised in this
case aims at highlighting edges in the “fused” image.
This is essentially what is estimated by the weight maps
w1(r), w2(r). This information can be used to identify
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FIGURE 2. Convergence of the estimated fusion weight
w1 using the proposed fusion algorithm in terms of
||∂w1/∂t||2.

Petrovic Piella
TopoICA 0.6151 0.9130

Fusion with EE 0.6469 0.9167

TABLE 1. Performance evaluation of the Diffusion
approach and the TopoICA-based fusion approach using
Petrovic [13] and Piella’s [12] metrics.

(a) Estimated w1(r) (b) Estimated w2(r)

FIGURE 3. The weights w1, w2 highlight the position of
high quality information in the input images.

common areas of inaccurate information in the input
images. A restoration algorithm could be applied to
these areas and enhance the final information that is
conveyed to the “fused” image.

The next step is to apply the proposed algorithm
to a multimodal scenario. We will use an image pair
from the “Dune” dataset of surveillance images from
TNO Human Factors, provided by L. Toet [14] in the
ImageFusion Server [11]. We applied the ICA-based
approach and the proposed algorithm on the dataset,
using the same settings as in the previous example. In
Figure 4, we plot the fused results of the two methods
and in Table 2, we plot their numerical evaluation using
Petrovic and Piella’s metrics.

According to the performance evaluation metrics, the
ICA-based approach performs considerably better than
the proposed approach. The same trend is also observed
in the metrics. However, the proposed approach
performs differently to a common fusion approach. It

(a) Input Image 1 (b) Input Image 2

(c) TopoICA Fusion (d) Proposed Scheme

FIGURE 4. Comparison of a multimodal fusion example
using the TopoICA method and the Diffusion approach.
Even though the metrics demonstrate worse performance,
the diffusion approach highlights edges giving a sharper
fused image.

Petrovic Piella
TopoICA 0.5004 0.7345

Fusion with EE 0.4842 0.6764

TABLE 2. Performance evaluation in the case of a
multimodal example from the Toet database. The
TopoICA-based approach is compared with the proposed
fusion approach.

aims at highlighting the edges of the input images to
the fused image, due to the edge enhancement term
in the cost function. This is can be observed directly
in Figure 4(d). All edges and texture areas are highly
enhanced in the fused image together with the outline
of the important target, i.e. the hidden man in the
middle of the picture. Consequently, one should also
consult the human operators of modern fusion systems,
apart from proposed fusion metrics [12, 13], in order to
evaluate efficiently the performance of these algorithms.
Perhaps the outlined fusion result is more appealing
to human operators and the human vision system in
general and therefore may be also be examined as a
preferred solution.

4. JOINT IMAGE FUSION AND
RESTORATION

As mentioned in a previous section, Image Fusion is
the process of combining information from different
input sensor images, in order to form a new composite,
synthetic image that contains all the useful information
(details) from the input images. This concept assumes
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that there is some useful information for all parts
of the observed scene at least in one of the input
sensors. However, this assumption might not always
be true. This means that there might be parts of the
observed scene where there is only degraded information
available. The current fusion algorithms will fuse all
high quality information from the input sensors and
for the common degraded areas will form a blurry
mixture of the input images, as there is no high quality
information available.

In this section, the problem of identifying the areas
of common degraded information in all input images is
addressed. A mechanism is established for identifying
common degraded areas in an image. Once this part is
identified, we can apply an image restoration approach
as a second step in order to enhance these parts for the
final composite “fused” image.

4.1. Identifying common degraded areas in
the sensor images

The first task will be to identify the areas of degraded
information in the input sensor images. We will follow
a simple identification approach, based on local image
statistics to trace the degraded areas.

We will use the “fused” image, as it emerges from
the fusion algorithm, described at previous sections
after t iterations. As mentioned earlier, the fusion
algorithm will attempt to merge the areas of high detail
to the fused image, whereas for the areas of degraded
information, i.e. areas of weak edges or texture in all
input images, will not impose any preference to any
of the input images and therefore the estimated fusion
weights will remain approximately equal to the initial
weights wi = 1/T . Consequently, the areas of out-
of-focus distortion will be described by areas of low
edge information in the fused image. Equivalently,
some areas of very low texture or constant background
also need to be excluded, since there is no benefit
in performing restoration of these areas. We can
trace these areas, by evaluating the local standard
deviation of an edge information metric in small local
neighbourhoods around each pixel. The following
algorithm for extracting common degraded areas is
described in the following steps:

(i) Extract an edge map of the fused image f , using
the Laplacian kernel, i.e. ∇2f(r, t).

(ii) Find the local standard deviations VL(r, t) for each
pixel of the Laplacian edge map ∇2f(r, t), using
5× 5 local neighbourhoods.

(iii) Reduce the dynamic range by calculating
ln(VL(r, t)).

(iv) Estimate VsL(r, t), by smoothing ln(VL(r, t)) using
a 15× 15 median filter.

(v) Create the common degraded area map A(r) by
thresholding VsL(r, t). The mask A(r) is set to
1, for those r that q minr(VsL(r, t)) < VsL(r, t) <
pmeanr(VsL(r, t)), otherwise is set to zero.

Essentially, we create an edge map, as described by
the Laplacian kernel. The next step is to find the local
activity in 5 × 5 neighbourhoods around each pixel in
the edge map. A metric of local activity is given by
the local standard deviation. A pixel of high local
activity should be part of an “interesting” detail in the
image (edge, strong texture etc), whereas a point of low
local activity might be a constant background or weak
texture pixel. We can devise a heuristic thresholding
scheme in order to identify these areas of weak local
activity, i.e. possible degraded areas in all input images
for fusion. The next step is to reduce the dynamic range
of these measurements, using a logarithmic nonlinear
mapping, such as ln(·). To smooth out isolated pixels
and connect similar areas, we perform median filtering
of the log-variance map. After that, the common
degraded area map is created by thresholding the values
of the log-variance map with a heuristic threshold set
to q minr(VsL(r, t)) < VsL(r, t) < pmeanr(VsL(r, t)),
where p, q are constants that were found to work well
in experiments for q ∈ [0.98, 1] and p ∈ [1, 1.1]. The
aim is to discard high quality edge/texture and constant
background information. The level of detail along with
the level of constant background differ for different
images. In order to identify the common degraded area
with accuracy, the parameters p, q need to be defined
manually for each image. The parameter q defines
the level of background information that needs to be
removed. In a highly active image, q is usually set to 1,
however, other values have to be considered for images
with large constant background areas. The parameter
p is the upper bound threshold to discriminate between
strong edges and weak edges, possibly belonging to a
common degraded area. Setting p around the mean
edge activity, we can find a proper threshold for the
proposed system. Some examples of common degraded
area identification using the above technique are shown
in Figures 5, 6.

4.2. Image restoration

A number of different approaches for tackling the
image restoration problem have been proposed in the
literature, based on various principles. For an overview
of image restoration methods, one can always possibly
refer to Kundur and Hatzinakos [15] and Andrews
and Hunt [16]. In this study, the double-weighted
regularised image restoration approach in the spatial
domain is pursued, that was initially proposed by You
and Kaveh [17], with additional robust functionals to
improve the performance in the case of outliers. The
restoration problem is described by the following model:

y(r) = h(r) ∗ f(r) + d(r) (24)

where ∗ denotes 2D convolution, h(r) the degradation
kernel, f(r) the estimated image and d(r) possible
additive noise.
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) VsL(r)

(e) Degraded area map

FIGURE 5. If there exist blurry parts in all input images,
common Image Fusion algorithms cannot enhance these
parts, but will simply transfer the degraded information to
the fused image. However, this area of degraded information
is still identifiable

4.2.1. Double weighted regularised image restoration
Conventional double weighted regularization for blind
image restoration [16] estimates the original image
by minimizing the cost function Q(h(r), f(r)) of the
following quadratic form:

Q(h(r), f(r)) =
1
2
||A1(r) (y(r)− h(r) ∗ f(r)) ||2

︸ ︷︷ ︸
residual

+
λ

2
||A2(r) (Cf ∗ f(r)) ||2

︸ ︷︷ ︸
image regularisation

+
γ

2
||A3(r) (Ch ∗ h(r)) ||2

︸ ︷︷ ︸
blur regularisation

(25)

where || · || represents the L2-norm. The above cost
function has three distinct terms. The residual term,
the first term on the right-hand side of (25), represents
the accuracy of the restoration process. This term
is similar to a second-order error-norm (least-squares
estimation), as described in a previous paragraph. The
second term, called the regularising term, imposes

(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) VsL(r)

(e) Degraded area map

FIGURE 6. Another example of degraded area identifica-
tion in “fused” images.

a smoothness constraint on the recovered image and
the third term acts similarly to the estimated blur.
Additional constraints must be imposed, including the
nonnegativity and finite-support constraint for both the
blurring kernel and the image. Besides, the blurring
kernel must always preserve the energy, i.e. all
the coefficients should sum to 1. The regularization
operators Cf and Ch are high-pass Laplacian operators
applied on the image and the PSF respectively. The
functions A1, A2 and A3 represent spatial weights for
each optimisation term. The parameters λ and γ
control the trade-off between the residual term and the
corresponding regularising terms for the image and the
blurring kernel.

One can derive the same cost function through
a Bayesian framework of estimating f(r) and h(r).
To illustrate this connection, we assume that the
blurring kernel h(r) is known and the aim is to
recover f(r). A Maximum-A-Posteriori (MAP)
estimate of f(r) is given by maxf log p(y, f |r) =
maxf log p(y|f, r)p(f |r), where r denotes the observed
samples. Assuming Gaussian noise for d(r), we
have that p(y|f, r) ∝ exp

(−0.5a||y(r)− h(r) ∗ f(r)||2).
Assuming smoothness for the image profile, one can
assume p(f |r) ∝ exp

(−0.5b||Cf ∗ f(r)||2), which has
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been widely used by the engineering community [18]
in setting constraints on first or second differences, i.e.
restricting the rate of changes in an image (a, b are
constants that can determine the shape of the prior).
Using the proposed models, one can derive a MAP
estimate by optimising a function that is the same as
the first two terms of (25), illustrating the connection
between the two approaches.

To estimate f(r) and h(r), the above cost function
needs to be minimised. Since each term of the cost
function is quadratic, it can simply be optimized
by applying alternating Gradient Descent (GD)
optimisation [16]. This implies that the estimates for
the image and the PSF can be estimated alternatively,
using the gradients of the cost function with respect to
f(r) and h(r). More specifically, the double iterative
scheme can be expressed, as follows:
• At each iteration, update:

f(t + 1) = f(t)− η1
∂Q(h(t), f(t))

∂f(t)
(26)

h(t + 1) = h(t)− η2
∂Q(h(t), f(t + 1))

∂h(t)
(27)

• Stop, if f and h converge.
The terms η1 and η2 are the step size parameters that
control the convergence rates for the image and Point
Spread Function (PSF) (blurring kernel) respectively.
After setting the initial estimate of the image as the
degraded image, and the PSF as a random mask,
the cost function is differentiated with respect to the
image first, while the PSF is kept constant, and vice
versa. The required derivatives of the cost function are
presented below:

∂Q(h, f)
∂f

= −A1(r)h(−r) ∗ (y(r)− h(r) ∗ f(r))

+ λ
(
A2(r)CT

f ∗ (Cf ∗ f(r))
)

(28)

∂Q(h, f)
∂h

= −A1(r)f(−r) ∗ (y(r)− h(r) ∗ f(r))

+ γ
(
A3(r)CT

h ∗ (Ch ∗ h(r))
)

(29)

where the superscript T denotes the transpose
operation. Substituting (28) and (29) into (26) and
(27) yields the final form of the algorithm (26) and
(27), where the corresponding functions are iterated
until convergence.

4.2.2. Robust functionals to the restoration cost
function

There exist several criticisms regarding the conventional
double regularisation restoration approach. One is the
non-robustness of the least squares estimators employed
in the traditional residual term, once the assumption
of Gaussian noise does not hold [19]. Moreover, the
quadratic regularising term penalises sharp gray-level

transitions, due to the linearity of the derivative of the
quadratic function. This implies that sudden changes in
the image are filtered, and thus, the image details are
blurred. Moreover, the recovered image suffers from
the so-called ringing effect, i.e. multiple weak edges
around the actual strong edges of an image. To alleviate
this problem, we can introduce robust functionals in the
cost function, in order to rectify some of the problems
of this estimator. Therefore, the original cost function
becomes:

Q(h(r), f(r)) =
1
2
||A1(r)ρn (y(r)− h(r) ∗ f(r)) ||2

+
λ

2
||A2(r)ρf (Cf ∗ f(r)) ||2

+
γ

2
||A3(r)ρd (Ch ∗ h(r)) ||2 (30)

Three distinct robust kernels ρn(·), ρf (·) and ρd(·)
are introduced in the new cost function and are
referred to as the robust residual and regularizing terms
respectively. The partial derivatives of the cost function
take the following form:

∂Q(h, f)
∂f

= −A1(r)h(−r) ∗ ρ′n (y(r)− h(r) ∗ f(r))

+ λ
(
A2(r)CT

f ∗ ρ′f (Cf ∗ f(r))
)

(31)

∂Q(h, f)
∂h

= −A1(r)f(−r) ∗ ρ′n (y(r)− h(r) ∗ f(r))

+ γ
(
A3(r)CT

h ∗ ρ′d (Ch ∗ h(r))
)

(32)

Robust estimation is usually presented in terms of the
influence function l(r) = ∂ρ/∂r. The influence function
characterises the bias of a particular measurement on
the solution. Traditional least squares kernels fail to
eliminate the effect of outliers, with linearly increasing
and non-bounded influence functions. On the other
hand, they also tend to over-smooth the image’s details,
since such edge discontinuities lead to large values of
smoothness error. Thus, two different kernel types are
investigated, in order to increase the robustness and
reject outliers in the context of the blind estimation.

To suppress the effect of extreme noisy samples
(“outliers”) that might be present in the observations,
the derivative of an ideal robust residual term should
increase less rapidly than a quadratic term in the case
of outliers. One candidate function can be the following:

ρ′n(x) =
1

1 + (x
θ )2υ

(33)

Obviously, the specific function associated with the
residual term assists in suppressing the effect of large
noise values in the estimation process, by setting
the corresponding influence function to small values.
Optimal values for the θ and υ parameters have been
investigated in [20]. These parameters determine the
“shape” of the influence function and as a consequence
the filtering of outliers.
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In order to find a trade-off between noise elimination
and preservation of high-frequency details, the influence
functional for the image regularising term must
approximate the quadratic structure at small to
moderate values and alternatively deviate from the
quadratic structure at high values, so that the sharp
changes will not be greatly penalised. One possible
formulation of the image regularising term is expressed
by the absolute entropy function shown below, which
reduces the relative penalty ratio between large and
small signal deviations, compared with the quadratic
function [19]. Hence, the absolute entropy function
produces sharper boundaries than the quadratic one,
and therefore can be employed for blind restoration.

ρf (x) = (|x|+ e−1)ln(|x|+ e−1) (34)

ρ′f (x) =
1
2
sgn(x)

(
ln(|x|+ e−1) + 1

)
(35)

For simplicity, the robust functional for the stabilising
term of the Point Spread Function (PSF) is kept
the same as the image regularising term (ρ′d(x) =
ρ′f (x)). The actual PSF size can still be estimated at a
satisfactory level. The PSF support is initially set to a
large enough value. The boundaries of the assumed PSF
support are trimmed at each iteration in a fashion which
is described later, until it reduces to a PSF support that
approximates the true support. [17].

4.3. Combining image fusion and restoration

In this section, we propose an algorithm that can
combine all the previous methodologies and essentially
perform fusion of all the parts that contain valid
information in at least one of the input images and
restoration of those image parts that are found to be
degraded in all input images.

The proposed methodology consists of splitting the
procedure in several individual parts:

(i) The first step is to use the proposed fusion update
algorithm of section 3.1 to estimate the fused image
f(r). In this step, all useful information from the
input images has been transferred to the fused
image and the next step is to identify and restore
the areas where only low quality information is
available. In other words, this step ensures that
all high quality information from the input images
has been transferred to the fused image. The result
of this step is the fused image y(r).

(ii) The second step is to estimate the common
degraded area, using the previous methodology
based on the Laplacian edge map of the fused
image f(r). More specifically, this step aims at
identifying possible corrupted areas in all input
images that need enhancement in order to highlight
more image details that were not previously
available. This will produce the common degraded
area mask A(r).

(iii) The third step is to estimate the blur h(r, t) and
the enhanced image f(r, t), using the estimated
mask of the Common Degraded area as A(r) and
the produced fused image y(r). This step is
essentially enhancing only the common degraded
area and not the parts of the image that have
been identified to contain high quality information.
The restoration is performed as described in the
previous section, however, the updates for f(r, t)
and h(r, t) are influenced only by the common
degraded area. More specifically, the update for
the enhanced image of (26) becomes

f(r, t + 1) = f(r, t)− η1A(r)
∂Q(h(r, t), f(r, t))

∂f(r, t)
(36)

In a similar manner the update for the Point
Spread Function (PSF) needs to be influenced only
by the common degraded area, i.e. in (32) f(r) is
always substituted by A(r)f(r).

4.4. Examples of joint image fusion and
restoration

In this section, three synthetic examples are constructed
to test the performance of the joint fusion and
restoration approach. The proposed joint approach is
compared to the performance of the Error-Estimation
based fusion and the previously proposed ICA-based
Image fusion approach. Three natural images are
employed and two blurred sets were created from each
of these images. These image sets are created so that: i)
a different type/amount of blur is used in the individual
images, ii) there is an area that is blurred in both
input images, iii) there is an area that is not blurred
in any of the input images. We have to note that
in this case, we need to have the ground truth image
available, to evaluate these experiments efficiently. The
enhanced images will be compared with the ground
truth image, in terms of Peak Signal-to-Noise Ratio
(PSNR) and Image Quality Index Q0, as proposed
by Wang and Bovik [21]. In these experiments, the
fusion metrics proposed by Petrovic and Xydeas [13]
and Piella [12], cannot be used since they measure the
amount of information that has been transferred from
the input images to the fused image. Since the proposed
fusion-restoration approach aims at enhancing the areas
that have low quality information in the input images,
it makes no sense to use any evaluation approach that
employs the input images as a comparison standard.

There were several parameters that were manually
set in the proposed fusion-restoration approach. For
the Fusion part, we set α = 0 (noise free examples
1-2) or α = 0.08 (noisy example 3), β = 0.8, the
learning parameter was set to η = 0.08. The Gaussian
smoothed edge map of (14) was again calculated by
extracting an edge map using the Sobel mask, which
was subsequently smoothed by a Gaussian 5× 5 kernel
of standard deviation σ = 1. For the common degraded
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area identification step, a separate set of values for p, q
will be given for each experiment. For the restoration
step, we followed the basic guidelines proposed by
You and Kaveh [17]. Hence, we set the regularisation
matrices Cf , Ch, as follows:

Cf =




0 −0.25 0
−0.25 1 −0.25

0 −0.25 0


 , Ch =

[
2 −1
−1 0

]

(37)
Some parameters are fixed to λ = 0.1, γ = 10, η1 =
0.25, η2 = 0.00001. The functions A1(r) and A3(r) were
fixed to 1, whereas A2(r) was adaptively estimated for
each iteration step, to emphasize regularisation on low-
detail areas according to local variance (as described
in [17]). For the robust functionals, we set v = 2 and
θ ∈ [1.5, 3] was set accordingly for each case. The
estimate kernel h(r) was always initialised to 1/L2,
where L × L is its size. All elements of the kernel
were forced to be positive along the adaptation and
sum to 1, so that the kernel does not perform any
energy change. This is achieved by performing the
mapping h(r) ← |h(r)|/ ∑

r |h(r)|. The size L was
usually set in advance, according to the experiment. If
we need to estimate the size of the kernel automatically,
we can assume initially a “large” size of kernel L.
There is a mechanism to reduce the effective size of the
kernel along the adaptation. The variance (energy) of
a smaller (L−1)× (L−1) kernel is always compared to
the variance (energy) of the (L)×(L) kernel. In the case
that the smaller kernel captures more than 85% of the
total kernel variance, its size becomes the new estimated
kernel size in the next step of the adaptation. For the
ICA-based method, the settings described in Section 3.2
were used.

In Figure 7, the first example with the “leaves”
dataset is depicted. The two artificially created blurred
input images are depicted in Figures 7 (a), (b). In
Figure 7(a), Gaussian blur is applied on the upper left
part of the image and in Figure 7(b) motion blur is
applied on the bottom right part of the image. The
amount of blur is randomly chosen. It is obvious
that the two input images contain several areas of
common degradation in the image centre and several
areas that were not degraded at the bottom left and
the top right of the image. In Figure 7(c), the result
of the fusion approach using Isotropic Diffusion is
depicted. As expected, the fusion algorithm manages to
transfer all high quality information to the fused image,
however, one area in the centre of the image still remains
blurred since there is no high quality reference in any
of the input images. Therefore, the output remains
blurred in the fused image in the common degraded
area. The common degraded area can be identified by
the algorithm as depicted in the previously illustrated
Figure 5 (e), using p = 1.07 and q = 1. In Figure
7 (d), we can see the final enhanced image, after the
restoration process has been applied on the common

(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration
Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration
(Affected Area)

FIGURE 7. Overall fusion improvement using the
proposed fusion approach enhanced with restoration.
Experiments with the “leaves” dataset.

degraded area for L = 5. An overall enhancement
to the whole image quality can be witnessed with a
significant edge enhancement compared to the original
fused image. In Figure 7 (e), (f), a focus on the common
degraded area in the fused and the fused/restored image
can verify the above conclusions. In Figure 8, we plot
the convergence of the restoration part of the common
degraded area, in terms of the update for the restored
image f(r) and the update for the estimated blurring
kernel h(r). In addition, the estimated kernel is also
depicted in Figure 8. The estimated kernel follows our
intuition of a motion blur kernel around 20o, blurred by
a Gaussian kernel. In Table 3, the performance of the
TopoICA-based fusion scheme, the fusion scheme based
on Error Estimation and the fusion+restoration scheme
are evaluated in terms of Peak Signal-to-Noise Ratio
(PSNR) and the Image Quality Index Q0, proposed by
Wang and Bovik [21]. The visible edge enhancement
in the common degraded area, provided by the extra
restoration step is also confirmed by the two metrics.

Similar conclusions follow the next example with the
“pebbles” dataset in Figure 9. The two artificially
created blurred input images are depicted in Figures 9
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FIGURE 8. Convergence of the restoration part and the
final estimated h(r) for the common degraded area in the
“leaves” example. The directivity of the estimated mask
indicates the estimation of motion blur.

(a), (b). In Figure 9(a), Gaussian blur is applied to the
upper left part of the image and in Figure 9(b) Gaussian
blur of different variance (randomly chosen) is applied
to the bottom right part of the image. Again, the two
input images contain an area of common degradation
in the image centre and several areas that were not
degraded in the bottom left and the top right of the
image. In Figure 9(c), the result of the fusion approach
using Isotropic Diffusion is depicted. As expected, the
fusion algorithm manages to transfer all high quality
information to the fusion image except for the area
in the centre of the image that still remains blurred.
This common degraded area was properly identified by
the proposed algorithm, using p = 1.05 and q = 1,
as depicted in Figure 6 (e). In Figure 9 (d), the final
enhanced image is depicted after the restoration process
that has been applied on the common degraded area
for L = 3. On the whole, the image quality has been
enhanced compared to the original fused image. In
Figure 9 (e), (f), a focus on the common degraded area
in the fused and the fused/restored image can verify the
above conclusions. The visible achieved enhancement of
the new method is also supported by the PSNR and Q0

measurements that are described in Table 3. The two
methods based on error estimation also outperformed
the ICA-based transform-domain method, as depicted
in Table 3.

The third experiment demonstrates the capability
of the proposed system to handle noisy cases as well.
Two images were artificially created by blurring the
upper left and down right respectively of an airplane
image (British Airways - BA747) with randomly chosen

Fused Fused Fused +
TopoICA Error Est. Restored

PSNR Q0 PSNR Q0 PSNR Q0

(dB) (dB) (dB)
Leaves 17.65 0.9727 25.740 0.9853 25.77 0.9864
Pebbles 21.27 0.9697 25.35 0.9713 25.99 0.9755
noisy 17.35 0.9492 24.18 0.9757 24.41 0.9770

BA747

TABLE 3. Performance evaluation of the fused with
Isotropic diffusion and the combined fusion - restoration
approach in terms of PSNR (dB) and Q0.

Gaussian blur kernels. Additive white Gaussian noise
of standard deviation 0.03 (input signals normalised
to [0, 1]) was also added to both images, yielding an
average SNR=27dB. As previously, there exists an
area in the middle of the image, where the imposed
degradations overlap, i.e. there is no ground truth
information in any of the input images. The denoising
term of the fusion step was activated by selecting α =
0.08. In Figure 10(c), the result of the fusion approach
using Isotropic Diffusion is depicted. As previously,
the algorithm managed to perform fusion of the areas
where valid information is available in the input images,
and also suppress the additive Gaussian noise. The
common degraded area was identified using p = 1 and
q = 0.99. These images contain large areas of constant
background, whereas the two previous images contained
a lot of textural detail. In this case, it is essential to
avoid these large areas of constant background to be
estimated as part of the common degraded area, and
therefore, we choose q = 0.99 instead of 1 as previously.
The restoration step was applied with L = 3, offering
an overall enhancement in the visual quality and the
actual benchmarks, compared to the error-estimation
fusion approach and the ICA-based fusion approach.
The calculated metrics suggest that there is limited
significant improvement, because the enhancement in
the relatively small common degraded area is averaged
with the rest of the image. However, one can observe
that there is obvious visual enhancement in the final
enhanced image, especially in the common degraded
area.

5. CONCLUSIONS

In this paper, the authors addressed the problem
of image fusion, i.e. the problem of incorporating
useful information from various modality input sensors
into a composite image that enhances the visual
comprehension and surveillance of the observed scene.
More specifically, a spatial-domain method was
proposed to perform fusion of both multi-focus and
multi-modal input image sets. This method is based
on error estimation methods that were introduced in
the past for image enhancement and restoration and
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(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration
Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration
(Affected Area)

FIGURE 9. Overall fusion improvement using the
proposed fusion approach enhanced with restoration.
Experiments with the “pebbles” dataset.

are solely performed in the spatial domain. In the case
of multi-focus image sets scenarios the proposed spatial-
domain framework seems to match the performance of
several current popular transform-domain methods, as
for example, the wavelet transform and the trained ICA
technique. The proposed methodology exhibits also
interesting results in the case of multi-modal image sets,
producing outputs with distinctively outlined edges
compared to transform-domain methods.

More specifically, a combined method of fusion and
restoration was proposed as the next step from current
fusion systems. By definition, fusion systems aim only
at transferring the “interesting” information from the
input sensor images to the fused image, assuming there
is proper reference image signal for all parts of the
image in at least one of the input sensor images. In
the case that there exist common degraded areas in
all input images, the fusion algorithms cannot improve
the information provided there, but simply convey
this degraded information to the output. Here, we
proposed a mechanism of identifying these common

(a) Input Image 1 (b) Input Image 2

(c) Fusion Scheme (d) Fusion + Restoration
Scheme

(e) Fusion (Affected Area) (f) Fusion + Restoration
(Affected Area)

FIGURE 10. Overall fusion improvement using the
proposed fusion approach enhanced with restoration.
Experiments with the “British Airways (BA747)” dataset.

degraded areas in the fused image and use a regularised
restoration approach to enhance the content in this
area. In the particular case of multi-focus images,
the proposed approach managed to remove the blur
and enhance the edges in the common degraded area,
outperforming current transform-based fusion systems.

There are several potential applications of the
proposed system. Military targeting or surveillance
units can benefit from a combined fusion and
restoration platform to improve their targeting and
identification performance. Commercial surveillance
appliances can also benefit from a multi-camera, multi-
focus system that fuses all input information into a
composite image with wide and detailed focus. In
addition, there are several other applications such as
increasing the resolution and quality of pictures taken
by commercial digital cameras.
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