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Abstract. In this work, a novel probability distribution is proposed
to model sparse directional data. The Directional Laplacian Distribu-
tion (DLD) is a hybrid between the linear Laplacian distribution and
the von Mises distribution, proposed to model sparse directional data.
The distribution’s parameters are estimated using Maximum-Likelihood
Estimation over a set of training data points. Mixtures of Directional
Laplacian Distributions (MDLD) are also introduced in order to model
multiple concentrations of sparse directional data. The author explores
the application of the derived DLD mixtures to cluster sound sources
that exist in an underdetermined two-sensor mixture.
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1 Introduction

Circular Statistics is the branch of statistics that addresses the modeling and
inference from circular or directional data, i.e. data with rotating values. Many
interesting circular models can be generated from known probability distribu-
tions by either wrapping a linear distribution around the unit circle or trans-
forming a bivariate linear r.v. to its directional component [1]. There also exist
several distributions that are periodic by definition and can therefore be em-
ployed to model directional data. The von Mises distribution (also known as the
circular normal distribution) is a continuous probability distribution on the unit
circle [1]. It may be considered the circular equivalent of the normal distribution
and is defined by:

p(θ) =
ek cos(θ−m)

2πI0(k)
, ∀ θ ∈ [0, 2π) (1)

where I0(k) is the modified Bessel function of order 0, m is the mean and k > 0
describes the “width” of the distribution. The von Mises distribution has been
extensively studied and many methods that fit the distribution or its mixtures
to normally distributed circular data have been proposed [2, 1, 3, 4].

This study proposes a novel distribution to model directional sparse data.
Sparsity is mainly used to describe data that are mostly close to their mean
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value with the exception of several large values. There are several sparse models
that have been proposed for linear sparse data [5] and several attempts to model
circular sparse signals by wrapping a Laplace distribution [6, 7]. This paper
proposes a Directional Laplacian Distribution (DLD) as a direct modelling solu-
tion for circular sparse data. The Maximum Likelihood estimates (MLE) of the
model’s parameters are derived, along with an Expectation-Maximisation (EM)
algorithm that estimates the parameters of a Mixture of Directional Laplacian
Distributions (MDLD).

One application where directional statistical modelling is essential is Under-
determined Audio Blind Source Separation (BSS) [5, 7, 8]. Assume that a set of
K sensors x(n) = [x1(n), . . . , xK(n)]T observes a set of L (K < L) sound sources
s(n) = [s1(n), . . . , sL(n)]T . The instantaneous mixing model can be expressed
in mathematical terms, by x(n) = As(n), where A represents the mixing ma-
trix and n the sample index. The blind source separation problem provides an
estimate of the source signals s, based on the observed microphone signals and
some general source statistical profile. The two-channel (K = 2) BSS scenario is
often reduced to an angular clustering problem of sparse data, which has been
addressed using Wrapped Laplacian Mixtures [7]. The proposed DLD model
is tested with several synthetic modelling experiments and in real audio BSS
examples.

2 A Directional Laplacian Density

2.1 Definition

Assume a r.v. θ modelling directional data with π-periodicity.

Definition 1. The following probability density function models directional Lapla-
cian data over [0, π) and is termed Directional Laplacian Density (DLD):

p(θ, m, k) = c(k)e−k| sin(θ−m)| , ∀ θ ∈ [0, π) (2)

where m ∈ [0, π) defines the mean, k > 0 defines the “width” (approximate
variance) of the distribution, c(k) = 1

πÎ0(k)
and Î0(k) = 1

π

∫ π

0
e−k sin θdθ.

The normalisation coefficient c(k) = 1/πÎ0(k) can be easily derived from the
fundamental property of density functions. In Figure 1, the DLD is depicted for
m = 0.1 and various values of k. The DLD is a heavy-tailed density that exhibits
a π periodicity. The above definition can be amended to reflect a “fully circular”
phenomenon (2π), however, we will continue with the π periodicity since it is
required by our source separation application.

2.2 Maximum Likelihood Estimation using Directional Laplacian
Priors

Assume a population of angular data Θ = {θ1, . . . , θn, . . . , θN} that follow a
Directional Laplacian Distribution. Maximum Likelihood Estimation (MLE) can



A Directional Laplacian Density for Underdetermined Source Separation 3

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Angle (θ)

P
ro

ba
bi

lit
y

 

 

k=0.05
k=1
k=3
k=5
k=7
k=15
k=20

Fig. 1. The proposed Directional Laplacian Density (DLD) for m = 0.1 and various
values of k.

be used to fit the proposed Directional Laplacian Distribution to a set of angular
data Θ. Assuming statistical independence between the observed data points, the
MLE problem [9] can solve by maximising the log-likelihood function J(Θ,m, k)
in terms of m, k. Assuming a DLD prior, the log-likelihood function J(Θ,m, k)
can be expressed, as follows:

J(Θ, m, k) = −N log π −N log Î0(k)− k

N∑
n=1

| sin(θn −m)| (3)

To estimate the parameters that maximise the log-likelihood, alternating up-
dates for m and k iteratively yields an optimum of the log-likelihood. It is
not straighforward to obtain a closed-form solution by solving the equations
∂J(Θ,m, k)/∂m = 0 and ∂J(Θ, m, k)/∂k = 0 for m and k respectively. Thus,
one has to resort to alternative solutions to estimate m and k.

Estimation of m Iterative optimisation is employed to estimate m. To achieve
faster convergence, a Newton-step optimisation will be pursued. The Newton-
step updates for m can be given by the following update equation [9]:

m+ ← m +
[
∂2J(Θ,m, k)

∂m2

]−1
∂J(Θ,m, k)

∂m
(4)

where m+ denotes the new update of the estimated parameter and

∂J(Θ,m, k)
∂m

=
N∑

n=1

ksgn(θn −m) cos(θn −m) (5)



4 Mitianoudis N.

∂2J(Θ,m, k)
∂m2

=
N∑

n=1

k(δ(θn −m) + | sin(θn −m)|) (6)

The Newton-step for m is independent from k and can be estimated, as follows:

m+ ← m +
∑N

n=1 sgn(θn −m) cos(θn −m)∑N
n=1 δ(θn −m) + | sin(θn −m)|

(7)

Estimation of k In order to avoid the iterative update of k via gradient ascent
on the log-likelihood [9], an alternative solution is to solve ∂J(Θ, m, k)/∂k = 0
numerically. From the first derivative of J(·) along k, and

∂p

∂kp
Î0(k) = (−1)p 1

π

∫ π

0

sinp θe−k sin θdθ = (−1)pÎp(k) (8)

it is straightforward to derive the following:

Î1(k)
Î0(k)

=
1
N

N∑
n=1

| sin(θn −m)| (9)

Calculating k from the ratio Î1(k)/Î0(k) analytically is not very straightfor-
ward. However, through numerical evaluation, it can be shown that the ratio
Î1(k)/Î0(k) is a monotonic 1−1 function of k. In Figure 2, the ratio Î1(k)/Î0(k)
is estimated for uniformly sampled values of k ∈ [0.01, 30]. Since this ratio is
not dependent on data, one can create a look-up table for a variety of k val-
ues and use interpolation to estimate k from an arbitrary value of Î1(k)/Î0(k).
This look-up table solution is more efficient compared to iterative optimisation
approaches and generally accelerates the model’s training.

Initialisation of the ML approach In [2], there exists a methodology to esti-
mate closed-form solutions for m, k in the case of the Von-Mises distribution. The
methodology can not yield direct solutions of m, k for the DLD prior, however,
one can employ the strategy in [2] to derive an upper bound of the log-likelihood
in (3). The derived upper bound can be used to extract closed-form estimates
of minit that can be used as initialisations of the iterative solutions proposed
in the previous section. Let C =

∑
n | cos θn|, S =

∑
n | sin θn|, R =

√
C2 + S2,

θ̄ = atan(S/C), | cos θ̄| = C/R, | sin θ̄| = S/R. Using the triangular inequality
|x| − |y| ≤ |x± y| ≤ |x|+ |y|, we manipulate the last term of the log-likelihood
in (3).

∑
n

| sin(θn − θ̄ + θ̄ −m)| ≥
∑

n

| sin(θn − θ̄)|| cos(θ̄ −m)| −
∑

n

| cos(θn − θ̄)|| sin(θ̄ −m)|

=
∑

n

| sin θn cos θ̄ − cos θn sin θ̄|| cos(θ̄ −m)| −
∑

n

| cos θn cos θ̄ + sin θn sin θ̄|| sin(θ̄ −m)|

≥ (S| cos θ̄| − C| sin θ̄|)| cos(θ̄ −m)| −
∑

n

(| cos θn|| cos θ̄|+ | sin θn|| sin θ̄|)| sin(θ̄ −m)|

≥ (S
C

R
− C

S

R
)− C2 + S2

R
| sin(θ̄ −m)| = −R| sin(θ̄ −m)|
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Fig. 2. The ratio Îp(k)/Îp−1(k) is a monotonic 1− 1 function of k.

Thus, the log-likelihood appears to have the following upper bound:

J(m, k) ≤ kR| sin(θ̄ −m)| −N log π −N log Î0(k) = Ju(m, k) (10)

To find the maximum of the bound, we set

∂Ju

∂m
= −sgn(sin(θ̄ −m)) cos(θ̄ −m) = 0 (11)

The above equation yields the solutions m = θ̄ or m = θ̄±π/2. For the second
solution set, only the m = θ̄ + π/2 solution can be valid, since m ∈ [0, π) and
θ̄ ∈ [0, π/2). The two solutions arose to account for the use of absolute values in
the estimation of θ̄ and thus θ̄ is restricted to θ̄ ∈ [0, π/2). A simple method to
define the correct solution is to evaluate the expression sgn(

∑N
n=1 atan tan θn).

If the expression is positive, the correct solution is minit = θ̄. In the opposite
case, the correct solution is minit = θ̄ + π/2. In Figure 3, a comparison between
the estimated optimum minit and the actual m for all values of m ∈ [0, π) is
performed for two values of k. The accuracy of the bound seems to depend on
the value of m. In addition, the tightness of the bound depends clearly on the
value of k. For great values of k, the estimated bound approximates the actual
cost function accurately, thus the estimated minit is very close to the actual m.
For low values of k, the accuracy of the estimated minit depends on the actual
m. In general, the optimal value minit that was estimated in this section can
only serve as a valid initialisation of the ML approach.

2.3 Mixtures of Directional Laplacian Distributions

In a similar fashion to Gaussian Mixture Models (GMM), one can employ Mix-
tures of Directional Laplacian Distributions (MDLD) in order to model a mixture
of directional “heavy-tailed signals”.
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Fig. 3. The estimated optimum minit (red line) compared to the actual m (blue dotted
line) for all values of m ∈ [0, π) for k = 2 (left) and k = 12 (right). The tightness of
the bound depends on the value of k.

Definition 2. Mixtures of Directional Laplacian Distributions are defined by
the following pdf:

p(θ, mi, ki) =
M∑

i=1

aic(ki)e−ki| sin(θ−mi)| , ∀ θ ∈ [0, π) (12)

where ai denotes the weight of each distribution in the mixture, mi, ki denote
the mean and the approximate variance of each distribution and M the number
of DLDs used in the mixture.

Training via Expectation-Maximisation (EM) A common method that
can be employed to train a mixture model is the Expectation-Maximization (EM)
algorithm. Bilmes estimates Maximum Likelihood mixture density parameters
using the EM [10]. Assuming N training samples for θn and Directional Laplacian
mixtures (12), the log-likelihood of these training samples takes the following
form:

J(ai,mi, ki) =
N∑

n=1

log
M∑

i=1

ai

πÎ0(ki)
e−ki| sin(θn−mi)| (13)

Introducing unobserved data items that can identify the components that “gen-
erated” each data item, we can simplify the log-likelihood of (13) for MDLD, as
follows:

I(ai, mi, ki) =
N∑

n=1

M∑

i=1

(log
ai

π
− log Î0(ki)− ki| sin(θn −mi)|)p(i|θn) (14)

where p(i|θn) represents the probability of sample θn belonging to the ith Direc-
tional Laplacian of the MDLD. In a similar fashion to Gaussian Mixture Models,
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the updates for p(i|θn) and αi can be given by the following equations:

p(i|θn) ← aic(ki)e−ki| sin(θn−mi)|
∑M

i=1 aic(ki)e−ki| sin(θn−mi)|
(15)

ai ← 1
N

N∑
n=1

p(i|θn) (16)

Based on the derivation of the MLE estimates for DLD prior, it is straightfor-
ward to derive the following updates for the MDLD parameters mi and ki, by
optimising I(ai, mi, ki). The means mi are estimated using a Newton-step on
I(ai,mi, ki), as follows:

m+
i ← mi +

∑N
n=1 sgn(θn −mi) cos(θn −mi)p(i|θn)∑N

n=1(δ(θn −mi) + | sin(θn −mi)|)p(i|θn)
(17)

To estimate ki, we will resort to the numerical estimation of ki. The first deriva-
tive is given by:

∂I(ai, mi, ki)
∂ki

=
N∑

n=1

(
Î1(ki)
Î0(ki)

− | sin(θn −mi)|)p(i|θn) (18)

Equating (18) to zero yields:

Î1(ki)
Î0(ki)

=
∑N

n=1 | sin(θn −mi)|p(i|θn)∑N
n=1 p(i|θn)

(19)

Using the lookup table solution that was discussed in the previous section, one
can estimate ki directly from (19).

Training Initialisation The training of a mixture model is dependent on the
initialisation of its parameters, especially the means mi. Depending on different
initialisations, in general, the EM algorithm may yield different mixture models
that approximate the observed pdf, implying that the EM algorithm may get
trapped in several local maxima. In a similar fashion to Gaussian Mixture Model
initialisation, a Directional K-Means [11] is used to initialise the means mi of
the DLDs in the MDLD EM training, described in the previous section.

3 Experiments

In this section, we evaluate the efficiency of the derived EM algorithms for the
estimation of the Directional Laplacian Density Mixtures. To generate 1D Di-
rectional Laplacian data, we employed the Inverse Transform Sampling tech-
nique [12]. We created a mixture of 5 concentrations of DLD samples centred at
0.3, 0.9, 1.5, 2.5, 3 respectively. The values of ki for each DLD were 12, 10, 12, 14, 14.
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Each of the 5 concentrations contained different number of samples in order to
create different contributions to the overall density. The total number of samples
was set to 3000. We ran 50 independent runs of the EM-algorithm as described
in Section 2.3. An average of the estimated m̂i, k̂i and âi is shown in Table
1. In most of the 50 cases, we witnessed accurate estimation of the underlying
concentrations. However, there were several cases (5-6 out of 50), where the ini-
tialisation offered by the Directional K-Means was not accurate for some of the
clusters. Since most mixture estimation algorithms are sensible to initialisation,
this resulted into a drop of the average accuracy in mixture training. Nonethe-
less, most of the clusters were correctly identified and the overall results are
promising. Also it is important to mention that two of the cluster centres were
chosen to be at 0.3 and 3 which are very close to the borders π and 0 that would
be causing problems in the linear case. The MDLD is not affected at all, since
it it is circular by definition.

The next step is to evaluate the proposed algorithm for audio source separa-
tion. Moving the sensor signals to a sparser domain (MDCT domain), the sources
become sparser and thus smaller coefficients are more probable and most of the
signal’s energy is concentrated in few large values. Therefore, the density of the
data in the mixture space shows a tendency to cluster along the directions of
the mixing matrix columns and the two-sensor multiple-source separation prob-
lem is reduced to an angular clustering problem of θn = atan(x2(n)/x1(n)) [7,
8]. In these experiment, we will use Hyvärinen’s clustering approach [13], the
MoL-EM [7] and the WMoL-EM [8] for comparison. After Mixture fitting with
the EM algorithm, separation will be performed using hard thresholding, as de-
scribed in our previous work [7, 8]. In order to quantify the performance of the
algorithms, we are estimating the Signal-to-Distortion Ratio (SDR) from the
BSS EVAL Toolbox [14]. The frame length for the MDCT analysis is set to 64
msec for the test signals sampled at 16 KHz and to 46.4 msec for those at 44.1
KHz. We initialise the parameters of the MoL, MoWL and MDLD as follows:
αi = 1/N and ci = 0.001, T = [−1, 0, 1] (for MoWL only) and ki = 15 (for
Circular Laplacian only). The centres mi were initialised in either case using the
Directional K-means step.

We tested the algorithms with the Groove and the Latino dataset, available by
(BASS-dB) [15], sampled at 44.1 KHz. The “Groove” dataset features four widely
spaced sources: bass (far left), distorted guitar (center left), clean guitar (center
right) and drums (far right). The “Latino” dataset features four widely spaced
sources: bass (far left), drums (center left), keyboards (center right) and distorted
guitar (far right). In Table 2, we can see the results for the four methods in terms
of SDR. The average SDR of the two input signals, treating them as estimates
of each input signal, is also provided for comparison (Mixed Signals row). The
proposed MDLD approach seems to provide the best performance for most of
the audio sources with small difference though. The important advantage of the
proposed MDLD approach is that it is not susceptible to bordering effects. It is
slightly slower compared to the original MoL approach and also faster compared
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to the previous MoWL, since the proposed EM is more efficient compared to the
one for MoWL.

4 Conclusions

In this paper, the author addresses the problem of modelling Directional Sparse
data. Sparsity is often modelled using the Laplacian density for data with infinite
linear support, which is not directly applicable in the case of directional or
circular data. This work is building on previous work on directional Gaussian
models (i.e. the von-Mises densities) to propose a novel Directional Laplacian
model for modelling directional sparse data. ML estimates and an EM-algorithm
were introduced to handle sparse circular data modelling problems. The proposed
circular density was applied to the underdetermined source separation problem.
The proposed solution featured a complete solution to the problem, compared
to previous efforts. For future work, the author is planning to expand the model
to handle multi-dimensional circular data.

Table 1. Parameter Estimation for a Mixture of Directional Laplacian (M = 5) using
the proposed EM algorithm. Average parameter results for 50 independent runs.

mi ki ai m̂i |k̂i − ki|/ki âi

DLD1 0.3 12 0.1071 0.4743 0.0616 0.0906

DLD2 0.9 10 0.2143 0.9001 0.1735 0.2377

DLD3 1.5 12 0.3571 1.5068 0.0403 0.3576

DLD4 2.5 14 0.1429 2.4262 0.1946 0.1307

DLD5 3 14 0.1786 2.9650 0.0281 0.1834

Table 2. The proposed MDLD approach is compared in terms of SDR (dB) with
MoL-EM hard, MoWL-EM hard and Hyvärinen’s approach and the average SDR of
the mixtures.

Groove Dataset Latino Dataset

s1 s2 s3 s4 s1 s2 s3 s4

Mixed

Signals -30.02 -10.25 -6.14 -21.24 -2.47 -11.8 -2.04 -9.14

MDLD-EM 4.20 -4.32 -0.75 2.07 9.31 -0.04 8.17 3.53

MoWL-EM hard 4.32 -4.35 -1.16 3.27 8.72 -0.04 8.13 3.03

MoL-EM hard 2.85 -4.47 -0.86 3.28 8.65 -0.075 8.15 3.51

Hyvärinen 3.79 -3.72 -1.13 1.49 10.03 -1.74 8.16 3.42
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