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Abstract— The problem of source separation of instantaneous
mixtures has been addressed thoroughly in literature in the
past. The assumption of statistical independence between the
source signals, led to the introduction of Independent Component
Analysis (ICA). A number of methods, based on the ICA
framework, can identify nonGaussian sources in instantaneous
mixtures with robust convergence and performance. However,
in several biomedical applications, there is a need to identify
and separate signals that, apart from being nonGaussian, are
not symmetric. In this article, the authors present a method for
blind identification and separation of skewed (non-symmetric)
signals in a linear instantaneous mixture.

I. INTRODUCTION

Assume a set of M sensors monitoring a phenomenon
via the signals x(n) = [x1(n), x2(n), . . . , xM (n)]T . Let us
also assume that there are a number of underlying N factors
(sources) s(n) = [s1(n), s2(n), . . . , sN (n)]T that trigger the
phenomenon, observed by the sensors. We will assume that
the contribution of each factor is transmitted with insignificant
delay to the observing sensors, i.e. instantaneously. In addition,
possible corruption by additive noise is considered insignifi-
cant. The following model connects the observed signals with
the source signals via instantaneous mixing.

x = As (1)

where A is a mixing matrix denoting instantaneous transmis-
sion. In this study, we will assume equal number of sources
and sensors (N = M ). Although this linear instantaneous
model may seem unrealistic, there are a lot of real-life ap-
plications, where it can serve as a very good approximation.
In biomedical signal processing, there are a number of mon-
itoring signals that are considered instantaneous mixtures of
input sources, such as the electrocardiograph (ECG) and the
electroencephalogram (EEG) signals. The general non-linear
source separation problem is a more demanding problem,
which usually can not be addressed by the methods proposed
for linear mixtures.

A number of blind source separation approaches have
been proposed in the past [4]. Introducing the assumption
of statistical independence between the source signals, led to
the development of Independent Component Analysis (ICA).
Using this framework, one can separate nonGaussian sources

(in fact only one is allowed to be Gaussian) with a number of
different methodologies. Some approaches perform separation
by minimising the Kullback-Leibler (KL) divergence between
the separated sources and several probabilistic priors on the
source signals. Other approaches minimise the mutual infor-
mation conveyed by the separated sources or perform approx-
imate diagonalisation of a cumulant tensor of the mixtures.
Finally, some methods perform separation by estimating the
directions of the most nonGaussian components using kurtosis
or negentropy, as nonGaussianity measures. For more on these
techniques, one can refer to tutorial books on ICA, such as [1],
[4].

However, in some applications it is necessary to identify
signals with other statistical properties, apart from nonGaus-
sianity. One of these characteristics might be the symmetry
of the distribution. Several sources of interest in biomedical
signals are skewed. In [9], Stetson used ICA and skewness
as a criterion to identify the arterial pulse signal from noisy
mixtures. In [8], Sanei and Shoker proposed the use of
ICA and support-vector machines together with a number of
features (among which was skewness) to identify the eye-
blinking artifact in EEG signals. Consequently, this asymmetry
can be used as a tool to identify certain signals in biomedical
applications.

In this paper, we derive a FastICA [5] type of algorithm
for skewness explicitly. In a similar manner to optimising
kurtosis [5], one can optimise third-order moments, like
skewness, to separate non-symmetrical signals. The proposed
algorithm shows promising results on artificial data in terms
of convergence and separation quality. We also present some
preliminary results on Ventricular Activity separation from
ECG data and on eye-blinking identification in EEG data.

II. SOURCE SEPARATION OF SKEWED SIGNALS

A. Definition of skewness

In statistics, skewness is a measure of symmetry, or more
precisely, the lack of symmetry. A data set is symmetric if it
looks the same to the left and right of the center point (sample
mean). Skewness can also be considered a third-order moment.
Assuming that u is a random variable of non-zero mean, then
skewness can be defined as follows:



skew(u) =
E{(u− E{u})3}
E{(u− E{u})2}3/2

(2)

where E{·} represents the expectation operator. Skewness
takes positive values when the signal is asymmetrical to the
right and negative values, when it is skewed to the left. As
we are not interested in the sign of skewness, it would be
appropriate to optimise the absolute value of skewness. As
some of the input signals will be skewed, the mean should
not be considered negligible and should be taken into account
in our analysis.

B. Principal Component Analysis

The first task will be to “prewhiten” the data. A Principal
Component Analysis (PCA) step will orthogonalise (decor-
relate) and normalise the data to unit variance [4]. The
prewhitening matrix V is formed by the eigenvectors of
the covariance matrix C = E{(x − E{x})(x − E{x})T }.
Assuming that H is a matrix containing all the eigenvectors
of C and D a diagonal matrix containing the eigenvalues
of C. The eigenvalue at the i-th diagonal element should
correspond to the eigenvector at the i-th column of H . Then,
the prewhitening matrix V and the “whitened” data z are given
by the following equations:

V = D−0.5HT (3)

z = V x (4)

where E{(z − E{z})(z − E{z})T } = I . As it is shown in
source separation literature [4], decorrelation is not a sufficient
condition to separate independent signals, as it will only
decorrelate (orthogonalise) the data. Therefore, in order to
isolate L skewed components, we need to estimate L pro-
jection operators wi that will isolate the skewed components
ui, existing in the mixture (L ≤ N ).

ui = wT
i z ∀ i = 1, . . . , L (5)

C. Separation optimising skewness

In this section, we seek to identify a single skewed compo-
nent u in the mixture with the help of skewness. In order
to estimate u, we need to optimise the absolute value of
skewness to cater for both directions of skew. In this effort,
we will optimise the nominator only. Restricting the projection
operator w to perform rotation only, we have to impose the
constraint that ||w||2 = 1, where || · || represents the L2-norm.
In this case, we have

E{(u− E{u})2} = wTE{(z − E{z})(z − E{z})T }w
= wT Iw = ||w||2 = 1 (6)

Consequently, the denominator in the definition of skewness
remains 1, as long as we prewhiten the input data and keep the
projection vector w normalised to unit variance. As a result,
we need to optimise the following cost function:

J(w) = |G(w)| = ∣∣E{(u− E{u})3}∣∣ (7)

Expanding J(w), we get the following simplified expression

J(w) = |E{u3} − 3E{u2}E{u}+ 2E{u}3| (8)

The optimisation problem to be solved is set as follows:

max
w

J(w) (9)

subject to ||w||2 = 1 (10)

The first step is to estimate the derivative of ∂J/∂w.

∂J

∂w
= sgn (G(w))

· (3E{z(wT z)2} − 6E{z(wT z)}E{wT z}
− 3E{(wT z)2}E{z}+ 2 · 3E{(wT z)}2E{z})(11)

∂J

∂w
= sgn(G(w))[3(E{z(wT z)2} − E{(wT z)2}E{z})
− 6(E{z(wT z)}E{wT z} − E{wT z}2E{z})] (12)

One can perform gradient ascent optimisation to find the
optima of the cost function, as shown below.

w+ ← w + η
∂J(w)

∂w
(13)

w+ ← w+/||w+|| (14)

The new estimate for the projection operator w+ is estimated
in terms of the previous estimate w and the derivative of the
cost function, weighted by the learning rate η. The second
step normalises the unmixing vector to unit L2-norm. These
two steps are repeated until convergence, i.e. |wT w+| → 1.
However, gradient optimisation methods suffer from conver-
gence speed problems, as their convergence is controlled by
the learning rate η. In practice, a bad choice for the learning
rate η can inhibit or delay the convergence of the optimisation
considerably.

However, one can form a “fixed-point” rule to accelerate
the convergence of the algorithm [5]. At a stable point of
the algorithm, the gradient must point to the direction of
w. This implies that the gradient should be equal to w
multiplied by some scalar constant. Only in this case adding
w to the gradient is not changing its direction and we have
convergence. In addition, the arbitrary scaling (or sign) is
effectively removed by normalising to unit norm. Hence, the
“fixed-point” can be found at those points where the new
estimate is equal to the gradient.

w+ ∝ ∂J(w)
∂w

(15)

To reduce the computational cost, one can remove the sgn(·)
expression from ∂J/∂w [5]. Effectively, the correct sign
identifies signals skewed to the left or to the right. However,
this information might as well be lost in the scale ambiguity of



the linear instantaneous model. As a result, there is no practical
need to maintain this costly term in the update algorithm.
Consequently, the following update algorithm is proposed:

w+ ← E{z(wT z)2} − E{(wT z)2}E{z}
− 2E{wT z}(E{z(wT z)} − E{wT z}E{z}) (16)

w+ ← w+/||w+|| (17)

The algorithm proposed above, extracts only one compo-
nent, which corresponds to the local optimum that is closest
to the random initial guess for w. The same rule can be
used to get other skewed components that exist in the linear
mixture. The above rule is randomly re-initialised to trace
other skewed components. However, the algorithm should not
converge to the same component. As all solutions lie in a
orthogonal structure, due to prewhitening, we must always
search for a solution in planes that are orthogonal to the planes
defined by the estimated components. In other words, the
new components should always be orthogonal to the already
estimated components. Hence, for the i − th component, the
update for w+

i should always be orthogonal to the space
spanned by the vectors w1, w2, . . . , wi−1 [5].

w+
i ← w+

i −BBT w+
i (18)

where B = [w1 w2 . . . wi−1].
If we are not interested in preserving the mean of the

original signals (which will be also affected by the scale am-
biguity), we can simplify the proposed update rule and reduce
the computational cost of the algorithm. We can normalise
the input data to zero mean, using the following prewhitening
step.

z = V (x− E{x}) (19)

Consequently, E{z} = 0 and E{wT z} = 0 and therefore the
update rule in (16) can be simplified to the following:

w+ ← E{z(wT z)2} (20)

This simplification decreases the computational cost of the
algorithm significantly, however, we lose possible bias infor-
mation of the input signals.

One benefit of the proposed algorithm is that it might be
a more appropriate tool for biomedical applications, where
skewness is more important to nonGaussianity for certain
categories of signals. Thus, one can gain all the benefits
of estimating lower-order moments. Also, skewness, along
with kurtosis, can be defined as a cumulant, unlike general
nonlinearities that can be used in ICA. Therefore, it should be
possible to make the proposed algorithm “blind” to additive
noise of known covariance [3].

III. EXPERIMENTS

For this experiment, we created four artificial mixtures of
two symmetrical and two skewed signals, in order to test
the algorithm’s performance. We used a uniformly distributed
source from -1 to 1 and a Gaussian source with zero mean
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Fig. 1. Histograms of the four input sources used in the first experiment.
Source 1 is skewed to the left and Source 4 is skewed to the right. Both
skewed signals have non-zero mean.

and unit variance as symmetrical signals. The skewed signals
were two Weibull distributed signals with different parameter
values, one skewed to the left and one skewed to the right.
The distributions of the four input signals are shown in figure
1. We used 5000 points of these randomly generated sources,
which were mixed with the following example mixing matrix
A.

A =




0.40 0.25 0.1 0.35
0.17 0.25 0.45 0.13
0.15 0.10 0.20 0.65
0.23 0.57 0.10 0.10


 (21)

In figure 2, we can see the convergence of the update
rule in (16). The algorithm converged almost after 5 − 10
iterations using random initialisation. We also measured the
Signal-to-Noise Ratio (SNR), comparing the original input
signal si with the corresponding separated signal uj , using
the definition in (22). To perform accurate measurement, the
scale and permutation ambiguity of the model should be taken
into account and the signals should be normalised accordingly.

SNR(dB) = 10 log10

E{s2
i }

E{(si − uj)2} (22)

The algorithm managed to identify and separate both sig-
nals with promising performance. The histograms of the two
identified sources are depicted in figure 3. The algorithm has
isolated the two skewed signals from the mixture. The quality
of separation was also promising, giving SNR1 = 25.4060dB
and SNR2 = 40.4802dB for the two sources. If we are
searching for more than 2 sources, then the algorithm will
not be able to unmix the other signals. Instead, the separation
results are Gaussian-like signals, i.e. the mixture of the two
symmetrical signals.
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Fig. 2. Convergence of the four coefficients of the vector w using the fixed-
point algorithm in (16) and random initialisation.
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Fig. 3. Histograms of the two skewed separated sources. Comparing to the
original histograms in figure 1, we can observe the scale and permutation
ambiguity in the estimation of the linear generative model in (1).

IV. APPLICATION TO BIOMEDICAL SIGNALS

The application of Independent Component Analysis (ICA)
on biomedical signal processing has been highlighted in the
literature during the last years [4]. In medical applications, a
number of sensors are used to observe the function of body
organs. Usually, these sensors capture the activity of the organs
by measuring the electric potential at several points of the
body. The medical doctor examines these measurements over
time series and can infer about the medical condition.

Let us briefly explore how the linear generative model
of (1) can be applied in this case. In fact, these sensors
capture the overall picture of a more complicated phenomenon
that can be usually analysed into contributions from different

underlying components. The contribution of each of these
components to the signal, observed by each sensor, may be
different in terms of amplitude and delay. However, as we are
referring to electrical current measurements and noting that
the sensors are usually placed relatively close, it is common
to assume that the contribution of each component arrives with
insignificant delay. Consequently, we can consider the mixing
to be instantaneous.

Assume that the individual components are also statistically
independent, ICA can be employed to separate these com-
ponents. A number of approaches have employed ICA for
separation for several types of biomedical signals. However,
there are several components that can be identified using other
statistical characteristics than statistical independence, i.e. non-
Gaussianity. In this paper, we will use skewness to identify
several known components in electrocardiograms (ECG) and
electroencephalograms (EEG) that are not symmetric.

A. Electrocardiogram (ECG) Signals

Electrocardiogram (ECG) is a test that measures the elec-
trical activity of the heart. It is used to measure the rate and
regularity of heartbeats, as well as the size and position of
the chambers, the presence of any damage to the heart and
the effects of drugs or devices used to regulate the heart
(e.g. a pacemaker). In literature, it has been shown that the
electric potential in one part of the body surface can be
obtained by adding partial contributions of the heart potentials,
each one scaled by a transfer coefficient [7]. As a result, the
instantaneous mixture model of (1) can be used to model the
ECG monitoring system. The voltages for the 12-lead ECG
can be expressed as an instantaneous mixture of the heart
potentials.

In figure 4, we can see twelve signals that are given from
a 12-lead ECG. The ECG can detect several parts of these
signals that are associated with Ventricular Activity (VA) and
also a number of more subGaussian signals that are associated
with Atrial Activity (AA) [7]. A number of methods have been
proposed for the identification of VA or AA signals, based on
either ICA or other methods. However, one can observe that
VA signals are not symmetrical, compared to AA signals or
other noise signals. Therefore, one can optimise skewness, as
shown earlier on, to identify and separate signals associated
with VA.

For this experiment, we used a 12-lead set of signals from
the PhysioNet database [11], sampled at 1 KHz (see figure
4). The signals were filtered initially using a notch filter to
remove mains interference and then with a band-pass filter
with cut-off frequencies of 0.5 and 60 Hz to remove baseline
wandering and thermal noise [7]. We applied the algorithm in
(16), using 5000 input samples of each electrode, to estimate
4 skewed components in the mixture. The separated signals
are depicted in figure 5. The algorithm managed to identify
three components that are associated with VA. The algorithm
also identified a fourth non-symmetrical component, but can
not be clearly associated with VA.
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Fig. 4. A twelve-lead input ECG signal from the Physionet database [11].
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Fig. 5. Trying to separate four skewed components, the algorithm identified
the first three, which can be associated with VA.

Hence, the proposed algorithm can be used as a method of
isolating VA signals. It can also be used as a preprocessing step
to identify the AA signal. Using the proposed algorithm, one
can separate VA signals and then use second-order methods
to isolate the AA signal, as proposed by Rieta et al [7].

B. Electroencephalogram (EEG) Signals

The electroencephalogram (EEG) is a medical test used to
measure/monitor the electrical activity of the brain via elec-
trodes applied to the scalp. This safe and painless procedure
can help diagnose a number of conditions, including epilepsy,
sleep disorders and brain tumours. This method can provide
direct information about the neural dynamics on a millisecond
scale [6], [10]. The EEG are very sensitive, low-amplitude
signals (µV ) and are usually contaminated by noise. As a
result, a number of methods were proposed in literature to
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Fig. 6. A thirty two-lead input EEG signal from the EEGLAB test data [2].

isolate meaningful signals from artifacts and noise signals in
an EEG recording.

The application of ICA to the study of EEG signals is valid
only if some conditions are at least approximately satisfied [4].
First of all, we have to assume the existence of independent
components (source signals), i.e. hidden neural centres that
can serve as sources. This assumption can be justified sta-
tistically, however, in general there is no physical evidence
confirming its validity in full. Secondly, the assumption of
linear instantaneous mixing should also hold. As most EEG
signals lie below 1 KHz, the propagation of the signals can
be considered immediate and hence, there is no need to
introduce time delays in the model. Finally, the mixing has to
be stationary, i.e. the mixing matrix A should not be changing.
Although, the underlying source signals are documented to be
non-stationary, the mixing matrix should remain stationary, as
long as the electrodes in the cask are not moving. In practice,
we are bound to have slight movement during the experiment,
however, we will assume that the change in the mixing matrix
is insignificant.

Using ICA, one can identify hidden underlying sources in
EEG [6], [10]. The estimated independent components can be
localised and projected on the sensors’ space and highlight
activity in certain parts of the brain. However, EEG signals
are contaminated by certain artifacts, i.e. signals that are not
generated by brain activity, but by some external disturbances
(e.g. muscle activity, heart beat and eye blinking). A number
of methods have been used to remove the possible artifacts
present in EEG [6], [8], [10]. The eye blinking signal is
an artifact, reported to be usually skewed to one side [8].
Consequently, one might use the update algorithm described
earlier to identify and remove the eye blinking signal from
EEG recordings.

We performed some preliminary experiments to test the
previous argument. We used the test EEG data set that is
provided with the EEG software package EEGLAB [2]. This
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Fig. 7. Identifying three skewed components from the 32-lead EEG. The
first choice for the algorithm was an artifact associated with eye-blinking.

consists of a 32-lead EEG recording, sampled at 500 Hz
(see figure 6). The whole available data set (∼ 61 secs) was
used in the update rule of (16). The algorithm was requested
to identify three skewed components. In figure 7, the first
identified component is the one usually associated with eye
blinking [6], [10]. This implies that skewness is a proper
criterion to identify the eye blinking artifacts. This preliminary
effort demonstrates a valid application of the proposed method
in the area of EEG analysis.

The algorithm’s convergence in the case of real biomedical
data was comparable to the performance with artificial data. In
either case, the algorithm required not more than 30 iterations
for convergence.

V. CONCLUSION

In this paper, we have proposed an algorithm to separate
skewed sources in an instantaneous mixture. After a prewhiten-
ing step, the algorithm optimises a third-order moment, i.e.
skewness, using a “fixed-point” optimisation scheme to per-
form identification and separation of the skewed sources.
The algorithm’s convergence and performance in an artificial
experiment seems very promising. In addition, we explored
the use of the proposed technique in several biomedical appli-
cations. More specifically, we have given some preliminary
examples of Ventricular Activity signal separation in ECG
signals and eye blinking removal from EEG signals.

In the future, the authors would like to quantify the conver-
gence of the proposed technique and investigate more solidly
its performance in the case of ECG and EEG signals.
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