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ABSTRACT 
One of the most powerful techniques applied to blind audio 
source separation is Independent Component Analysis (ICA). 
For the separation of audio sources recorded in a real 
environment, we need to model the mixing process as 
convolutional. Many methods have been introduced for 
separating convolved mixtures, the most successful of which 
require working in the frequency domain [1], [2], [3], [4]. 
Most of these methods perform efficient separation of 
convolved mixtures, however they are relatively slow. The 
authors propose two fixed-point algorithms for performing 
fast frequency domain ICA. 

 

1. INTRODUCTION 

Suppose we have N discrete audio sources si[n]. We   produce 
M observation signals xi[n], by calculating M linear 
combinations of the N audio sources. The whole procedure can 
be modeled by the following equation:    

 ][][ nsAnx =   (1) 

where s[n] is a vector representing the audio sources, x[n] is a 
vector representing the observed signals and A is the mixing 
matrix.  The problem of blind source separation is defined as 
the procedure of calculating an unmixing matrix W, using 
information retrieved from the observation signals x[n], so as 
to separate the original audio sources, using the formula: 

 ][][ nxWnu =   (2) 

It is clear that in order to perform separation, the unmixing 
matrix W should approximate A-1. Moreover, in order to 
simplify our analysis, we assume that the number of observed 
signals M is equal to the number of input sources N. We also 
ignore any additive noise present during the mixing procedure 
of the original sources. 

Many techniques have been applied to solve this mathematical 
problem. ICA methods estimate the unmixing matrix W, 
exploiting the non-gaussianity of audio signals, as well as the 
statistical independence of the separated signals u. As 
measures of non-gaussianity, some ICA methods employ 
higher-order moments (kurtosis) or negentropy, which 
measures the distance from the gaussian distribution [7], [8], 
[9]. Other methods try to separate the audio sources by 
minimizing the mutual information conveyed by the separated 
sources [5]. Others employ maximum likelihood methods, 
imposing probabilistic priors to model the sources [6], [7]. 

All these methods separate instantaneous mixtures. However, 
if we try to apply these techniques on observation signals 
acquired from microphones in a real room environment, we 

will see that all actually fail to separate the audio sources. This 
is mainly because we didn’t take into account the room 
acoustics in the previous mixing model. In a real recording 
environment, sensors (microphones) record delayed, attenuated 
versions of the source signals, apart from direct path signals, 
due to reflections. However, the observation signals cannot be 
regarded as linear combinations of the source signals and can 
be modeled as follows: 
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where L denotes the maximum delay in terms of discrete 
points. Looking at the equation above, we can see that it is 
actually the summation of the convolution of the N sources 
with N filters of maximum length L. Applying common ICA 
methods to convolved mixtures, we can possibly achieve 
separation of direct path signals only, leaving the reflections 
untouched. As a consequence, a new approach has to be 
established. 

 

2. PREVIOUS WORK ON FREQUENCY 
DOMAIN ICA 

In order to solve the problem of convolution, Smaragdis [1] 
[2] proposed applying a STFT to the mixture signals x[n], 
using windows of greater length than L, and work in the 
frequency domain. The motivation behind moving to the 
frequency domain is that the discrete fourier transform can turn 
the convolution into multiplication. As a consequence, the 
whole separation problem is divided into N linear complex 
source separation problems, one for every frequency bin. There 
are many ICA methods to perform source separation of linear 
mixtures. Smaragdis [1] [2] applied the natural gradient ICA 
algorithm [6] to complex source separation, using a complex, 
non-linear activation function φ(u).  

 )())(()( ωϕδω WuuIW H−=∆  (4) 

where δ denotes the learning rate.  

One inherent ambiguity in all ICA methods is the permutation 
problem. Permutation problems are of minor importance in the 
instantaneous mixtures case. However, it’s absolutely essential 
to keep the same permutation in the frequency domain ICA, so 
as not to end up with signals with mixed frequency content. 
Smaragdis proposed a heuristic coupling of adjacent frequency 
bins, noting that it didn’t prove to be very effective. 

Davies [3] introduced a time-frequency model to solve the 
permutation problem. This is performed by adding a time 
dependent β(t) term to the frequency model of the separated 
sources. 
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The β(t) term can be interpreted as a time average over 
frequency. In other words, it measures the overall signal 
amplitude along the frequency axis. Its main purpose is to 
impose frequency coupling between frequency bins. 
Incorporating this term in the frequency model alters the 
natural gradient algorithm as follows: 
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where φ(u) is a nonlinear complex activation function. 
Assuming laplacian priors for the sources, we can use the 
following activation function [3]: 

 ||/)( uuu =ϕ ,   for all u ≠ 0 (8) 

There are many methods proposed to overcome the 
permutation problem. Davies [3] applies a likelihood ratio 
jump solution. This technique compares the likelihood of the 
unmixing matrix W with that of [0 1; 1 0] W. For the 2x2 case, 
we calculate LR using the following formula and if LR<1, we 
have to permute W. 
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This method tends to sort out the permutation problem in the 
majority of the cases. However, it gets rather complicated to 
form LR expressions in the general NxN case. 

In this paper, we present two efforts to replace the natural 
gradient algorithm with a fixed-point algorithm in the 
frequency domain ICA framework  

 

3. THE FIRST FIXED POINT SOLUTION 

 

Hyvarinen et al proposed a family of fixed point ICA 
algorithms for performing ICA of instantaneous mixtures [7] 
[8] [9]. Their basic feature is that they converge much faster 
than gradient descent algorithms with the same separation 
quality. Nevertheless, they are more computationally 
expensive, but as the number of iterations for convergence is 
much decreased, they tend to be faster then common ICA 
techniques. In addition, they tend to be much more stable. 

In [8], Hyvarinen explored the relation of his fixed-point 
algorithm with the natural gradient algorithm [6]. The fixed-
point algorithm is basically a deflation algorithm, isolating one 
independent component every time. It employs a decorrelation 
scheme to prevent the algorithm converging to the same 
maximum. The one-unit learning rule for the fixed-point 
algorithm is the following: 
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where }{ TxxEC =  and )(uϕ is an non-linear activation 
function. Making certain assumptions on x, Hyvarinen shows 
that the learning rule in (11) can be represented by the 
following learning rule: 
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where )}({ iii uuE ϕα = , )}))('{/(1( uEdiagD i ϕα −=  

and ][ 21 Nw ... w wW = . Comparing equations (12) and (4), 
we can see that the two methods look very similar. Actually, 
we can say that (12) is a more adaptive version of (4). We 
apply an optimal step size in terms of D, instead of a constant 
learning rate δ. Hyvarinen [9] states that replacing I with the 
term diag(-αi) is also beneficial for convergence speed. If we 
use pre-whitened data x, then the formula in (14) is equivalent 
to the original fixed-point algorithm, while it is expressed in 
terms of the natural gradient algorithm. 

This algorithm works efficiently on instantaneous mixtures, 
providing accurate separation with faster convergence, 
compared to the natural gradient algorithm. In this paper, we 
wish to replace the natural gradient algorithm with the fixed-
point algorithm, as described in (12), in the frequency domain 
framework, so as to accelerate the convergence of audio 
separation algorithms.  

More specifically, we are going to divide our observation 
signals into overlapping windowed frames, and apply STFT on 
them, forming a time-frequency representation x(ω,t). We pre-
whiten x(ω,t) before proceeding. The next step is to estimate 
the unmixing matrix for every frequency bin. This is achieved 
by iterating the following learning rule, using random initial 
value for W. 
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All the parameters in the equation above are calculated as 
discussed earlier. However, we should pay attention to the 
choice of the activation function φ(u). A proper activation 
function for the processing of complex data is (8), as 
introduced by Davies [3]. At this point, we should note that the 
discontinuity of the activation function φ(u) at u=0 doesn’t 
appear to cause any problems. By differentiating, we get the 
derivative of φ: 
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Another important factor in frequency domain ICA is the 
permutation problem. In order to solve the permutation 
problem in this case, we can follow a method similar to the one 
described earlier. Firstly, we enhance frequency coupling by 
incorporating a time dependent β(t) term to the frequency 
model of the separated sources, as we did in the natural 
gradient method.  If we look at the maximum likelihood 
learning law at (6), we can see that the β(t) term can be 
incorporated in the activation function φ(u). Therefore, in 
order to impose frequency coupling in the fixed-point 
algorithm in (13), we can use the following activation 
function: 
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As a second step, we can use the likelihood ratio jump 
solution, as presented in (9), (10), in order to get the same 
permutation of the separated sources for every frequency bin. 

Another important task when performing frequency domain 
ICA is to return the separated signals u to their original space 
(represented by x vectors). More specifically, if Wf is the 
unmixing matrix for the frequency bin f, we can write: 
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 Note that for pre-whitened sources, we also need to return the 
sources to the original space before pre-whitening. Suppose 
that Vf is the pre-whitening matrix for each frequency bin. We 
have: 

 
T

jNjf
T

jNj sx   ...   sxVsx   ...   sx ][][ 1
1

1
−= ,j=1…N (17) 

 
After performing all the essential linear transformations, we 
can group the xisj signals to form the separated outputs as 
follows: 
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The fixed-point frequency domain algorithm is summarised as 
follows: 

1. Pre-whiten input data 
2. Incorporate β(t) function in the activation function, i.e. 

use formula (15) 
3. For the derivative of (15), use (14) as an approximation

  
 

4. Use the learning rule presented in (13), to estimate the 
unmixing matrices for every frequency bin. 

5. Return separated signals to the observation space, as well 
as re-decorrelate separated signals. Finally, group the 
corresponding xisj signals. 
 

4. THE SECOND FIXED POINT 
SOLUTION 

 

In [10], Bingham et al proposed a “fast” fixed-point algorithm 
for independent component analysis of complex valued 
signals. This algorithm is designed to separate instantaneous 
mixtures of complex data, providing fast convergence as well 
as great separation quality. It’s an extension of the FastICA 
algorithm [7], [8] to complex signals. The difference between 
the two fixed-point algorithms lies in the different contrast 
function employed in the optimisation problem. In the first 
fixed-point algorithm, the contrast function is G(wΗx), where 
as in the second fixed-point algorithm the contrast function is 
G(|wΗx |2), where φ(u) = dG(u)/du.  

The algorithm proposed is a deflation algorithm separating one 
independent component at a time. When we need to calculate a 
new component, we can prevent the algorithm from 
converging to the same stationary point by using a 
decorrelation scheme. The proposed fixed-point algorithm is 
summarized in the following formula: 
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where )(uϕ is an activation function. Instead of calculating 
every independent component separately, it’s preferable for 
many applications to calculate all components simultaneously. 
We can use different one-unit algorithms (19) for all 
independent components and apply a symmetric decorrelation 
to prevent the algorithms from converging to the same 
components. This can be accomplished by using a symmetric 
decorrelation : 

 2/1)( −← WWWW H  (21) 

where ] ...  [ 21 NwwwW =  is the matrix of the vectors wi. 

Bingham proposes a set of activation functions that can be 
applied to this fixed-point algorithm. As we can see the 
problem involves real data, therefore it is easier to choose an 
activation function. From the set of the proposed activation 
functions, we are going to use the following: 
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The derivative of the above is: 
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This method achieves fast and accurate separation of complex 
signals. In this paper, we would like to adapt this method to a 
frequency-domain separation framework. The main advantage 
of this algorithm is that it performs separation of complex-
valued mixtures, being therefore easier to adapt directly in a 
frequency domain framework.  

In other words, the observation signals are transformed into a 
time-frequency representation using a Short-Time Fourier 
Transform. As before, we prewhiten the x(ω,t). Then, we have 
to calculate the unmixing matrix Wf for every frequency bin. 
We randomly initialize N learning rules, as described in (19) 
and (20) for every frequency bin and iterate until convergence. 
However, there is nothing in this algorithm to tackle the 
permutation problem explained earlier. 

We can solve the permutation problem firstly, by incorporating 
the time dependent prior β(t) in the learning rule, in order to 
impose frequency coupling. As we have seen in [3], the β(t) 
term can be actually integrated in the activation function φ(u). 
In section 3, we saw that Hyvarinen transformed the basic 
fixed-point algorithm to a form that was similar to the natural 
gradient algorithm and we gathered that we could incorporate 
β(t) in the activation function φ(u) of the fixed-point algorithm, 
so as to impose frequency coupling. This is the main 
motivation behind incorporating the β(t) term in the activation 
function of the second fixed-point algorithm. Therefore, 
equations (22) and (23) are now transformed in the following 
form.  
 ))1.0)((/(1)( kkk utu += βϕ  (24) 
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where βk(t) refers to the corresponding separated component 
uk, as introduced in (5). 



The second step is to apply the likelihood ratio jump solution, 
described in (9), (10), so as to keep the same source 
permutation along the frequency axis. The likelihood ratio 
jump solution can be directly applied to the second fixed-point 
algorithm, without any adaptation. It is also worth noting that 
the β(t) term doesn’t have a strong probabilistic interpretation 
as in the first fixed-point solution and in [3]. 

The next step would be to return the separated sources to the 
observation space x, by using a formula slightly different to the 
one described in (16). This is because Hyvarinen defines the 
unmixing procedure as u = WHx.  
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We also need to remove the effects of prewhitening, by using 
the formula described in (17) and also sum also the 
components to construct the separated sources, as described in 
(18).  

The second fixed-point frequency domain algorithm can be 
summarised as follows: 

1. Pre-whiten input data 
2. Initiate N one-unit learning procedures, one for each 

component, with random initialisation. 
3. Incorporate each component’s βk(t) in the corresponding 

learning rule, according to (24) and (25). 
4. Decorrelate the separate outputs in every iteration using 

(21). 
5. Return separated signals to the observation space, as well 

as remove prewhitening effects on separated signals, 
according to (26), (17), (18). 

 

5. EXPERIMENTS 

In order to record the performance of the proposed algorithms, 
we tested them using various data sets. For the whole set of 
experiments, the specifications of the STFT were a frame size 
of 2048 samples with 50% overlapping using a hamming 
window. The FFT length was 2048 points.  

Initially, we applied the algorithms on some real data available 
from [11] of two people speaking simultaneously in a room, as 
they are commonly used in ICA benchmarks. Our first 
conclusion is that the fixed-point algorithm takes about 40-50 
iterations to converge, which is much faster compared to 
common maximum likelihood algorithms. The second fixed-
point algorithm converges in about the same number of 
iterations with the fixed-point algorithm. Commonly, the 
solutions proposed by Davies [3] and Smaragdis [1] [2] 
require usually about 200–300 iterations to converge for the 
same quality of separation. Convergence speed has become a 
quite important factor for frequency domain ICA, as previous 
approaches required considerable time to run. As far as the 
separation quality is concerned, we can say that you can hear 
almost no cross-talk. 

The difference between the two fixed-point algorithms is that 
the second fixed-point is a little bit faster as some frequency 
bins converge faster than others. 

In order to demonstrate the separation quality of the algorithm, 
we constructed a synthetic mixture of two speech signals. The 
mixtures contained delayed components of 25ms maximum, as 
well as the direct path signals. Both the fixed-point and the 
second fixed-point algorithms managed to separate the input 

sources quite well. We can see the spectrograms of the original 
and separated sources in figures 1,2. 

The separation quality is quite good, and almost all the 
harmonic components of the original sources are preserved in 
the separated outputs. We can clearly see that there are no 
permutation problems visible or audible in these spectrograms. 
The permutation problems are well described in [3], where it is 
shown that although some algorithms perform reasonable 
separation for every frequency bin, we can see source 
permutation changes at certain frequencies. As a result, each 
source estimate contains large proportions of both sources 
which are both audible. 

 

Figure 1. (a) Spectrogram of the original source and 
spectrogram of the separated source using (b) the 
fixed-point algorithm and (c) the second fixed-point 
algorithm 

 

Figure 2. (a) Spectrogram of the original source and 
spectrogram of the separated source using (b) the first 
fixed-point algorithm and (c) the second fixed-point 
algorithm 

We can further test the algorithms’ performance on the 
permutation problem, using the dataset introduced in [3] that 
demonstrated permutation problems in Smaragdis’s algorithm. 
In figure 3, we can see the spectrogram of one of the sources, 
separated by the fixed-point and the second fixed-point 



algorithm. We can see no changes in permutation along the 
frequency axis, which implies that the time-frequency model 
and the likelihood ratio jump solution are efficiently 
incorporated in the algorithms. As far as separation quality is 
concerned, the methods seem to have separated the signals 
quite successfully preserving all the harmonic structures. We 
can also spot almost no difference in the performance of the 
two algorithms. 

 

Figure 3. Spectrogram of a separated source using (a) 
the first fixed-point, and (b) the second fixed-point 
algorithm. Refer to the dataset in [3]. 

We also wanted to test the algorithms with a more challenging 
task of instrument separation. We recorded two guitars playing 
triads in unison and created a synthetic delayed mixture adding 
a tap delay of 25ms to each source. This is a quite highly 
correlated mixture as the two guitars are playing notes in 
unison, making it even difficult for the human ear to separate. 

 

Figure 4.  (a) Spectrogram of the original guitar source 
and spectrogram of the separated guitar source using 
(b) the first fixed-point algorithm and (c) the second 
fixed-point algorithm  

However, the results are very good, as presented in figure 4. 
These highly correlated signals are well separated by the two 
algorithms, with the second fixed-point being a little bit more 
robust this time, with negligible crosstalk in the background.  

Finally, we wanted to test these algorithms in a difficult 
reverbant environment. Therefore, we used Westner’s [12] 
MATLAB routine roommix.m, which simulates the room 
acoustics of a conference room. Generally, the mixtures 
generated by these models are highly reverbant and difficult to 
separate. We constructed two mixtures using the following 
MATLAB expression, which defines the position of sources 
and sensors in the conference room: 

[x,f]=roommix(x,[1 2],[2 1]) 

We had to re-adjust the STFT settings to a frame of 4096 
samples with 75% overlapping, so that the algorithms can cope 
with greater tap delays. The FFT length was 4096 points. The 
results acquired were quite promising, although not perfect. 
The second fixed-point algorithm managed to perform better 
separation from the first fixed-point algorithm, suppressing the 
crosstalk to a considerable amount, as depicted in figure 5. In 
order to evaluate the algorithm’s performance, we had to 
compare the separated outputs with each of the original signals 
simulated alone in the synthetic room environment. 

 

Figure 5.  (a) Spectrogram of the original source in the 
simulated room environment and spectrogram of the 
separated source using (b) the first fixed-point 
algorithm and (c) the second fixed-point algorithm 

 

6. CONCLUSIONS 

In this paper, we have introduced two fixed-point algorithms 
for frequency domain source separation of convolved mixtures: 
the fixed-point and the second fixed-point algorithm.  

The algorithms proved to be more stable and faster compared 
to former maximum likelihood approaches, as they are based 
on a second order optimization method. The quality of the 
separation is good, although the separation quality is 
dependent on how reverbant the recording environment is. 

The two algorithms performed similarly in all tests, with the 
second fixed-point being a little bit faster, more robust and 
producing slightly better audible results. This is due to the fact 
that the algorithms basically exploit the same second order 
optimization method.  

Furthermore, the introduction of a time-frequency prior in the 
source model combined with the likelihood ratio jump 
solution, introduced in [3], proved to be able to solve the 



permutation problem, in the two fixed-point frameworks. 
However, this likelihood test becomes more complicated for 
more than two sources. 

In future, we hope to formulate this likelihood ratio jump test 
for more sources. In addition, we are interested in replacing the 
STFT analysis with a multi-resolution analysis framework, 
aiming to improve the separation quality. Moreover, we hope 
to improve the performance and speed of these fixed-point 
solutions. 
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