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Abstract. In this paper, the authors address the permutation ambi-
guity that exists in frequency domain Independent Component Analysis
of convolutive mixtures. Many methods have been proposed to solve
this ambiguity. Recently, a couple of beamforming approaches have been
proposed to address this ambiguity. The authors explore the use of sub-
space methods for permutation alignment, in the case of equal number of
sources and sensors.

1 Introduction

Assume an array of M sensors x(n) = [x1(n) x2(n) . . . xM (n)]T placed in a real
room, capturing an auditory scene. Assume there are N sources in the auditory
scene s(n) = [s1(n) s2(n) . . . sN (n)]T . To model the recording environment,
one could use FIR convolutive mixtures.

xi(n) =
N∑

j=1

aij ∗ sj(n) i = 1, . . . ,M (1)

where aij represents an FIR filter modelling the transfer function between
the ith sensor and the jth source. For the rest of the analysis, we will consider
only the case of equal number of sensors and sources.

The convolutive mixtures problem can be addressed in the time domain, by
estimating unmixing FIR filters wij , assuming that the sources are statistically
independent. The filters are adaptively estimated in the time domain, using the
general framework of Independent Component Analysis (ICA).

ui(n) =
N∑

j=1

wij ∗ xj(n) i = 1, . . . , N (2)

A more robust approach is to transfer the problem in the frequency domain.
Consequently, the convolutive mixtures problem is transformed into several in-
stantaneous mixtures problems. Many frequency domain ICA (FD-ICA) meth-
ods were proposed in literature. In [4], a fast FD-ICA framework was proposed
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with fast and robust results, compared to gradient-based methods. In frequency-
domain methods, we encounter two interdeterminancies: the scale and the per-
mutation ambiguity. The scale ambiguity (arbitrary source scaling) is rectified
by mapping the separated sources to the observation space [3]. The permutation
ambiguity (inherent ordering ambiguity of the instantaneous ICA model) pro-
duces an arbitrary ordering of sources along frequency. To tackle this problem,
one should apply some mechanism to couple the sources along frequency. Some
source modelling solutions exploit the coherence and the information between
the frequency bands to align the permutations. There also exist some channel
modelling solutions, assuming smooth filters, as a contraint to the unmixing
algorithm.

In fact, the blind source separation systems can be considered array signal
processing systems. A set of sensors arranged randomly in a room to separate
the sources present is effectively a beamformer. Some methods [2, 5, 6] were pro-
posed to solve the permutation problem using beamforming. In this paper, we
investigate the idea of using subspace methods for permutation alignment in
FD-ICA. Subspace methods produce more accurate alignment compared to the
previously proposed methods using directivity patterns. We show that subspace
methods even work in the case of equal number of sources and sensors.

2 Beamforming and Frequency-Domain ICA

A narrowband linear array of M sensors x(n), is defined as follows:

x(n) =
N∑

i=1

a(θi)si(n) = [a(θ1) a(θ2) . . . a(θN )] s(n) (3)

where a(θi) = [1 αe−j2πfTi . . . αe−j2πf(M−1)Ti ]T , Ti = dsinθi/c, θi are the DOA,
d is the intra-sensor distance and c = 340m/sec. The array model is similar to
the general Blind Source Separation model. The main objective is to estimate a
filter wi(f) to separate each source i. The directivity pattern (gain pattern) of
the beamformer wi(f) = [wi1 . . . wiN ], can be expressed as follows:

Fi(f, θ) =
N∑

k=1

wph
ik (f)ej2πf(k−1)d sin θ/c (4)

In the context of FD-ICA, at a given frequency bin, the unmixing matrix can
be interpreted as a null-steering beamformer that uses a blind algorithm (ICA)
to place nulls on the interfering sources. The source separation framework does
not use any information concerning the geometry of the auditory scene, but only
the sources statistical profile. Inclusion of this additional information can help
in aligning the permutations. Although, we are dealing with real room record-
ings, we assume that there is a consistent DOA along frequency for each source,
belonging to the direct path signal signal. This is equivalent of approximating
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the room’s transfer function with a single delay. The permutations of the un-
mixing matrices are flipped so that the directivity pattern of each beamformer
is approximately “aligned”. More specifically, having estimated the unmixing
matrix W (f) using FD-ICA, we permute the rows of W (f), in order to align
the permutations along the frequency axis. We form the directivity pattern (2),
where wph

ik (f) = Wik(f)/|Wik(f)| is the phase of the unmixing filter coefficient
between the kth sensor and the ith source at frequency f . This approach can be
considered a channel modelling technique.

However, in audio source separation, the sensors capture more than a single
delay. The room’s reflections tend to shift the “actual” DOA by a small arbitrary
amount at each frequency. However, the average shift of DOA along frequency
is not so significant and usually we can spot a main DOA. This implies that we
can align the permutations in FD-ICA, using the DOA.

The reason why we are using beamforming for permutation alignment and not
for separation is the poor estimate for DOA along frequency. The ICA algorithm
can give very accurate separation. Instead, the slightly “shifted” DOA can help
us in identifying the correct permutation of separated sources.

Next, we will address some ambiguities in DOA estimation and permutation
alignment using directivity patterns, plus a novel mechanism to apply subspace
techniques for permutation alignment.
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Fig. 1. Average Beampatterns along certain frequency bands for both sources.

2.1 DOA estimation ambiguity

Saruwatari et al [6] estimated the DOA by taking the statistics with respect
to the direction of the nulls in all frequency bins and then tried to align the
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permutations by grouping the nulls that exist in the same DOA neighbourhood.
On the other hand, Ikram and Morgan [2] proposed to estimate the sources DOA
in the lower frequencies, as it is less noisy than in higher frequencies. Parra and
Alvino [5] used more sensors than sources along with known source locations and
added this information as a geometric constraint to their unmixing algorithm.

In figure 1, we plot the average beampatterns along a certain frequency range
F , assuming a two sensor setup in a real room, where d = 1m. More specifically,
we plot the average beampatterns between 0 − 2kHz, 2 − 4kHz, 4 − 6kHz
and 6 − 8kHz. We can see that in the lower frequencies, we get clear peaks
denoting the directions of arrival. However, in higher frequencies, we get peaks
at the same angle, but also multiple peaks around the main DOA. Observing
the higher frequencies, we can not really define which of the peaks is the actual
DOA. As a result, we may want to use only the lower subband (0 − 2kHz) for
DOA estimation.

It is simple to show that averaging beampatterns over a lower frequency
band F will emphasize the position of the two DOAs. Hence, the following
mechanism can be used for DOA estimation, without sorting the permutations
along frequency.

1. Unmix the sources using an FD-ICA algorithm
2. For each frequency bin f and source i estimate the beamforming pattern

Fi(f, θ).
3. Form the following expression for F = [0− 2kHz]

P (θ) =
∑

f∈F

N∑

i=1

|Fi(f, θ)|2 (5)

The minima of P (θ) will give an accurate estimate of the Directions of Arrival.
The exact low-frequency range F we can use for DOA estimation is mainly
dependent on the microphone spacing d. If we choose a small microphone spacing
(∼ cm), the ripples will start to appear at higher frequencies, as fripple ∼ c/2d.
However, as the microphones will be closer, the signals that will be captured will
be more similar. Thus, the source separation SNR will decrease considerably, as
our setup will degenerate to the less sensors than sources case. Therefore, the
choice of sensor spacing is a tradeoff between separation quality and beamforming
pattern clarity.

2.2 Permutation alignment ambiguity

Once we have estimated the DOA, we want to align the permutations along
the frequency axis to solve the permutation problem in frequency domain ICA.
There is a slight problem with that. Basically, all nulls, as explained in an earlier
section, are slightly drifted due to reverberation. As a result, the classification
of the permutations cannot be accurate.

One solution can be to look for nulls in a “neighbourhood” of the DOA. Then,
we can do some classification, however, the definition of the neighbourhood is
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arbitrary. Hu and Kobatake [1] observed that for a room impulse response around
300ms, the drift from the real DOA maybe 1 − 3 degrees on average (this may
be generally different at various frequencies). As a result, we can define the
neighbourhood as 3 degrees around the DOA. However, in mid-higher frequencies
there might be more than one null, making the classification even more difficult.

3 Permutation alignment using the MuSIC algorithm

Another idea is to introduce subspace methods, as they tend to produce more
“spiky” directivity patterns. The multiple nulls ambiguity still exists, however,
the DOAs are more distinct and the permutation alignment should be more
efficient. Although, in theory, we need to have more sensors than sources, it is
possible to apply subspace methods in the case of equal number of sources and
sensors. In our case, we will look at the MuSIC algorithm [7]. According to the
MuSIC algorithm, one gets very localised estimates for the DOA by plotting the
following function M(θ):

M(θ) =
1

|P⊥a(θ)|2 ∀ θ ∈ [−π/2, π/2] (6)

where P⊥ = (I − EsE
H
s ) = EnEH

n , where Es = [e1, e2, . . . , eN ] contains the
eigenvectors of Cx = E{xxH} that correspond to the desired source and En =
[eN+1, . . . , eM ] contains the eigenvectors of Cx that correspond to noise. The N
peaks of the function M(θ) will denote the DOA of the N sources.

In [4], we proposed to rectify the scale ambiguity by mapping the separated
sources back to the microphones’ domain. Therefore, we have an observation
of each source at each sensor, i.e. a more sensors than sources scenario. If we
do not take any steps for the permutation problem, the ICA algorithm will
unmix the sources at each frequency bin, however, the permutations will not be
aligned along frequency. It is simple to demonstrate that mapping back to the
observation space is not influenced by the permutation ambiguity [3]. Hence,
after mapping we will have observations of each source at each microphone,
however, the order of sources will not be the same along frequency. Using the
observations of all microphones for each source, we can use MuSIC to find a
more accurate estimation for the DOAs, using (6).

We can form “MuSIC directivity patterns” using M(θ) (6), instead of the
original directivity patterns. To find more accurate DOA estimates, we can form
P (θ) as expressed in (5), using M(θ) instead of the original directivity pattern.
Finally, we can use the DOAs to align the “sharper” “MuSIC directivity pat-
terns”. The proposed algorithm can be summarised as follows:

1. Unmix the sources using the FD-ICA framework.
2. Map the sources back to the observation space, i.e. observe each source at

each microphone.
3. Having observations of each source at each microphone, we apply the MuSIC

algorithm to have more accurate DOA estimates along frequency.
4. Align permutations now, according to the DOAs estimated by MuSIC.
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4 Experiments

In this section, we perform two experiments to verify the ideas analysed so far in
this paper. The Fast FD-ICA algorithm [4] is used to unmix the data, without
the Likelihood Ratio solution.

4.1 Experiment 1 - Single Delay

In the first experiment, two speech signals are mixed artificially using single
delays between 5− 6 msecs at 16kHz. We test the performance of the proposed
solutions for the permutation problem, in terms of beamforming. In figure 2
(left), we can see a plot of P (θ) (5) for this case of a single delay. We averaged
the directivity patterns over the lower frequency band (0−2kHz) and as a result
we can see two Directions of Arrival. The estimated DOAs will be used to align
the permutations. Since we are modeling a single delay, we will not allow any
deviations from the estimated DOAs. In figure 3 (left), we can see the general
performance of this scheme for one of the sources. We can spot some mistakes
in the mid-higher frequencies, verifying that it might be difficult to align the
permutations there. In figure 2 (right), we can see a plot of P (θ) (5) using the
MuSIC algorithm. We averaged the MuSIC directivity patterns over the lower
frequency band (0− 2kHz). Now the peaks indicating the Directions of Arrival
are now a lot more distinct and “spiky”. In figure 3 (right), we can see that the
permutations are correctly aligned using the more accurate MuSIC directivity
plots.

4.2 Experiment 2 - Real room recording

Next, we perform a real world experiment. We used a university lecture room
∼ 7.5 × 6m2 to record a 2 sources - 2 sensors experiment. We investigate the
nature of real room directivity patterns as well as explore the performance of the
proposed schemes for permutation alignment. In figure 4 (left), we can see a plot
of P (θ) (5) for this case of real room recording. Averaging over the lower 2kHz,
we seem to get a very clear image of the main DOAs, giving us an accurate
measure for this estimation task. We try to align to the permutations around
the estimated DOAs allowing ±3◦ deviation. In figure 5 (left), we see the results
for one of the sources. We can spot that generally this scheme can perform ro-
bust permutation alignment in the lower frequencies, but considerable confusion
exists in higher frequencies, as expected from our theoretical analysis. In figure
4 (right), we can see a plot of P (θ) (5), averaging the MuSIC directivity pat-
terns over the lower frequency band (0− 2kHz). The two Directions of Arrival
are more clearly identified from this graph. In figure 5 (right), we can see that
most of the permutations are correctly aligned using the more accurate MuSIC
directivity plots.
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Fig. 2. Plotting P(θ) (eq. 5) using directivity patterns (left) and MuSIC directivity
patterns (right) for the first 2kHz for the single delay case. Two distinct DOAs are
visible.
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Fig. 3. Permutations aligned using the directivity patterns (left) and the MuSIC di-
rectivity patterns (right) in the single delay case.
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Fig. 4. Plotting P(θ) (eq. 5) using directivity patterns (left) and MuSIC directivity
patterns (right) for the first 2kHz in the real room case. MuSIC enhances the positions
of the DOAs.
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Fig. 5. Permutations aligned using the Directivity Patterns (left) and the MuSIC di-
rectivity patterns (right) in the real room case.

5 Conclusion

In this paper, we interpreted the Frequency-Domain audio source separation
framework, as a Frequency-Domain beamformer. We reviewed some of the pro-
posed methods for permutation alignment. In addition, a novel mechanism to
employ subspace methods for permutation alignment in the frequency domain
source separation framework in the case of equal number of sources and sensors
was proposed. Such a scheme seems to be less computationally expensive in the
general N×N case, compared to the Likelihood Ratio, as we do not have to work
in pairs or even calculate the likelihood of all permutations of the N sources.
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