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Robust recognition of planar shapes under affine
transforms using Principal Component Analysis
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Abstract— A scheme, based on Principal Component Analysis
(PCA), is proposed that can be used for the recognition of
2D planar shapes under affine transformations. A PCA step
is first used to map the object boundary to its canonical form,
reducing the problem of the non-uniform sampling of the object
contour introduced by the affine transformation. Then, a PCA-
based scheme is employed to train a set of basis functions
on the signals extracted from the objects’ boundaries. The
derived bases are used to analyze the boundary locally. Based
on the theory of invariants and local boundary analysis, an
novel invariant function is constructed. The performance of the
proposed framework is compared with a standard wavelet-based
approach with promising results.

Index Terms— Principal Component Analysis, affine transfor-
mation, invariants, shape recognition
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I. INTRODUCTION

ASSUME that a collection of objects of interest is stored
in a database and that we desire to design an algorithm

which incorporates shape information, as extracted from the
objects’ boundaries, with the goal of identification in an
unknown environment. Obviously, a desired property of a
robust recognition system is invariance to the object shape de-
formation, caused by the arbitrary camera viewpoint positions.
To tackle the problem, a common simplification made by the
computer vision community is to approximate shape variation
with an affine transformation. Let c(t) = [cx(t), cy(t)]T

denote a parametric closed curve in 2D space, representing
the boundary of an object, where t is an arbitrary parameter
used for curve parameterization (e.g. the arc length). An
affine transformation models scaling, rotation, shearing and
translation of the object boundary as follows:

c′(t′) = Ac(t) + b (1)

where c′(t′) = [c′x(t′), c′y(t′)]T is the affine transformed curve,
A is a 2× 2 nonsingular matrix and b is a 2× 1 vector. The
matrix A can be decomposed as follows:

A = s

[
cos θ − sin θ
sin θ cos θ

] [
1 α
0 1

]
(2)

where s ∈ R+ models global scaling, θ ∈ [0, 2π) models
rotation and α ∈ R is the shearing parameter. The vector b
represents translation. The transformed parameter t′ , which
is, in general, a function of t, reflects the problem of sampling
appropriately the object contour.
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Suppose we compute a quantity I from c and the corre-
sponding quantity I ′ from c′. If I and I ′ are related as follows:

I ′ = µI (3)

where µ 6= 0 is a constant, then I is an affine invariant. If
µ = 1, I is called an absolute invariant, otherwise I is called
a relative invariant.

Signal processing techniques, used to derive features from
the boundary representation, that remain invariant under affine
transformations, have played a key role in shape-based recog-
nition algorithms. Classical shape analysis includes Fourier
Descriptors [1], moments [2] and matched filtering [3]. Re-
cently, methods based on the dyadic wavelet transform, have
been proposed, which are reported to achieve state-of-the
art performance. The object boundary is analyzed at dif-
ferent scales, yielding to the approximation and the detail
signals, which are then used for the construction of affine
invariant functions. The choice of the signals, the number of
decomposition levels and the wavelet functions used, have all
resulted in a number of different approaches [4], [5], [6], [7],
[8]. Unfortunately, the performance of the above methods is
strongly affected by the non-uniform sampling introduced by
the boundary extraction process and the parameter transfor-
mation problem described above.

In this work, we propose a scheme, based on Principal
Component Analysis (PCA), that can be used for object
identification under large deformations and noise. Using PCA,
the affine transformed boundary is first mapped to its canonical
form. This step preserves object shape information and, at the
same time, provides an efficient way to tackle the problem
of the non-uniform sampling of the object contour. Then, the
object boundary is analyzed locally, similarly to the wavelet
analysis, using basis functions, derived from a PCA-based
training scheme and the boundaries of the objects of interest.
Based on the theory of determinants, an invariant function is
constructed, which can be used for object identification under
affine transforms.

II. SHAPE RECOGNITION USING PCA

A. Robust boundary encoding using PCA

In this section, the problem of an appropriate parameter-
ization of the object boundary is considered. As mentioned
earlier, to preserve the linearity of the affine transformation,
the object contour must be parameterized using a parameter
that transforms linearly under affine transformation. In this
case, a one-to-one correspondence between equally spaced, in
terms of the affine invariant parameter, points on the original



IEEE SIGNAL PROCESSING LETTERS 2

contour and points on its affine transformed version can
be established [4]. The most popular parameter used is the
enclosed area defined as [1]:

σ =
∫ b

a

|xẏ − yẋ|dt (4)

where ẋ, ẏ are the first-order derivatives of x(t) and y(t)
with respect to t and the integration interval [a, b] denotes a
segment along the curve. It transforms linearly under affine
transformation only if b = 0. For this purpose, the origin
of the coordinate system is set to the object area center [1].
Unfortunately, the computation of both the enclosed area and
the area center is very sensitive to large deformations and
noise, resulting in deterioration of the performance of the
matching process.

To reduce the effect of the parameterization problem, we use
Principal Component Analysis to map the affine transformed
shape to its canonical form. For this purpose, c′ is first
normalized to zero mean and, then, its covariance matrix,
defined as Rc′ = E{c′c′T }, is estimated. Let H be the
matrix containing the eigenvectors of Rc′ and D the diagonal
matrix containing the eigenvalues of Rc′ , such that the i-th
diagonal element corresponds to the i-th column of H . Then,
the canonical form z′ of the affine distorted shape c′ is given
by:

z′ = W c′ (5)

where W is the whitening matrix defined as W = D−1/2HT .
It can be shown that z′ is uncorrelated and of unit variance,
that is E{z′z′T } = I . Using the same principle, suppose that
we compute the canonical form z of the original contour c.
Then, it can be shown that z′ and z are related as follows:

z′ = Θz (6)

where Θ is a 2 × 2 orthogonal matrix representing rotation
or mirror rotation and reflection [9]. Note that the whitening
transform preserves all the shape information of c′. This is
simply due to the fact that Eq.(5) can be seen as an affine
transformation itself. We further mention that the accurate
computation of the second moment matrix Rc′ also requires an
appropriate affine invariant curve parameterization. However,
from our experiments, we have observed that the shape princi-
pal axes can be restored successfully, under large deformations
and noise, without employing the enclosed area parameter.

Once the object has been brought to its canonical form, we
can encode the object boundary using a set of equally spaced
points, in terms of the arc length, whose computation is sim-
pler and more accurate. In this way, the stability and robustness
of the invariant features, derived from the object boundary, are
much less affected by the parameter transformation problem.

B. An invariant function using PCA bases

We have considered, so far, a PCA-based preprocessing
step, which can be used to reduce the effect of the non-
uniform sampling of the object contour, introduced by random
affine transformations. We will now describe a methodology to
derive kernels that can be employed for shape analysis, based

on Principal Component Analysis and the boundaries of the
object of interest.

We assume that all objects are normalized to their canonical
form and represented by a set of Nc equally spaced points,
in terms of the arc length parameter. Let us denote by
s(n) = [sx(n), sy(n)]T any curve segment of length Ns

along the boundary of any of our objects and let also sxy

be a Ns × 1 vector representing either sx(n) or sy(n). Our
target is to estimate a set of appropriate basis functions to
represent sxy . Principal Component Analysis can be used
to train a set of uncorrelated bases on the curve segments
extracted from the objects’ boundaries, by optimizing an
energy compaction mechanism. It has been used for feature
extraction and dimensionality reduction in a wide range of
applications [10], [11]. Since it operates on the signal second-
order statistics, it implicitly assumes a Gaussian distribution
of the data. However, this Gaussian profile imposed by PCA
seems quite reasonable due to the low-pass nature of the
signals obtained from the objects’ boundaries.

Curve segments from all objects are placed in a matrix S
as follows:

S = [sxy1, sxy2, . . . sxyK ] (7)

where K is the total number of curve segments. We note that,
when constructing the matrix S, to ensure signal’s stationarity
and capture all local structure, the contour of each object
should be divided into a number of overlapping segments. In
the usual way, we compute the eigenvalue decomposition of
the covariance matrix of S, defined as RS = SST /K. If U
is the matrix containing the eigenvectors of RS and Y is the
diagonal matrix containing the eigenvalues of RS , such that
the i-th diagonal element corresponds to the i-th column of U ,
then, the PCA bases are defined as the rows of the following
matrix V :

V = Y −1/2UT (8)

Overall, a total of Ns basis functions is provided by the
scheme described above. However, one can easily form a
reduced set of bases that can be used for an efficient data
representation with only a little loss of information. This is
because the significance of the derived bases is indicated
by the corresponding eigenvalues. Therefore, this information
can be used, through selecting the most significant basis
functions, to retain most of the signals structure and, at the
same time, to perform considerable noise reduction. In fact,
this is an advantage of our approach over the popular wavelet-
based methods, which, depending on the application, entail
a thorough investigation of the wavelet decomposition tree
in order to identify the wavelet and pick the levels which
yield the best possible performance [4]. In contrary, the PCA
analysis functions are directly estimated from the actual data,
along with a measure of significance, which simplifies the
selection process. The eight most important PCA bases, for
the application of aircraft silhouette identification (considered
in the following section), along with their frequency content
can be seen in Fig. 1. It can be observed that the boundary is
analyzed locally using a series of bandpass filters, similarly to
the wavelet transform. We note that the function corresponding
to the largest eigenvalue is not presented, since it represents a
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Fig. 1. (a) The derived PCA bases and (b) their frequency content.
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Fig. 2. (a) An aircraft model, (b) its canonical form and (c) the corresponding
invariant function I1.

DC component, i.e. a change in signal level, and, therefore,
is of no significance.

Let us denote by P iϕ the set of coefficients obtained by
projecting the signal ϕ to the i-th basis function, using a
sliding window approach. By applying the i-th and the j-th
kernel to the object boundary, one can form:

[
Piz

′
x Pjz

′
x

Piz
′
y Pjz

′
y

]
= Θ

[
Pizx Pjzx

Pizy Pjzy

]
(9)

Taking the determinants in both parts yields:

I ′1(i, j) = Piz
′
xPjz

′
y − Pjz

′
xPiz

′
y

= det(Θ)(PizxPjzy − PjzxPizy) = ±I1(i, j)
(10)

since det(Θ) = ±1. Therefore, the function I1 is a relative
invariant with µ = ±1. Note that the above derivation
has been used to provide invariants for the case of affine
transformations, while in our case, the matrix R represents
only rotation. However, it stills provides an efficient way to
embody the transform coefficients, obtained by applying two
different kernels to the object boundary, in a single function.
Fig. 2 shows the boundary extracted from an aircraft model,
its canonical form and the corresponding derived invariant
function I1.

The degree of similarity between two objects κ and λ can
be measured as the maximum value of the normalized circular
cross-correlation [6]:

C1,κ,λ(m) =
∑

m

∑
n I1,κ(n)I1,λ(n−m)√∑

n I1,κ(n)2
∑

n I1,λ(n)2
(11)

where I1,κ and I1,λ are the invariant functions derived from
the objects κ and λ respectively and I1,λ is circularly shifted.
If the maximum absolute value is used, then the sign ambiguity
introduced by Eq. (10) will be removed and the function I1

can be considered as an absolute invariant. The circular cross-
correlation is used to reduce the effect of the unknown shift
between the starting points of the two contours [5]. This is
because both c(t) and c(t + t0), where t0 is any shift in the
origin of the object boundary, essentially represent the same
object.

III. RESULTS

To evaluate the performance of our approach, the method
is applied to the within-class object recognition application of
aircraft silhouette identification. Fig. 3 shows the contours of
K = 20 aircraft models which have also been used in [6] to
test the discrimination power of the invariant function and its
ability to capture small variations. To model a 128×128 image
resolution, the resolution of all model images in Fig. 3 is such
that each aircraft approximately fits in a d1 × d2 rectangular
grid, where d1d2 = 1282. From these images, the aircraft
contours are extracted, using a simple 8−point connectivity
algorithm [12]. Each model is then transformed to its canonical
form and represented by a set of Nc = 512 equally spaced
points, in terms of the arc length parameter. The length of
the curve segment Ns is chosen to be equal to 64 points.
The PCA basis functions are extracted, and, for each model,
the invariant function I1 is computed using the two most
significant PCA bases, as described in the previous section. For
each aircraft model, a set of test images is generated, which
depict the same model under large deformations. We have used
the following affine parameters: θ = {0◦, 60◦, 120◦, 180◦}
and α = {2, 3}. Similarly, the boundaries are extracted and,
for each test boundary, the corresponding invariant function is
derived.

The proposed scheme is compared with a popular wavelet-
based affine invariant function [6], denoted as I2. For the
computation of I2, we first parameterize the object boundary
using the signed enclosed area parameterization and a scheme
based on the methods proposed in [3] and [4]. We do not claim
that our implementation is optimum, however, for each model,
we have used the parameters (see [3]) that appear to yield the
best possible performance (On the other hand, in our method,
all parameters remain fixed and independent of the model
under examination). The signed enclosed area parameter is
employed, since it is found to be less sensitive to noise [13].
The invariant function I2 is computed at scales (5, 6) and
(6, 7), which provide the best trade off between discrimination
capability and robustness to noise. The quadratic B-spline
wavelet has been used, which is reported to give the best
results [8].
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Fig. 3. The aircraft models used in the experiment.

The performance of the two invariant functions is evaluated
in a noisy environment. Uniformly distributed noise is artifi-
cially added to the x and y coordinates of each contour point,
after the extraction of the boundary from each test image. The
amount of noise added is controlled using the Signal to Noise
Ratio (SNR) defined in [4]. We have considered a large noise
level of SNR = 20 dB [6]. For each test image, the experiment
is repeated 100 times. The classification results are given in
Table I. As it can be observed, the proposed algorithm features
robust performance and appears to be much more stable than
the standard wavelet-based method.

Model I1 I2(5, 6) I2(6, 7)
1 0.9788 0.9550 0.9650
2 0.9350 0.7700 0.8250
3 0.9387 0.7475 0.7740
4 0.9575 0.7912 0.6588
5 0.9613 0.9500 0.9038
6 0.9950 0.8288 0.9912
7 0.9475 0.7488 0.8050
8 0.9375 0.7462 0.7537
9 0.9688 0.7188 0.9838
10 0.8938 0.7700 0.7363
11 0.9800 0.8988 0.9725
12 0.9925 0.9813 0.9900
13 0.9537 0.8075 0.6700
14 0.9575 0.9312 0.9163
15 0.9988 0.7650 0.9963
16 0.9375 0.6875 0.8762
17 0.9988 0.9975 0.9975
18 0.8887 0.7713 0.7100
19 0.9475 0.7400 0.7138
20 0.9538 0.8125 0.8150

Overall 0.9561 0.8209 0.8527

TABLE I
RECOGNITION RATE USING THE PROPOSED FUNCTION I1 AND THE

WAVELET-BASED FUNCTION I2 .

IV. CONCLUSIONS

We have a presented a PCA-based framework with the
goal of robust shape-based object recognition under affine
transformations. The role of Principal Component Analysis, in

the proposed scheme, is twofold. First, it is used to map the
affine transform shape to its canonical form in order to tackle
the problem of sampling the object contour appropriately.
Then, it is used to train a set of basis functions with desired
properties on the signals extracted from the object boundaries.
The derived bases functions are then used for the construction
of a novel invariant function. The proposed framework is
applied to the problem of aircraft silhouette identification and
compared with a popular wavelet-based method. Simulation
results show that our method outperforms the wavelet-based
method. In addition, the extra problem of identifying the most
appropriate wavelet and decomposition levels does not exist
in the proposed scheme.
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