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ABSTRACT

The problem of separating audio sources observed in a real
room environment is a very challenging task, also known
as thecocktail party problem. Much work has been pre-
sented on audio separation, even in cases of high reverb.
However, various problems remain unsolved in a real-world
scenario. In this paper, the authors review proposed solu-
tions employingIndependent Component analysis(ICA),
discussing possible solutions to various problems that arise
during the analysis (i.e. thepermutationproblem). In par-
ticular, the use ofbeamformingtechniques in parallel with
the ICA framework is discussed. Finally, some of the open
problems in audio source separation are considered.

1. INTRODUCTION

A real-worldBlind Source Separationproblem is described
as follows. Assume there areN audio sources in a room
s(n) = [s1(n), . . . , sN (n)]T and the auditory scene is cap-
tured byM sensorsx(n) = [x1(n), . . . , xM (n)]T . The
common approach to model the mixing procedure is the fol-
lowing:

xi(n) =
N∑

j=1

αij(n) ∗ sj(n) i = 1, . . . , M (1)

whereαij is a FIR filter that models theroom transfer func-
tion between theith sensor and thejth source. This is also
refered to asconvolutive mixturesmodel. Assuming equal
number of sources and sensors (N = M ) and no additive
noise, one could solve the source separation problem, by
estimating the unmixing FIR filterswij , whenever that is
possible.

ui(n) =
N∑

j=1

wij(n) ∗ xj(n) i = 1, . . . , N (2)

An efficient way to perform the unmixing is within a
subband(eg. frequency) domain, where the convolution can
be modelled approximately as multiplication and therefore

any Independent Component Analysis(ICA) algorithm for
instantaneous mixturescan be employed [5].

One approach is to model the sources and work solely
in the frequency domain [9]. The benefits are that we are
working with a sparser representation in the frequency do-
main that enables better separation [5]. On the other hand,
we assume no statistical dependence between the frequency
bins that introduces thepermutation problemof ordering
the separated sources along the frequency axis. However,
unmixing in a subband domain does not necessarily imply
that we should use a frequency domain source model. Lee
et al [4] imposed the source model in the time-domain and
preformed the unmixing in the frequency domain. The ad-
vantage is that the permutation problem does not exist in
this case. Nonetheless, it is more computationally expensive
due to the repetitive mappings to and from the frequency do-
main.

2. SOLUTIONS FOR THE PERMUTATION
PROBLEM

Current solutions for the permutation problem in the Fre-
quency Domain ICA (FD-ICA) framework can be catego-
rized into two basic groups:

2.1. Source modeling Solutions

In source modelingsolutions, the aim is to exploit the co-
herence and the information between frequency bands in
order to impose frequency coupling between the subbands
and therefore alignment of the sources after separation.

A possible approach is to impose time-frequency source
models, as proposed by Ikeda [1], Mitianoudis and Davies [5].
Ikeda used signal envelopes in the time-frequency represen-
tation to impose coupling, whereas Mitianoudis and Davies
proposed a generative time-frequency model along with a
likelihood ratio jump solution in order to force subband cou-
pling and align the sources after unmixing (flipping solu-
tions).



2.2. Channel modeling Solutions

In channel modeling solutions, the aim is to model the trans-
fer functions in order to couple the unmixing filters and
therefore align the sources.

One approach is to assumesmoothfilters, as a contraint
to the unmixing algorithm. Smaragdis [9] used a heuris-
tic approach to achieve that. Parra and Spence [7] aligned
permutations using a constrained filter model, which has
been reported to get trapped in local minima [2]. Both ap-
proaches can be characterized asgradient solutions, as the
model is incorporated in the gradient algorithm.

Another approach is to consider the BSS setup as aN -
sensor beamformer and employ its directivity pattern to re-
solve the permutations, as investigated by Saruwatari et al [8],
Ikram and Morgan [3], Parra and Alvino [6]. We will anal-
yse the application of beamforming in the BSS concept in
detail in the following section.

3. ICA AS A BEAMFORMER

One interpretation of the FD-BSS setup is a null-steering
FD-Beamformer that uses a blind algorithm (ICA) to place
nulls to the other sources present in the mixture, in order
to separate one at a time. However, BSS does not utilize
any information concerning the geometry of the auditory
scene (position of sources and sensors, i.e Directions Of Ar-
rival (DOA) of source signals to the array). One can use
the sources’ DOA to align the permutations along the fre-
quency axis (flipping solution). We have to permute the
sources along frequency, so that thedirectivity patternof
each beamformer is aligned. The directivity pattern is de-
fined as follows:

Fi(f, θ) =
N∑

k=1

W phase
ik (f)ej2πfdk sin θi/c (3)

whereW phase
ik (f) = Wik(f)/|Wik(f)| is the phase of the

unmixing filter coefficient between thekth sensor and the
ith source at frequencyf , dk is the distance of thekth sen-
sor from the origin,θ is the DOA of theith source andc
is the velocity of sound. An ideal directivity pattern for a
single delay system along frequency is depicted in figure
1, where we can clearly see a null at25o, which is the ac-
tual DOA of the source. Essentially, the single delay case
approximates an anechoic room. However, the directivity
patterns that describe real room transfer functions are not so
smooth.

Applying beamforming in the FD-ICA framework is clearly
achannel modelingsolution. In other words, it is an attempt
to exploit thephase informationof the unmixing system.
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Figure 1: Frequency Dependent directivity pattern of a
single-delay transfer function.
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Figure 2: Experimental setup in a real room.

4. A REAL WORLD EXPERIMENT

In this section, we discuss the use of beamforming for per-
mutation alignment through a real world experiment. We
used a university lecture room to record a2 sources -2 sen-
sors experiment. We used two speakers (source1 and source
2) and two cardiod microphones (mic1 and mic2), arranged
as in figure 2. We used the approach described in [5] to sep-
arate the sources, using the source modeling plusLikelihood
Ratio Jumpto tackle the permutation problem. Then, we
tested the beamforming performance of the estimated filters
along frequency, making some interesting observations.

4.1. General Observations

In figure 3, we can see the beamforming pattern of the es-
timated unmixing filter between source1 and microphone
1. The first observation is that the beamforming pattern is
more smeared compared to the single delay beamforming
plot. This is due to the room’s complex transfer function,
that slightly shift the sources’ DOAs along frequency. How-
ever, we can still spot a main direction of arrival that can
help align the permutations. This is an attempt to approxi-
mate the transfer function with a single delay.
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Figure 3: Beamforming pattern of the estimated unmixing
filters.

Looking at these beamforming plots, it seems that align-
ing the permutations around the DOAs, using only beam-
forming information, is difficult. The main reason being
that afterf0 ≈ c/d, we start getting multiple nulls, due to
wavelength restrictions. Saruwatari et al [8] used the overall
statistics of the nulls to get DOA estimates. However, Ikram
and Morgan [3] proposed to use only lower frequencies to
get DOA estimates (see figure 4) and then align permuta-
tions, by looking for nulls in the neighbourhood of the es-
timated DOA. Parra and Alvino [6] used more sensors than
sources to get more accurate estimates for the DOAs with a
subspace technique and add this information as a geometric
constraint to their unmixing algorithm.

However, it seems to be rather difficult to perform per-
mutation alignment in higher frequencies, even with very
accurate estimates for the DOA. In figure 4, we can see
that it is difficult to define the “neighbourhood” around the
DOA, as the nulls corresponding to the both sources are re-
ally close and the probability of error is high. Therefore,
one solution can be to rely mainly on amplitude only criteria
for mid-higher frequency band in order to sort the permuta-
tions. On the other hand, phase information (beamforming)
can be useful for sorting out the lower frequency band per-
mutations.

Equally important is the choice of the sensor spacingdk

in eq 3. It is obvious that choosing smaller spacing will re-
duce the multiple nulls at mid-high frequencies. In contrast,
theSignal-to-Noise Ratiowill decrease, as the signals cap-
tured by the microphones will be similar, due to the far-field
effect. Therefore, the choice of sensor spacing is a tradeoff
betweenseparation qualityandbeamforming pattern clar-
ity.

4.2. Sensitivity Analysis

In this section, we discuss the sensitivity of our system to
movement. We repeated two new recordings with source2
moved20cm and50cm to the left. We unmixed the sources
in either case and observed the following:
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Figure 4: Average Beampatterns along certain frequency
bands for both sources.

4.2.1. Beamformer’s sensitivity to movement

Comparing the beampatterns estimated for either case, we
observed that the beamformer’s sensitivity to movement is
a function of frequency. We can clearly see that in lower
frequencies, beamformer’s null has been slightly shifted,
however in higher frequencies the shift is a function of fre-
quency. This is to show that if we have a moving source in
our source separation problem, a very small change will not
greatly affect our beamformer in lower frequencies. How-
ever, our beamformer can be rendered useless in higher fre-
quencies in cases of small movements (figure 5). This can
be supported by the way humans performsource localiza-
tion. Many psychologists observed that the human ear tends
to localize lower frequency sounds by phase difference and
higher frequency sounds by amplitude difference.

4.2.2. Distortion introduced due to movement

Using the filters estimated for the original speakers position
to unmix the two new recordings, we explore how toler-
ant the system is to movement. We observed that source2
was separated from the mixture, however it sounded more
“echoic”. On the other hand, source1 contained more crosstalk,
but no added distortion. As BSS is a null-steering proce-
dure, source2 will have no contamination from the other
source, as the sensors will place a correct null to source
1. However, because we are mapping back to the micro-
phones to remove thescale ambiguity[5], the source2 will
be mapped incorrectly to the microphone space. In contrast,
source1 will have contamination from source2, due to mis-
aligned beamforming, but will have correct mapping back
to the mics. This observation is more evident in the case of
50cm movement.

Mathematically speaking, if we assume that
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Figure 5: Comparing beamforming patterns at (a) 160Hz
and (b) 750Hz.

X =
[

A11A12

A21A22

] [
S1

S2

]
(4)

represents the mixed signals. After separation, we map back
to the microphone space, so we try to estimate the following
signals:

Xs1 =
[

A11

A21

]
S1, Xs2 =

[
A12

A22

]
S2 (5)

where
X = Xs1 + Xs2 (6)

However, due to misaligned beamforming, one source will
get contamination from the other source. Therefore,

Xs1 =
[

A11

A21

]
S1 + ε

[
G1

G2

]
S2 (7)

whereε andG1, G2 model the error due to misaligned beam-
forming. Because equation 6 is a constraint to our recon-
struction, this implies that the second source will get no
contamination from source 1, but instead will be distorted,
due to wrong mapping.

Xs2 =
([

A12

A22

]
− ε

[
G1

G2

])
S2 (8)

5. CONCLUSIONS - OPEN PROBLEMS

In this study, we discussed some benefits and problems en-
countered using beamforming to solve the permutation prob-
lem in FD-ICA. More specifically, we observed that it is
very difficult to align the permutations in higher frequen-
cies due to multiple nulls present there. Therefore, a com-
bined approach ofamplitude onlycriteria in mid-higher fre-
quencies andphase informationin lower frequencies is pro-
posed. In addition, using extra sensors, one can achieve bet-
ter beamforming with subspace techniques (i.e. MuSIC).

We also explored the sensivity of the BSS setup to source
movement. Source movement seems to affect more higher

than lower frequencies. We also observed that a moving
source can be separated without any contamination from the
non-moving source, but distorted. On the other hand, the
non-moving source remains contaminated from the moving
source.

Dealing with moving sources is still an open problem
for BSS systems. Most of the convolved mixtures solu-
tions work inbatch mode, and they are far from working
online. This implies that the sources should remain station-
ary at least for the time that the BSS system needs to adapt,
otherwise we will have distortion and contamination as de-
scribed in the paper.
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