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ABSTRACT
The authors introduce the idea of performing Intelligent ICA to focus on and separate a specific instrument, voice
or sound source of interest. This is achieved by incorporating high-level probabilistic priors in the ICA model that
characterise each instrument or voice. For instrument modelling, we experimented with various feature sets previously
used for instrument or speaker recognition. Prior training of a Gaussian Mixture Model for each instrument was
performed. The order of the feature vector, the number of gaussian mixtures and the training audio data length were
kept to reasonably minimum levels.

INTRODUCTION

Audio source separation deals with the problem of isolating
the audio sources that are present in an auditory scene. In
order to capture the auditory scene, we place a number of
microphones in different spots and record their observations.
Using these recordings, we try to separate the audio objects
of this auditory scene.

One way to perform audio source separation is using Indepen-
dent Component Analysis (ICA). ICA is a newly developed
technique that exploits the statistical properties of audio sig-

nals to perform separation. ICA methods perform fast and
efficient separation in the case that we have equal number of
sources and microphones in the auditory scene and the ob-
servation signals are modelled as instantaneous mixtures of
the audio sources [1, 2, 4]. Modern ICA approaches can per-
form fast separation in the case of mixtures recorded in real
environments [5]. ICA methods have been introduced in the
“less sensors than sources” case without much success. One
basic drawback of these approaches is that they try to sep-
arate all the sources that are present in the auditory scene.
On the other hand, we may want to separate just a particular
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Fig. 1: A general front-end for instrument recognition
model training.

source of interest that is present in the scene but not all of
them, for example the guitar or a specific person speaking.
In order to achieve this, we have to build statistical models
that will be able to characterise a specific instrument or per-
son and use these models to “steer” the ICA method towards
the desired source. In this paper, the authors try to use the
existing modelling solutions mainly employed in instrument
recognition and speaker verification to model the sources effi-
ciently and incorporate these probabilistic priors in the ICA
framework, so as to perform Intelligent ICA.

INSTRUMENT RECOGNITION

Automatic musical instrument recognition is a very interest-
ing problem, which can have many applications. It can be a
useful tool in all Musical Information Retrieval (MIR) pro-
cedures (music indexing, music summarisation etc) and of
course in automatic music transcription. Instrument recog-
nition is also similar to speaker recognition or verification,
where a person can be identified from his voice.

An instrument/speaker recognition procedure is basically
split into two phases: the training and the recognition phase.
During the training phase, some audio samples from the in-
strument or person are used to retrieve and store some infor-
mation about it in a model. During the recognition process,
a smaller audio sample of the instrument is shown to the sys-
tem. The system retrieves the same type of information from
the sample, compares it with the information available in the
database and makes an inference about the instrument or the
person. A general front-end for the training procedure is de-
picted in figure 1. The training audio is passed through a
pre-processing stage, which can have various parts. Usually,
possible DC bias is removed from the signal and is amplitude
normalised. Some silent parts may be removed as they may
affect the performance of the recogniser. Finally, the signal
is pre-emphasized, using a first-order high-pass filter, like the
one in (1), increasing the relative energy of the high-frequency
spectrum.

H(z) = 1− 0.97z−1 (1)

Then, we extract several features from the signal that will
be used to identify the instrument. Usually, the signal is
segmented into overlapping, windowed frames and for each
of these we calculate a set of parameters that constitute the
feature vector. The performance of the recogniser is mainly
determined by the feature set used in this step. Many feature
sets, capable of capturing the aural characteristics of an in-
strument, were proposed for instrument recognition [7, 8]. A
whole family of feature sets capture frequency envelopes: the
Linear Predictive coefficients, the Warped Linear Predictive
coefficients, the Mel-Frequency Cepstral coefficients (MFCC)
(delta and delta-delta) and the Perceptual Linear Predictive
coefficients can capture signal envelopes in the frequency,
warped log-frequency, mel-frequency and bark-frequency do-
main respectively. Other features can be the spectral centroid,
the crest factor, the fundamental frequency etc. The impor-
tance of all these features is analytically discussed in [7, 8, 9].
In our further analysis, we will use the MFCCs as they fea-
tured good performance in a study presented in [7] and also
generally in speaker verification [6].

Finally, the feature vectors are used to build a model or ref-
erence template for the instrument/person. There are many
techniques that can be used in this part: a vector quantiser, a
neural network classifier, a Hidden Markov Model or a Gaus-
sian Mixture Model (GMM). In the following analysis, we are
going to use a GMM as the recogniser [6, 10]. A GMM de-
scribes the probability density function of the instrument’s
feature vectors as a weighted sum of Gaussian distributions.
If v is a feature vector, then the probability model built by a
GMM is given by the following equations:

P (v|λ) =
MX

i=1

pibi(v) (2)

bi(v) =
exp(−0.5(v −mi)

T C−1
i (v −mi))p

(2π)D|Ci|
(3)

where pi, mi, Ci are the weight, the mean vector and the co-
variance matrix of each gaussian and M is the number of
gausssians used. A GMM model is usually described using
the notation λ = {pi, mi, Ci}, for i = 1, .., M .

In our analysis, we will assume that each Gaussian has its own
covariance (nodal covariance), but each covariance matrix is
diagonal. This model is usually trained using the Expecta-
tion Maximisation (EM) algorithm, as described analytically
in [10].

A general front-end for performing instrument recognition is
shown in figure 2. Basically, the preprocessing and the fea-
ture extraction stages are identical to the ones used during
training. Suppose we have S instrument models λk stored
and a set of feature vectors for the instrument to be identi-
fied V = {v1, v2, ..., vT }. The correct model should maximise
the following probability:

max
1≤k≤S

P (λk|V ) = max
1≤k≤S

P (V |λk) (4)

In other words, the model maximising equation (2), given the
data V , gives us the identity of the instrument.

In our experiments, we tested several feature vectors - number
of gaussians configurations. The aim was to build a fairly
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Fig. 2: A general front-end for performing instrument
recognition.

simple, fast and robust system. As a result, we ended up
using a combination of 18 MFCCs and 16 Gaussian Mixtures.
The MFCCs performed reasonably well in our study, as well
as in [7].

INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) is a technique used
to perform audio source separation. ICA usually exploits the
nongaussianity of source signals and assumes statistical inde-
pendence of separated signals to perform separation. Many
ways were proposed to perform separation in this general ICA
framework. However, we will only examine the Bayesian and
the non-gaussianity approach in this study. Suppose there
are N audio sources s = [s1[n]s2[n]...sN [n]]T in a room and
N microphones capturing the auditory scene, by recording
the observation signals (mixtures) x = [x1[n]x2[n]...xN [n]]T .
Ignoring the room’s acoustics, the mixed signals can be mod-
elled as summed portions of the original sources, i.e. instan-
taneous mixtures of the sources. In this study, we will use
this rather simplified model, which can be valid in the case
of signals mixed using a mixing desk. The case of possible
additive noise won’t be considered. If A is the mixing matrix,
then:

x = As (5)

The solution to this problem is given by estimating W ≈ A−1,
in order to unmix the sources.

u = Wx (6)

The Bayesian approach solves the problem by forming a Max-
imum Likelihood or a maximum a posteriori (MAP) estimate
of W , assuming a supergaussian probabilistic model for the
sources. Amari et al [4] proposed the natural gradient al-
gorithm that provides a stable solution to the problem with
good separation quality. However, the convergence is rela-
tively slow.

The nonguassianity approach estimates the direction of the
most nongaussian component in the mixtures, optimising sev-

eral measures of nongaussianity like kurtosis or negentropy.
Hyvarinen [2, 3] proposed several Newton-type solutions to
the problem (i.e. FastICA) that are faster and more stable
than the natural gradient approach. He also proposed several
one-unit versions, estimating the first component that max-
imises the nongaussianity criterion. For example, the one-unit
learning rule that maximises the absolute value of kurtosis is
the following [3]:

w+ ← E{x(wT x)3} − 3w (7)

w+ ← w+/||w+|| (8)

where x are prewhitened observations of the auditory scene.
The most nongaussian component u is calculated, as follows:

u = wT x (9)

INTELIGENT ICA

In this study, we explore the possibility of combining
the efficient probabilistic modelling performed by instru-
ment/speaker verification in the ICA of instantaneous mix-
tures framework. There are two ways to perform intelli-
gent separation: one combining non-gaussianity measure-
ments and probabilistic inference from the model and another
estimating the direction that maximises the posterior proba-
bility of the instrument’s model.

One should point out that the instrument recognition prob-
lem that we are called to solve is slightly different to the one
usually tackled in the literature. Usually in instrument recog-
nition, we have an audio sample from an instrument/person
and we compare the information acquired from that with the
templates in the database. In this case, the problem is quite
the opposite. We know the identity of the instrument/person
and we want to identify the audio source that is better repre-
sented by the model. Mathematically speaking, this is formu-
lated as follows. Suppose we have S series of feature vectors
V k, belonging to different audio sources and the desired in-
strument model λ. The correct audio source should maximise
the following likelihood:

max
1≤k≤S

P (Vk|λ) (10)

Combining nongaussianity and probabilistic inference

In this section, we will propose a method to separate the
desired source using the kurtosis-based one unit learning law
as presented in (7),(8) and the GMM model λ that was trained
for the specific instrument.

First of all, we prewhiten the observation signals, i.e. perform
Principal Component Analysis. After this step, we know that
the sources are uncorrelated, i.e. orthogonal to each other.
Then, we randomly initiate a one-unit learning rule based on
nongausiannity, for example the kurtosis-based one, as de-
scribed in (7) and (8). Consequently, we get a first estimate
w+ towards the direction of the most nongaussian component.
As the sources are prewhitened, we can also get an estimate
of the other sources’ directions, as they will be orthogonal to
the first estimate in the N-dimensional space. An example of
the 2x2 case is illustrated in figure 3. The direction of the

orthogonal vector will then be w+
⊥ ←

�
0 1
−1 0

�
w+.

The next step is to calculate the estimated sources at each di-
rection and perform instrument verification. In other words,
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Fig. 3: A scatter plot of the two sources, two sensors case.
Getting an estimate of the most nongaussian component
can give an estimate of all the other components in the
prewhitened N-D space.

extract the feature vectors vi from each of the estimated sig-
nals and then calculate the probability of P (vi|λ) given the
model of desired source. The direction that maximises this
probability is the best estimate of the direction of the desired
source. This direction will be used as the next starting point
for (7).

The same procedure is repeated until convergence. The likeli-
hood comparison step prevents the nongaussian contrast func-
tion from converging to the global maximum, but instead to
the desired local maximum of kurtosis. Of course, this method
works only in batch mode, i.e. processing all or at least big
blocks of the available data set.

Bayesian Approach

In the Bayesian approach, we try to maximise the posterior
probability of the model and form a Maximum Likelihood
(ML) estimate of the unmixing vector w. The optimisation
problem is set as follows:

max
w

G(w) (11)

where G(w) = log P (v|x, λ) is defined by equation (2).

We can form a gradient ascent solution to this problem, which
is given by the following law:

w+ ← w + ηE{∂G

∂w
} (12)

w+ ← w+/||w+|| (13)

where η is the learning rate of the gradient ascent. There-
fore, we have to calculate the ∂G/∂w. Forming a expression
connecting G(w) with wT x is not so straightforward, as it is
not easy to represent feature extraction with a function f ,
i.e. v = f(wT x). However, we can split the derivative in the
following parts:

∂G

∂w
=

1

P (v)

∂P

∂v

∂v

∂w
(14)

where

∂P

∂v
= −

MX
i=1

pibi(v)C−1
i (v −mi) (15)

The term ∂v/∂w is hard to define In our analysis, we per-
formed numerical calculation of this derivative. Another ap-
proach can be to perform numerical calculation of the whole
derivative.

However, a Maximum Likehood estimate may not always be
accurate. This was observed in many speaker verification
approaches [6, 11]. In order to improve the performance,
the log-probability of the user claiming identification is nor-
malised to the mean of the log-probabilities of all the cohort
speakers, i.e. the speakers scoring equally well. This is called
cohort normalisation. Therefore, it seems that in order to
improve the performance, we should optimise the following
cost function:

G(w) = log P (v|x, λt)− 1

N − 1

N−1X
i=1

log P (v|x, λi) (16)

where λt is the model of the desired instrument and λi are
the models of the other instruments present in the mixture.
In other words, we try to maximise the difference between the
desired instrument and all other instruments present in the
mixture.

This function is equally difficult to optimise, therefore, we
calculated numerically the derivative of G. The solution pro-
posed in this paragraph is still developing. However, we
demonstrate that it is possible to perform intelligent blind
separation by using the posterior likelihood of the instru-
ment/person model.

RESULTS

First of all, we configured the instrument recognition system.
Our recogniser used 18 MFCCs, 16 Gaussian mixtures and
non-overlapping frames of 16ms. The model for each instru-
ment was trained using around 5-6 minutes of solo instrument
recordings. The instruments used in our analysis were piano,
violin, accordeon and acoustic guitar. For the recognition
process, 15 secs of different recordings were used.

We tested the proposed solutions with instantaneous mixtures
of the four instruments in groups of two. The first solution
was actually capable of producing fast, good quality separa-
tion. The algorithm converged in an average of 4 iterations.
Performing experiments with combinations of the four instru-
ments that we trained the GMM, the method was always able
to spot the correct source. The fast speed of the algorithm is
mainly due to the Newton-type method that maximises kurto-
sis. The likelihood comparison points to the desired direction
of convergence. The simple instrument verification setup was
able to perform effectively well, as the variety of the instru-
ments was limited. However, this kind of approach is versatile
and can be adapted to any advanced instrument verification
system, with any feature set configuration, and therefore deal
successfully with more difficult instrument recognition cases.

The second solution was generally very slow in convergence.
This was due to the numerical calculation of the derivative.
Firstly, we experimented with maximising only the posterior
likelihood with the same testing set as in the first solution.
The algorithm was capable of separating one of the source
perfectly. However, the separation of the other component
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was not good, proving that the ML estimate may not always
be accurate enough. On the other hand, maximising the nor-
malised likelihood seemed to be capable of separating both
audio sources with good quality, proving that intelligent sep-
aration is possible using stronger probabalistic priors.

CONCLUSION

In this study, we explored the possibility of imposing stronger
probabilistic priors in the general ICA model, in an effort to
separate a particular source of interest. Instrument/speaker
verification efforts were employed to provide efficient mod-
elling solutions to this problem. As a result, two methods
were proposed for performing Intelligent ICA: one exploiting
nongaussianity and probabilistic inference for the identity of
the separated output and one maximising the posterior likeli-
hood of the instrument/speaker model. The results acquired
were encouraging. Moreover, the proposed methods are very
versatile to any instrument recognition configuration.

In the future, we would like to formulate a more explicit so-
lution for the bayesian approach, as well as speeding up its
convergence with a second-order method. Secondly, we would
like to expand these methods in the “more sources than sen-
sors” case, as we reckon that we might be able to get better
separation results than previous efforts, by imposing stronger
priors. This will bring ICA efforts closer to the Computa-
tional Auditory Scene Analysis (CASA) approach [8] on audio
source separation.
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