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Abstract

Directional or Circular statistics are pertaining to the analysis and interpretation of directions or

rotations. In this work, a novel probability distribution is proposed to model multidimensional sparse

directional data. The Generalised Directional Laplacian Distribution (DLD) is a hybrid between the Lapla-

cian distribution and the von Mises-Fisher distribution. The distribution’s parameters are estimated using

Maximum-Likelihood Estimation over a set of training data points. Mixtures of Directional Laplacian

Distributions (MDLD) are also introduced in order to model multiple concentrations of sparse directional

data. The author explores the application of the derived DLD mixture model to cluster sound sources

that exist in an underdetermined instantaneous sound mixture. The proposed model can solve the general

K × L (K < L) underdetermined instantaneous source separation problem, offering a fast and stable

solution.

Index Terms

Directional statistics, Sparse models, Generalised Directional Laplacian Density, Underdetermined

Source Separation

I. INTRODUCTION

Angles, rotations, months and days fall into the same category commonly known as circular or

directional data, since they can be represented by points on the surface of the unit p-dimensional
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sphere [1]. Circular Statistics is the branch of statistics that addresses the modeling and inference from

circular data, i.e. data with rotating values. To model directional data, one can generate many interesting

circular models from known probability distributions by either wrapping a linear distribution around the

unit circle or transforming a bivariate linear r.v. to its directional component [1]. However, there exist

distributions that are periodic by definition and can therefore offer closed-form models for circular or

directional data.

The von Mises distribution (also known as the circular normal distribution) is a continuous probability

distribution on the unit circle [1], [2]. It may be considered the circular equivalent of the normal

distribution and is defined by:

p(θ) =
ek cos(θ−m)

2πI0(k)
, ∀ θ ∈ [0, 2π) (1)

where I0(k) is the modified Bessel function of the first kind of order 0, m is the mean and k > 0 describes

the “width” of the distribution. Recently, Gattoa and Jammalamadaka [3] proposed a “Generalized

von Mises” (GvM) distribution in the form of p(θ) ∝ ek1 cos(θ−m1)+k2 sin(θ−m2), offering symmetric,

asymmetric, unimodal or bimodal varieties of the original von Mises distribution.

A generalisation of the previous density is the p-D von Mises-Fisher distribution [4], [5]. A p-

dimensional unit random vector x (||x|| = 1) follows a von Mises-Fisher distribution, if its probability

density function is described by:

p(x) ∝ ekmTx , ∀||x|| ∈ Sp−1 (2)

where ||m|| = 1 defines the centre, k ≥ 0 and Sp−1 is the p dimensional unit hypersphere. Since the

random vector x resides on the surface of a p-D unit-sphere, x essentially describes directional data. In

the case of p = 2, x models data that exist on the unit circle and thus can be described only by an angle.

In this case, the von Mises-Fisher distribution is reduced to the von-Mises distribution of (1). The von

Mises-Fisher distribution has been extensively studied and many methods have been proposed to fit the

distribution or its mixtures to normally distributed circular data [1], [4]–[6].

This study proposes a novel distribution to model directional sparse data. Sparsity is mainly used to

describe data that are mostly close to their mean value with the exception of several outlying values. There

are several sparse models that have been proposed for linear sparse data [7]. The Laplacian distribution

p(x) ∝ ek|x−m| appears to be a strong candidate in modelling sparse data [7], [8]. In [9], Eltoft et al

proposed a multidimensional extension of the Laplacian distribution for p-D random variables with infinite

support and provided parameter estimation algorithms for the proposed distribution and its mixtures. In
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[10], Kotz et al provided a multidimensional asymmetric model for the Laplacian distribution, which is

a generalization of the previous approach again for p-D random variables with infinite support. There

were several attempts to model circular sparse signals by wrapping an 1-D or multidimensional Laplace

distributions of infinite support [11]–[13]. The density wrapping solution is reported to have increased

computational cost, as it is equivalent to using mixture models (the periodic repetition of a density

function is equivalent to a mixture of density functions) [14]. Building from the original von Mises-

Fisher distribution, this work proposes a Generalised Directional Laplacian Distribution (DLD) as a direct

modelling solution for multidimensional directional sparse data. The Maximum Likelihood estimates

(MLE) of the model’s parameters are derived, along with an Expectation-Maximisation (EM) algorithm

that estimates the parameters of a Mixture of Directional Laplacian Distributions (MDLD).

One application where directional statistical modelling is essential is Underdetermined Audio Blind

Source Separation (BSS) [7], [13]–[17]. Assume that a set of K sensors x(n) = [x1(n), . . . , xK(n)]T

observes a set of L (K < L) sound sources s(n) = [s1(n), . . . , sL(n)]
T . The instantaneous (anechoic)

mixing model can be expressed in mathematical terms, by

x(n) = As(n) (3)

where A represents a K × L mixing matrix and n the sample index. Blind source separation algorithms

provide an estimate of the source signals s and the mixing matrix A, based on the observed micro-

phone signals and some general statistical source profile. A variety of solutions exist for the complete

instantaneous case (K = L) providing hiqh-quality separation (for more information, please refer to [18]–

[20]). The underdetermined instantaneous case is more challenging, since in this case, the estimation of

the mixing matrix A is not sufficient for the estimation of the source signals s [13]. The two-channel

(K = 2) BSS scenario has been examined in detail in the past [7], [13], [15]–[17]. In this particular case,

the source separation problem is reduced to an angular clustering problem of sparse data, as initially

introduced by Hyvärinen [15] and Zibulevsky et al [16]. O’Grady and Pearlmutter [21] proposed an

algorithm to perform separation via Oriented Lines Separation (LOST) using clustering along lines in a

similar manner to Hyvärinen [15]. Davies and Mitianoudis [22] employed two-state Gaussian Mixture

Models (GMM) to model the source densities in a sparse representation and also the possible additive

noise. In [14], the authors introduced Laplacian Mixture Models to perform angular clustering of sparse

sources. To tackle the angular wrapping at π, the authors also examined the use of Wrapped Laplacian

Mixtures (MoWL) [13]. However, the last two efforts do not offer a closed form solution to the problem

and they can not be easily expanded to more than two sensors. Recently, Arberet et al [23] proposed
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a method to count and locate sources in underdetermined mixtures. Their approach is based on the

hypothesis that in localised neighbourhoods around some time-frequency points (t, f) (in the Short-Time

Fourier Transform (STFT) representation) only one source essentially contributes to the mixture. Thus,

they estimate the most dominant source (the Estimated Steering Vector) and a local confidence Measure

which increases where a single component is only present. A clustering approach merges the above

information and estimates the mixing matrix A. In [24], Vincent et al used local Gaussian Modelling of

minimal constrained variance of the local time-frequency neighbours assuming knowledge of the mixing

matrix A. The candidate sources’ variances are estimated after minimising the Kullback-Leibler (KL)

divergence between the empirical and expected mixture covariances, assuming that at maximum 3 sources

contribute to each time-frequency neighbourhood and the sources are derived using Wiener filtering. There

are also a number of source separation approaches that attempt to solve the convolutive underdetermined

source separation problem. In this setup, the sound sources are recorded in a room and the elements of

the mixing matrix A are replaced by FIR filters modelling the impulse responses between each source

and microphone. Sawada et al [25]–[27], Winter et al [28], Duong et al [29] and many other researchers

have proposed a variety of algorithms that can tackle the convolutive mixture problem; however, these

approaches go beyond the scope of this paper, which is instantaneous underdetermined source separation.

This study extends previous work by Mitianoudis and Stathaki [13], [14]. The proposed multidimen-

sional DLD model offers a closed form solution to the modelling of directional sparse data and can also

address the general K × L underdetermined source separation problem, which is rarely tackled in the

literature. In addition, the proposed model is more computationally efficient compared to the warped

laplacian solution in [14]. The derived MLE algorithms are tested with several synthetic modelling

experiments and real audio BSS examples and are compared with the solution of Vincent et al [24] that

can address the general multichannel problem.

II. A GENERALISED DIRECTIONAL LAPLACIAN MODEL

A. Definition

Assume a r.v. θ modelling directional data with π-periodicity. The periodicity of the density function

can be amended to reflect a “fully circular” phenomenon (2π), however, for the rest of the paper we will

assume that θ ∈ [0, π), since it is required by the source separation application. From the definition of the

von-Mises distribution in (1), one can create a Laplacian structure simply by introducing a | · | operator in

the superscript of the exponential. This action introduces a large concentration around the mean, which

is needed to describe a sparse or Laplacian density. Values far away from the mean are smoothed out by

March 9, 2012 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 20XX 5

the exponential. Additionally, we have to perform some minor amendments to the phase shift and also

invert the distribution in order to impose the desired shape on the derived density.

Definition 1. The following probability density function models directional Laplacian data over [0, π)

and is termed Directional Laplacian Density (DLD):

p(θ) = c(k)e−k| sin(θ−m)| ,∀ θ ∈ [0, π) (4)

where m ∈ [0, π) defines the mean, k > 0 defines the width (“approximate variance”) of the distribution,

c(k) = 1
πÎ0(k)

and Î0(k) = 1
π

∫ π
0 e

−k sin θdθ.

The normalisation coefficient c(k) = 1/πÎ0(k) is derived from the fundamental normalisation property

of probability density functions [30]. Examples of (4) and more details on the special 1D DLD case can

be found in [30].

The next step is to derive a generalised definition for the Directional Laplacian model. To generalise

the concept of 1D DLD in the p-dimensional space, we will be inspired by the p-D von Mises-Fisher

distribution [4], [5]. The von Mises-Fisher distribution is described by p(x) ∝ ekm
Tx (see (2)). Since

||x|| = ||m|| = 1, the inner product mTx = cosψ, where ψ is the angle between the two vectors x and

m. Following a similar methodology to the 1D-DLD, we need to formulate the term −k| sinψ| in the

superscript of the exponential. It is straightfoward to derive | sinψ| =
√
1− cos2 ψ =

√
1− (mTx)2.

Thus, the superscript of the generalised DLD can be given by −k
√
1− (mTx)2.

Definition 2. The following probability density function models p-D directional Laplacian data and is

termed Generalised Directional Laplacian Distribution (DLD):

p(x) = cp(k)e
−k
√

1−(mTx)2 ,∀ ||x|| ∈ Sp−1 (5)

where m defines the mean, k ≥ 0 defines the width (“approximate variance”) of the distribution, cp(k) =
Γ( p−1

2
)

π
p+1
2 Îp−2(k)

, Îp(k) = 1
π

∫ π
0 e

−k sin θ sinp θdθ and Γ(·) represents the Gamma function1.

The normalisation coefficient cp(k) is calculated in Appendix A. In the case of p = 2, the generalised

DLD is reduced to the one dimensional DLD of (4), verifying the validity of the above model. The

generalised DLD density models “directional” data on the half-unit p-D sphere, however, it can be

extended to the unit p-D sphere, depending on the specifications of the application. In Figure 1, an

1Note that for n positive integer, we have that Γ(n) = (n− 1)!
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Fig. 1. The proposed Generalised Directional Laplacian Distribution for k = 5 and p = 3.

example of the generalised DLD is depicted for p = 3 and k = 5. The centre m is calculated using

spherical coordinates m = [cos θ1 cos θ2; cos θ1 sin θ2; sin θ1] for θ1 = 0.2 and θ2 = 2.

B. Generalised Directional Laplacian Density samples generation

To generate 1D Directional Laplacian data, we employed the inversion of the cumulative distribution

method [31]. Inversion methods are based on the observation that continuous cumulative distribution

functions (cdf) range uniformly over the interval (0, 1). Since the proposed density is bound between

[0, π), we can evaluate the cdf of the Directional Laplacian density with uniform sampling at [0, π) and

approximate the inverse mapping using spline interpolation. Thus, uniform random data in the interval

(0, 1) can be transformed to 1D Directional Laplacian random samples, using the described inverse

mapping procedure.

To simulate 2-D Directional Laplacian random data (p = 3), we sampled the 2-D density function

for specific m, k. The bounded value space (θ1, θ2 ∈ [0, π)) is quantised into small rectangular blocks,

where the density is assumed to be uniform. Consequently, we generate a number of uniform random

samples for each block. The number of samples generated from each block is different and defined by the

overall DL density. The required 3-D unit-norm random vectors are produced using spherical coordinates

with unit distance and angles θ1, θ2 from the random 2-D Directional data. The above procedure can be
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extended for the generation of p-D directional data.

C. Maximum Likelihood Estimation of parameters m, k

Assume a population of p-dimensional angular data X = {x1, . . . ,xn, . . . ,xN} that follow a p-

dimensional Directional Laplacian Distribution. To estimate the model parameters using Maximum Likeli-

hood Estimation (MLE), one can form the log-likelihood and estimate the parameters m, k that maximise

it. For the Generalised DLD density, the log-likelihood function can be expressed, as follows:

J(X,m, k) = N log
Γ(p−1

2 )

π
p+1

2 Îp−2(k)
− k

N∑
n=1

√
1− (mTxn)2 (6)

Alternate optimisation is performed to estimate m and k. The gradients of J along m and k are calculated

in Appendix B. The update for m is given by gradient ascent on the log-likelihood via:

m+ ←m+ η
N∑

n=1

mTxn√
1− (mTxn)2

xn (7)

m+ ←m+/||m+|| (8)

where η defines the gradient step size. Since the gradient step does not guarantee that the new update

for m will remain on the surface of Sp−1, we normalise the new update to unit norm. To estimate k, a

numerical solution to the equation ∂J(X,m, k)/∂k = 0 is estimated. From the analysis in Appendix B,

we have that
Îp−1(k)

Îp−2(k)
=

1

N

N∑
n=1

√
1− (mTxn)2 (9)

To calculate k analytically from the ratio Îp−1(k)/Îp−2(k) is not straightforward. However, after numerical

evaluation, it can be demonstrated that the ratio Îp−1(k)/Îp−2(k) is a smooth monotonic 1− 1 function

of k. In Figure 2, the ratio Îp−1(k)/Îp−2(k) is estimated for uniformly sampled values of k ∈ [0.01, 30]

and p = 2, 3, 4. Since this ratio is not dependent on data, one can create a look-up table for a variety of

k values and use interpolation to estimate k from an arbitrary value of Îp−1(k)/Îp−2(k). This look-up

table solution is more efficient compared to possible iterative estimation approaches of k and generally

accelerates the model’s training.

D. Mixtures of Generalised Directional Laplacians

One can employ Mixtures of Generalised Directional Laplacians (MDLD) in order to model multiple

concentrations of directional generalised “heavy-tailed signals”.
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Fig. 2. The ratio Îp(k)/Îp−1(k) is a monotonic 1− 1 function of k.

Definition 3. Mixtures of Generalised Directional Laplacian Distributions are defined by the following

pdf:

p(x) =
K∑
i=1

aicp(ki)e
−ki

√
1−(mT

i x)
2

,∀ ||x|| ∈ Sp−1 (10)

where ai denotes the weight of each distribution in the mixture, K the number of DLDs used in the

mixture and mi, ki denote the mean and the “width” (approximate variance) of each distribution.

The mixtures of DLD can be trained using the Expectation-Maximisation (EM) algorithm. Following

the previous analysis in [13], [14], [32], one can yield the following simplified likelihood function:

I(ai,mi, ki) = (11)

N∑
n=1

K∑
i=1

(
log

aiΓ(
p−1
2 )

π
p+1

2 Îp−2(k)
− k

√
1− (mTx)2

)
p(i|xn)

where p(i|xn) represents the probability of sample xn belonging to the ith Directional Laplacian of the

mixture. In a similar fashion to other mixture model estimation, the updates for p(i|xn) and αi can be

given by the following equations:

p(i|xn)←
aicp(ki)e

−ki

√
1−(mT

i x)
2∑K

i=1 aicp(ki)e
−ki

√
1−(mT

i x)
2

(12)

ai ←
1

N

N∑
n=1

p(i|xn) (13)
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Based on the derivatives calculated in Appendix B, it is straightforward to derive the following updates

for mi and ki, as follows:

m+
i ←mi + η

N∑
n=1

ki
mTxn√

1− (mTxn)2
xnp(i|xn) (14)

m+
i ←m+

i /||m
+
i || (15)

To estimate ki, we solve the equation ∂I/∂ki = 0 numerically. The equation yields:

Îp−1(ki)

Îp−2(ki)
=

∑N
n=1

√
1− (mT

i xn)2p(i|xn)∑N
n=1 p(i|xn)

(16)

The training of this mixture model is also dependent on the initialisation of its parameters, especially

the means mi [13]. In Appendix C, the standard K-Means algorithm is reformulated in order to tackle

p-dimensional directional data. The proposed p-dimensional Directional K-Means is used to initialise the

means mi of the DLDs in the generalised DLD mixture EM training. A Directional K-Means already

exists in the literature [33], however, the proposed p-dimensional Directional K-Means in Appendix C

employs a distance function more relevant to sparse directional data.

III. AUDIO SOURCE SEPARATION USING MIXTURES OF DLD

In underdetermined audio source separation a set of K sensors x(n) = [x1(n), . . . , xK(n)]T observes

a set of L (K < L) sound sources s(n) = [s1(n), . . . , sL(n)]
T . The instantaneous (anechoic) mixing

model can be expressed in mathematical terms, by x(n) = As(n), where A represents a K × L mixing

matrix. The underdetermined instantaneous source separation problems consists of two sub-problems a)

estimate the mixing matrix A, b) estimate the sound sources s(n), given the observed signals x(n) [14].

The solution of this problem can have a unique and identifiable solution, according to Eriksson and

Koivunen [34], as long i) there are no Gaussian sources present in the mixture, ii) the mixing matrix A

is of full row rank, i.e. rank(A) = M and iii) none of the source variables has a characteristic function

featuring a component in the form exp(Q(u)), where Q(u) is a polynomial of a degree of at least two.

Assume a two-sensor instantaneous mixing approach (K = 2) and that the source signals si(n) are

sparse. When the sources are sparse, smaller coefficients are more probable, whereas all the signal’s

energy is concentrated in few large values. Therefore, the density of the data in the mixture space shows

a tendency to cluster along the directions of the mixing matrix columns [16]. That is to say, that the

phase difference θn = atanx2(n)
x1(n)

between the two sensors can be used to identify source concentrations

(clusters). The centres of the clusters denote the columns of the mixing matrix [14]. Using the phase
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difference information between the two sensors is equivalent to mapping all the observed data points on

the unit-circle. This is equivalent to the concept of mapping all the observed data points to the half-unit

p-dimensional sphere, as proposed by Zibulevsky et al [16]. Thus, the general underdetermined source

separation problem becomes a directional clustering problem on the half-unit p-dimensional sphere. For

a more detailed analysis of the above, the reader is referred to [13], [14], [16], [17], [20], [23].

In [13], the authors introduced the concept of Mixture of Laplacians (MoL) to tackle this angular

clustering problem in the case of a two-sensor setup. Once the MoL was fitted to the angular data θn,

each source was represented by each of the Laplacians in the mixture. Separation was performed either

by hard thresholding or soft (fuzzy) thresholding. This solution suffered from clusters centred closer to

0o or 180o, since the Laplacian distribution used in these Mixture models has infinite instead of a circular

support. To offer a more complete solution to this problem, in [14], the authors proposed a Mixture of

Warped Laplacians (MoWL) (i.e. periodic repetitions of the Laplacian density) that tackles clustering

across the borders. Neverless, the two approaches handled only the two-sensor case (1D) and the speed

of training MoWL was rather slow, as it is equivalent of training two mixture models (one EM for the

warping of each Laplacian and one EM for the mixture of warped Laplacians).

The generalised Directional Laplacian Density offers a faster and complete solution to the problem,

since the proposed function addresses directional data by definition and is multidimensional, which implies

that it can be automatically applied to the general K×L separation scenario. Once the Mixtures of DLD

are fitted to the multichannel directional data, separation can be performed by ”hard-thresholding” for

the 1D-case (intersections of the individual DLDs), or ”soft-thresholding” for the general p-D case in a

similar manner to [14]. That is to say, we can attribute points that constitute a chosen ratio q (i.e. 0.7−0.9)

of the density of each DLD to the corresponding source. Hence, the ith source can be associated with

those points on the unit xn p-dimensional sphere , for which p(xn) ≥ (1 − q)αicp(ki), where p(xn) is

given by (10).

Having attributed the points x(n) to the L sources, using either the “hard” or the “soft” thresholding

technique, the next step is to reconstruct the sources. Let Si ⊑ N represent the point indices that have

been attributed to the ith source and mi the corresponding mean vector, i.e. the corresponding column of

the mixing matrix. We initialise ui(n) = 0, ∀ n = 1, . . . , N and i = 1, . . . , L. The source reconstruction

is performed by substituting:

ui(Si) = mT
i x(Si) ∀ i = 1, . . . , L (17)

In the case that we need to capture the multichannel image of the separated source, the result of the
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Fig. 3. Examples of 2D ML parameter estimation for the DLD model (left) and its mixture model (right) using 2000 randomly

generated 2D Directional Laplacian data.

separation is a multichannel output that is initialised to ui(n) = 0, ∀ n = 1, . . . , N . The source image

reconstruction is performed by:

ui(Si) = x(Si) ∀ i = 1, . . . , L (18)

IV. EXPERIMENTS

In this section, we verify the validity of the above derived MLE algorithms and the goodness-of-fit

of the proposed Directional Laplacian model and its mixtures. The first part of the evaluation process

contains several synthetic examples that verify the principles of the derived algorithms. The second

part demonstrates the density’s relevance and performance in underdetermined audio source separation.

At this point, we need to clarify that the main scope of the paper is the proposal of a novel multi-

dimensional density that can find applications in many other fields, including underdetermined source

separation. Therefore, we are not aiming at proposing the best-performing source separation algorithm,

but an algorithm that improves our previous efforts both in stability, speed and performance and offers

a fast alternative to state-of-the-art algorithms with reasonable separation performance.

For the rest of the section, we note that the integral Îp(k) was numerically estimated using MATLAB’s

quadl command. As mentioned earlier, the estimation of k from equations (9), (16) is performed using

spline interpolation (as implemented by MATLAB’s interp1 command) from a look-up table for several

values of k and Îp−1(k)/Îp−2(k) that is created and stored before optimisation.

A. Synthetic Examples

The first step was to test the derived algorithms with synthetic data. The 2-dimensional case (p = 3)

was selected in order to facilitate the visualisation of the training results. We explored various cases of
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Fig. 4. Estimation of mT m̂ for various values of N = 500, 1000, 2000, 3000 and k ∈ [4, 15] for the p = 3 (2D case).

m, k,N , especially centres that are closer to the wrapping boundaries of 0 and π. For the MLE of the

DLD’s parameters, we employed equations (7), (8) and (9) with random initialisation of the centres and

k. In Figure 3(a), an example of fitting the 2D DLD on 2000 directional Laplacian samples centred close

to the wrapping border and k = 15 is presented. In this figure, the data-point scatter plot is overlaid by

a contour plot of the fitted 2D-DLD model. To evaluate the efficiency of m estimation, we examined

several extreme cases summarised in Table I. For each different experiment, we evaluated 50 independent

runs with random directional Laplacian data. The average estimates of mT m̂ for each case are displayed

in Table I. It is evident that one can get very accurate results in terms of m̂ (estimate of m), regardless

of the dataset size N for fairly concentrated data (values of k > 6). The effect of sample size N is

also demonstrated in Figure 4. The estimation of mT m̂ for the 2D case is examined for values of

N = 500, 1000, 2000, 3000 and k ∈ [4, 15]. We can see that the estimate m̂ gets closer or identical to

m for greater values of k (i.e. more concentrated centres) and more data points.

To evaluate the efficiency of k estimation, we conducted a series of experiments for N = 500, 1000, 2000, 3000

and k ∈ [4, 15]. For each set of values N, k, we averaged the results of 50 independent runs. The results

are depicted in Figure 5 for the 1D (p = 2) and the 2D (p = 3) case. The results demonstrate accurate

estimates for all cases, especially for the 1D case. The estimation of k for the 2D case seems to improve

with the sample size, while the small difference between the estimated and the actual value of k for

small values of k is due to possible model overfitting especially for smaller number of data points. This

difference is very small and does not introduce any serious side-effects in applications, such as audio

source separation.

The next step is to evaluate the efficiency of the derived EM algorithm for the estimation of the p-D
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TABLE I

MLE OF m FOR THE 2D DIRECTIONAL LAPLACIAN (p = 3) FOR VARIOUS VALUES OF m, k,N . AVERAGE RESULTS FOR 50

INDEPENDENT RUNS FOR EACH EXPERIMENT.

m k N mT m̂

[-0.4329 0.3234 0.8415] 12 100 0.9994

[-0.4329 0.3234 0.8415] 12 1000 1.000

[-0.4329 0.3234 0.8415] 12 2000 1.000

[-0.4329 0.3234 0.8415] 4 1000 0.9998

[-0.4161 0 0.9093] 8 100 0.9995

[-0.4161 0 0.9093] 8 1000 0.9999

[-0.4161 0 0.9093] 15 100 0.9997

[-0.4161 0 0.9093] 15 1000 1.0000

[-0.4161 0.9093 0] 8 100 0.9994

[-0.4161 0.9093 0] 8 1000 0.9999

[-0.4161 0.9093 0] 15 100 0.9999

[-0.4161 0.9093 0] 15 1000 1.000
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(a) 1D case (p = 2)
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(b) 2D case (p = 3)

Fig. 5. Estimation of k for various values of N = 500, 1000, 2000, 3000 and k ∈ [4, 15] for p = 2 (1D case) (a) and for

p = 3 (2D case) (b).

Directional Laplacian Density Mixtures. We created a mixture of 5 concentrations of 2D-DLD samples

centred at various positions mi and various values of ki and ai, as summarised in Table II. The total

number of samples were 3000. For the initialisation of the centres, we used the Directional K-Means

algorithm, as described in Appendix C. We ran 50 independent runs of the EM-algorithm as described
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TABLE II

PARAMETER ESTIMATION FOR A MIXTURE OF 2D-DIRECTIONAL LAPLACIAN (K = 5, p = 3) USING THE PROPOSED EM

ALGORITHM. AVERAGE PARAMETER RESULTS FOR 50 INDEPENDENT RUNS.

mi ki ai |mT
i m̂i| |k̂i − ki|/ki âi

DLD1 [-0.9001 0.3200 0.2955] 12 0.1333 0.9277 0.0431 0.1215

DLD2 [ 0.6092 0.1235 0.7833] 10 0.2 0.8730 0.1072 0.1663

DLD3 [-0.5970 -0.6147 0.5155] 14 0.3333 0.9997 0.0299 0.3259

DLD4 [0.1732 -0.3784 0.9093] 15 0.1667 0.98986 0.0986 0.2001

DLD5 [0.5826 -0.8004 0.1411] 15 0.1667 0.9995 0.0248 0.1779

in Section II-D. The average estimated mT
i m̂i, k̂i and âi are depicted in Table II. We witnessed several

incorrect initialisations caused by the Circular K-Means algorithm, especially in the smaller clusters

(small ai) or closely spaced clusters (around 7/50 times for DLD2, whereas 0/50 times for DLD3 or

DLD5). These incorrect initialisations resulted into a drop of the average performance. In the case of

accurate initialisation, the clustering performance was very good. In Figure 3 (right), we demonstrated a

successful clustering and training of the DLD mixture for the synthetic source compilation. The random

samples are depicted in a 2-D cluster plot along with the fitted MDLDs of the mixture. The clustering

produced by the proposed EM algorithms seems to offer adequate accuracy.

Finally, in order to compare the goodness-of-fit of the proposed DLD model with the von Mises-Fisher

distribution, we generated 2000 random Directional Laplacian 1D and 2D data for various values of k.

Then, the proposed DLD MLE algorithm and a von Mises-Fisher MLE algorithm [4], [5] were used to

fit the models to the data. An example of the two models fitted to the data is depicted in Figure 6. It

can be observed that the proposed density offers a closer fit compared to the vonMises-Fisher density.

The Pearson Chi-Square test was calculated to compare the data normalised histogram with the fitted

models [35]. A lower Chi-Square score indicates a closer match of the fitted model to the actual data.

A comparison of the Pearson Chi-Square score for the two distributions for the 1D and the 2D case is

depicted in Figure 7. It is clear that the proposed DLD model offers a closer match to the actual sparse

data distribution compared to the more Gaussian-like von Mises-Fisher model. This conclusion applies

for various values of k. A comparison of the Pearson Chi-Square scores for N = 500, 1000, 2000, 3000

points for the 1D case and k = 6 is shown in Figure 8. The goodness-of-fit increases with the number

of training points for both distributions. Since the proposed MDLD offers a closer fit for sparse data, it
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Fig. 6. Model fitting comparison between the DLD and the von Mises-Fisher distribution to Directional Laplacian Data

(m = 30o, k = 6).
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(b) 2D case

Fig. 7. The Pearson Chi-Square Tests for the DLD and the von Mises-Fisher distribution for k ∈ [4, 15] and the 1D and 2D

cases. The proposed DLD offers a closer fit to Laplacian data compared to the von Mishes-Fisher distribution.

is rational to be preferred instead of the vonMises-Fisher to perform separation of sparse clusterings.

B. Audio Source Separation

In this section, we evaluate the proposed MDLD algorithm for audio source separation.

We will use Hyvärinen’s clustering approach [15], the MoWL algorithm [13] and the “GaussSep”

algorithm [24] for comparison. After fitting the MDLD with the proposed EM algorithm, separation

will be performed using hard or soft thresholding, as described in our previous work [13], [14]. In
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Fig. 8. The Pearson Chi-Square Tests for the DLD and the von Mises-Fisher distribution for k = 6 for the 1D case as a

function of number of functions. The goodness-of-fit increases with the number of training points for both distributions.

TABLE III

THE PROPOSED MDLD APPROACH IS COMPARED FOR SOURCE ESTIMATION PERFORMANCE (K = 2) IN TERMS OF SDR

(DB), SIR (DB) AND SAR(DB) WITH GAUSSSEP, WMOL AND HYVÄRINEN’S APPROACH. THE MEASUREMENTS ARE

AVERAGED FOR ALL SOURCES OF EACH EXPERIMENT.

SDR (dB) SIR (dB) SAR (dB)

MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva

Latino1 6.38 5.51 5.72 0.89 18.63 8.96 18.59 9.61 6.93 9.20 6.26 3.63

Latino2 3.21 4.71 2.10 0.89 11.50 8.87 11.28 9.61 4.95 9.20 3.85 3.63

Groove 0.22 0.39 -0.43 -0.08 9.48 3.62 9.60 8.88 2.12 7.37 1.00 1.83

Dev2Male3 3.04 6.22 2.11 -3.10 13.69 12.14 13.30 4.73 4.10 8.04 3.33 2.72

Dev2Female3 4.68 5.70 3.86 -1.85 15.28 11.45 16.58 5.02 5.41 7.51 4.61 3.13

Dev2WDrums 9.59 16.57 10.16 0.63 19.77 23.83 19.98 7.57 10.55 17.68 10.54 5.54

Dev1WDrums 4.96 16.54 3.81 6.86 13.88 20.94 12.38 16.75 6.37 19.30 5.20 7.73

Average 4.58 7.96 3.91 0.6 14.61 12.83 13.82 8.88 5.78 11.19 4.97 4.03

order to quantify the performance of the algorithms, we estimate the Signal-to-Distortion Ratio (SDR),

the Signal-to-Interference Ratio (SIR) and the Signal-to-Artifact Ratio from the BSS EVAL Toolbox

v.3 [36]. The input signals for the MDLD, MoWL and Hyvärinen’s approaches are sparsified using the

Modified Discrete Cosine Transformation (MDCT), as developed by Daudet and Sandler [37]. The frame

length for the MDCT analysis is set to 32 msec for the speech signals and 128 msec for the music signals
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sampled at 16 KHz, and to 46.4 msec for the music signals at 44.1 KHz. We initialise the parameters

of the MoWL and MDLD as follows: αi = 1/N and ci = 0.001, T = [−1, 0, 1] (for MoWL only)

and ki = 15 (for the DLD only). The centres mi were initialised in either case using the Directional

K-means step, as described in Appendix C. We used the “GaussSep” algorithm, as publicly available by

the authors2. For the estimation of the mixing matrix, we used Arberet et al’s [23] DEMIX algorithm3, as

suggested in [24]. The number of sources in the mixture was also provided to the DEMIX algorithm, as

it was provided to all other algorithms. The “GaussSep” algorithm operates in the STFT domain, where

we used the same frame length with the other approaches and a time-frequency neighbourhood size of

5 for speech sources and 15 for music sources.

1) Two-microphone examples: We tested the algorithms with the Groove, Latino1 and Latino2 datasets,

available by BASS-dB [38], and sampled at 44.1 KHz. The “Groove” dataset features four widely spaced

sources: bass (far left), distorted guitar (center left), clean guitar (center right) and drums (far right).

The two “Latino” datasets features four widely spaced sources: bass (far left), drums (center left),

keyboards (center right) and distorted guitar (far right). We also used a variety of test signals from the

Signal Separation Evaluation Campaigns SiSEC2008 [39] and SiSEC2010 [40]. We employed two audio

instantaneous mixtures from the “dev1” and “dev2” data sets (“Dev2WDrums” and “Dev1WDrums” sets

- 3 instruments at 16KHz) and two speech instantaneous mixtures from the “dev2” data set (“Dev2Male3”

and “Dev2Female3” sets - 4 closely located sources at 16 KHz). We used the development (dev) datasets

instead of the test data sets, in order to have all the source audio files for proper benchmarking.

In Table III, we can see the results for the four methods in terms of SDR, SIR and SAR. For simplicity,

we averaged the results for all sources at each experiment. The reader of the paper can visit the following

url4 and listen to the described separation results. The proposed MDLD approach seems to outperform

our previous separation effort MoWL and Hyvärinen’s algorithm in terms of all the performance indexes.

The proposed MDLD approach is not susceptible to bordering effects, since it is circular by definition and

avoids shortcomings of our previous offerings. Compared to a state-of-the-art method, such as “GaussSep”,

our method is better in terms of the SIR index but is falling behing in terms of the SDR and SAR

indexes. The SIR index reflects the capability of an algorithm to remove interfence from other sources

in the mixture. The SAR index refers to the audible artifacts that remain in the separated signals, due to

2MATLAB code for the “GaussSep” algorithm is available from http://www.irisa.fr/metiss/members/evincent/software.
3MATLAB code for the “DEMIX” algorithm is available from http://infoscience.epfl.ch/record/165878/files/.
4 http://utopia.duth.gr/ nmitiano/mdld.htm

March 9, 2012 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 20XX 18

the overlapping of several points in the time-frequency space (even in the MDCT representation) in the

underdetermined mixture that are incorrectly attributed to either source. In this sense, our algorithm seems

to perform slightly better compared to “GaussSep” in terms of removing “crosstalk” from other sources,

but there seem to be more audible artifacts after separation in our approach compared to “GaussSep”.

This is due to the fact that the “GaussSep” segments the time-frequency representation in small localised

neighbourhoods and performs local Gaussian Modelling so as to separate and filter sources from those

areas that separation is more achievable. Instead, our approach simply clusters all time-frequency points

according to the fitted DLD using hard thresholds (or soft-thresholds in the case K > 2).

TABLE IV

RUNNING TIME COMPARISON WITH GAUSSSEP AND MOWL APPROACHES. THE MEASUREMENTS ARE IN SECONDS.

MDLD Gaussep MoWL

Groove 2.39 224.21 20.46

Latino1 1.27 122.02 5.48

Latino2 1.28 129.09 3.59

Dev2Male3 2.31 72.64 19.67

Dev2Female3 2.33 75.92 16.09

Dev2WDrums 2.07 56.79 8.55

Dev1WDrums 1.55 54.06 11.88

Average 1.88 104.96 12.24

Dev3Female3 9.56 1021.31 -

Example(3×5) 4.04 1598.7 -

Example(4×8) 9.393 2359.1 -

Average 7.66 1659.70 -

Another important issue is to compare the processing time of the three best performing algorithms. All

experiments were conducted on an Intel Core i5-460M (2.53 GHz) with 4GB DDR3 SDRAM running

Windows Professional 64-bit and MATLAB R2011a. Our MATLAB implementations of the MDLD and

MoWL algorithms were not optimised in terms of execution speed. In Table IV, the typical running

time in seconds is summarised for each experiment and method. The first observation is that the MDLD

approach is faster compared to our previous MoWL. As it was previously mentioned, employing a mixture

of wrapped Laplacians to solve the “circularity” problem entails the running of two EM algorithms: one

for the wrapped Laplacians and one for the mixture of wrapped Laplacians. This seems to delay the
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convergence of the algorithm. Instead, the MDLD requires the training of one EM algorithm for the

mixture and even though is more complicated, it seems to converge faster compared to the MoWL. The

second observation is that there is an important difference between the processing time of the MDLD

approach and the “GaussSep” algorithm. As previously mentioned, the “GaussSep” algorithm is more

complicated in structure thus justifying its long running time. Nevertheless, the proposed MDLD approach

offers a very fast underdetermined source separation alternative with high SIR performance that can be

used in environments where processing time is important. The third observation is that the processing

time for the “GaussSep” algorithm scales significantly with the duration of the signals and the number

of sources, i.e. the “Groove”, “Latino1”, “Latino2” (44.1KHz - 4 sources) require more time than the

Dev2Male3 and Dev2Female3 sets (16KHz - 4 sources) and the Dev2WDrums and Dev1WDrums sets

(16KHz - 3 sources). Instead, the MDLD’s running time seems to be closer to the avarage in most cases,

maybe slightly deteriorating with the complexity of the source separation problem.

TABLE V

THE PROPOSED MDLD APPROACH IS COMPARED FOR SOURCE ESTIMATION PERFORMANCE (K = 3, 4) IN TERMS OF SDR

(DB), SIR (DB) AND SAR(DB) WITH THE GAUSSSEP APPROACH. THE MEASUREMENTS ARE AVERAGED FOR ALL SOURCES

OF EACH EXPERIMENT.

SDR (dB) SIR (dB) SAR (dB)

MDLD GaussSep MDLD GaussSep MDLD GaussSep

Dev3Female3 6.02 16.93 23.84 22.43 6.17 18.40

Example 3× 5 3.91 9.94 17.92 15.21 4.17 11.68

Example 4× 8 2.24 -18.63 16.4 -17.58 2.52 9.39

2) Underdetermined source separation examples with more than two mixtures: In this section, we

employ the described generalised DLD approach to perform separation of 3×L and 4×L mixtures. The

2-mixtures setup, that dominates the literature, may also arise from the fact that most audio recordings and

CD masters are available as stereo recordings (2 channels is equivalent to 2 mixtures), where we need to

separate the instruments that are present. Nowadays, the music industry is moving towards multichannel

formats, including the 5.1 and the 7.1 surround sound formats, which implies more than 2 channels will

be available for processing. In this section, we will attempt to perform separation of the Dev3Female3

set from SiSEC2011 [41] and a 3 × 5 (3 mixtures - 5 sources) and a 4 × 8 (4 mixtures - 8 sources)

scenario using the male and female voices from Dev3. Our MDLD approach will be compared to the

“GaussSep” algorithm that is able to work with multi-channel data. We used the same frame length and
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time-frequency neighbourhood sizes for both algorithms as previously. The MDLD was initialised as

described in the previous section. After fitting the model, we employed the soft-thresholding scheme,

as it was described in [14]. Since it is not straightforward to calculate the intersection surfaces between

the individual p-dimensional DLDs, we employ a soft-thresholding scheme, as described earlier. For our

experiments, we used a value of q = 0.8.

For the 3×5 example, we centred the 5 speech sources around the angles θ1 = [0o,−87o,−60o, 0o, 45o]

and θ2 = [85o, 0o,−60o, 0o, 45o]. The sources were mixed using the mixing matrix A = [cos θ2 cos θ1; cos θ2 sin θ1; sin θ2].

For the 4×8 example, we centred eight audio sources around the angles: θ1 = [−75o,−30o, 0o, 50o, 10o, 80o,−45o, 0o],

θ2 = [70o, 30o,−20o, 50o,−70o, 0o, 15o,−70o] and θ3 = [80o, 20o, 10o,−50o, 0o,−10o,−25o,−35o].

The sources were mixed using the mixing matrix A = [cos θ3 cos θ2 cos θ1; cos θ3 cos θ2 sin θ1; cos θ3 sin θ2; sin θ3].

The separation results for the three experiments in terms of SDR, SIR and SAR can be summarised

in Table V. The reader can listen to the audio results from the following url (See Footnote 4). In the

case of K = 3 mixtures, both algorithms managed to perform separation in either case. Similarly to the

K = 2 case, the “GaussSep” featured higher SDR and SAR performances, whereas the proposed MDLD

featured higher SIR performance. The image is completely different in the case of K = 4 mixtures,

where the MDLD manages to separate all 8 sources in contrast to the “GaussSep” that fails to perform

separation. This might be due to fact that the sparsest ML solution in the optimisation of [24] is restricted

to vectors with K ≤ 3 entries, i.e. 3 sources present at each point. In contrast, the proposed MDLD

algorithm is designed to operate for any arbitrary number of sensors K, without any constraint.

In Table IV, we can see the processing times for the two algorithms for the three experiments. The

MDLD processing time has increased slightly but still remains relatively fast, requiring an average of

7.66 secs to perform separation. This implies that the computational complexity of the proposed MDLD

algorithm does not scale considerably with the number of sources L and sensors K. In contrast, the

“GaussSep” algorithm’s processing has increased considerably with K. The processing time seems to

scale up dramatically with increasing K and number of estimated sources L. For K = 3, it required

an average of 1310 sec and for K = 4, it required 2359 sec which is almost the double processing

time for K = 3. Thus, it appears that the proposed MDLD algorithm is capable of offering a faster and

more stable multichannel solution to the underdetermined source separation problem, featuring higher

SIR rates, compared to a state-of-the-art approach.

The main aspiration for future work behind these experiments is to combine the speed and stability of

the MDLD approach with the low-artifact separation quality, proposed by Vincent et al [24]. It might be

possible to import this time-frequency localised source separation framework, where the source clusters
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can be modeled by mixtures of MDLDs. A more intelligent fuzzy clustering algorithm may combine the

information from the MDLD priors to attribute points to multiple sources, overcoming the artifacts that

arise from the partitioning of the time-frequency space.

V. CONCLUSION

In this paper, the problem of modelling multidimensional Directional Sparse data is addressed. This

work is building on previous work on directional Gaussian models (i.e. the von-Mises and the vonMises-

Fisher densities) to propose a novel generalised Directional Laplacian model for modelling multidimen-

sional directional sparse data. Maximum Likelihood estimates of the densities’ parameters were proposed

along with an EM-algorithm that handles the training of DLD mixtures . The proposed algorithms were

tested with randomly generated synthetic data were the algorithms demonstrated good performance in

modelling the directionality of the data. The proposed algorithm can also offer a solution for the general

multichannel underdetermined source separation problem (K ≥ 2), offering fast and stable performance

and high SIR compared to state-of-the-art methods [24].

For future work, the authors will look for methods to incorporate the time-frequency localised source

separation framework [23], [24], in order to reduce the amount of audible artifacts in the separated

sources. Another future direction is to adapt this technique for a convolutive-mixture scenario, where

using the Short-Time Fourier Transform, we can transform the convolutive mixtures into multiple complex

instantaneous mixtures. Source separation-clustering for each frequency bin can be performed using a

modified version of the proposed algorithm and permutation alignment can be performed using Time-

Frequency Envelopes or Direction-of-Arrival methods [42]–[44]. The speed of the proposed MDLD

algorithm can be very useful, since frequency-domain convolutive methods need to solve many complex

instantaneous source separation problems simultaneously.
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APPENDIX

A. Calculation of the normalisation parameter for the Generalised DLD

To estimate the normalisation coefficient cp(k) of (5), we need to solve the following equation:∫
x∈Sp−1

cp(k)e
−k
√

1−(mTx)2dx = 1

Following equation (B.8) and in a similar manner to the analysis in Appendix B.2 in [4], we can rewrite

the above equation as follows:

cp(k)

∫ π

0
dθp−1

∫ π

0
e−k

√
1−cos2 θ1 sinp−2 θ1dθ1×

×
p−1∏
j=3

∫ π

0
sinp−j θj−1dθj−1 = 1

Following a similar methodology to Appendix B.2 in [4], the above yields:

cp(k)π

∫ π

0
e−k sin θ1 sinp−2 θ1dθ1

π
p−3

2

Γ(p−1
2 )

= 1

Using the definition of Îp(k), we can write

cp(k)Îp−2(k)
π

p+1

2

Γ(p−1
2 )

= 1⇒ cp(k) =
Γ(p−1

2 )

π
p+1

2 Îp−2(k)

B. Gradient updates for m and k for the MDDLD

The first order derivative of the log-likelihood in (6) for the estimation of m are calculated below:

∂J(X,m, k)

∂m
= −k

N∑
n−1

−2mTxn

2
√
1− (mTxn)2

xn

= k
N∑

n=1

mTxn√
1− (mTxn)2

xn (19)

Before we estimate k from the log-likelihood (6), we derive the following property:

∂

∂k
Î0(k) = −

1

π

∫ π

0
e−k sin θ sin θdθ = −Î1(k)

The above property can be generalised as follows:

∂p

∂kp
Î0(k) = (−1)p 1

π

∫ π

0
sinp θe−k sin θdθ = (−1)pÎp(k)

The first order derivative of the log-likelihood in (6) for the estimation of k are then calculated below:

∂J(X,m, k)

∂k
= N

Îp−1(k)

Îp−2(k)
−

N∑
n=1

√
1− (mTxn)2 (20)
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C. A Directional K-Means algorithm

Assume that K is the number of clusters, Ci, i = 1, . . . ,K are the clusters, mi are the cluster centres

and X = {x1, . . . ,xn, . . . ,xN} is a p-dimensional angular dataset lying on the half-unit p-D sphere. The

original K-means [45] minimises the following non-directional error function:

Q =
N∑

n=1

K∑
i=1

||xn −mi||2 (21)

where || · || represents the Euclidean distance. Instead of using the square Euclidean distance for the

p-dimensional Directional K-Means, we introduce the following distance function:

Dl(xn,mi) =
√
1− (mT

i xn)2 (22)

The novel function Dl is similarly monotonic as the original distance but emphasizes more the contribution

of points closer to the cluster centre. In addition, Dl is periodic with period π. The p-dimensional

Directional K-Means can thus be described as follows:

1) Randomly initialise K cluster centres mi, where ||mi|| = 1

2) Calculate the distance of all points xn to the cluster centres mi, using Dl.

3) The points with minimum distance to the centres mi form the new clusters Ci.

4) The clusters Ci vote for their new centres m+
i . To avoid averaging mistakes with directional

data, vector averaging is employed to ensure the validity of the addition. The resulting average

is normalised to the half-unit p-dimensional sphere:

m+
i =

1

Ci

∑
xn∈Ci

xn (23)

m+
i ←m+

i /||m
+
i || (24)

5) Repeat steps 2), 3), 4) until the means mi have converged.
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