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A Convolutional Neural Network-based Conditional
Random Field model for Structured Multi-Focus

Image Fusion Robust to Noise
Odysseas Bouzos, Ioannis Andreadis, and Nikolaos Mitianoudis

Abstract—The limited depth of field of optical lenses, makes
multi-focus image fusion (MFIF) algorithms of vital importance.
Lately, Convolutional Neural Networks (CNN) have been widely
adopted in MFIF methods, however their predictions mostly
lack structure and are limited by the size of the receptive field.
Moreover, since images have noise due to various sources, the
development of MFIF methods robust to image noise is required.
A novel robust to noise Convolutional Neural Network-based
Conditional Random Field (mf-CNNCRF) model is introduced.
The model takes advantage of the powerful mapping between
input and output of CNN networks and the long range interac-
tions of the CRF models in order to reach structured inference.
Rich priors for both unary and smoothness terms are learned by
training CNN networks. The 𝛼-expansion graph-cut algorithm
is used to reach structured inference for MFIF. A new dataset,
which includes clean and noisy image pairs, is introduced and
is used to train the networks of both CRF terms. A low-light
MFIF dataset is also developed to demonstrate real-life noise
introduced by the camera sensor. Qualitative and quantitative
evaluation prove that mf-CNNCRF outperforms state-of-the-art
MFIF methods for clean and noisy input images, while being
more robust to different noise types without requiring prior
knowledge of noise.

Index Terms—Convolutional Neural Network, Conditional
Random Field (CRF), multi-focus image fusion, Energy mini-
mization

I. INTRODUCTION

THE creation of all-in-focus images is of great importance
for both human visual perception and computer vision

tasks. However, due to the limited Depth-of-Field of optical
lenses, only objects within a certain distance from the camera
sensor can be well focused each time. The parts of the scene
that lie outside the focal plane of the camera sensor remain
out-of-focus or blurred. Multi-focus image fusion (MFIF)
algorithms can be used to cope with the problem of finite depth
of field of optical lenses, by merging multiple input images,
which are captured with different focal settings, in a single
fused image with extended depth of field. The fused image
should have higher visual quality than each one of the input
images without introducing artifacts during fusion. Moreover,
since real world images contain noise, such as sensor noise
and quantization noise, MFIF methods robust to different noise
types are important. Lately, a great amount of MFIF-methods
has been developed, which according to the recent survey
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of Liu et al. [1] can be classified in four major categories:
transform domain methods, spatial domain methods, combined
methods and deep learning methods.

Transform domain-based MFIF methods use a forward
transform to decompose input images to their respective
transform domain representations, which are then fused with
custom hand-crafted and predefined fusion rules. Finally, the
inverse transform is applied to the fused transform coefficients
in order to obtain the final fused image. Since the quality
of the fused images, is highly affected by the transform
domain selection and the manual design of the fusion rules, a
great number of transform domain-based MFIF algorithms has
been introduced. Popular transform domain MFIF algorithms
include: multi-scale decomposition-based methods [2]–[6],
sparse representation-based methods [7]–[9], gradient domain-
based methods [10], [11], methods based on other transform
domains [12], [13] and methods that combine different trans-
forms [14], [15]. Li et al. [16] introduced a multi-focus image
fusion method that used nonsubsampled contourlet transform
and residual removal. Their method outperformed some state-
of-the-art methods. Dictionary-based domain methods, that
incorporate a coefficient shrinkage strategy, such as [17], are
robust against Gaussian noise. However, explicit knowledge
about the noise characteristics is required in order to suc-
cessfully use the coefficient shrinkage strategy, such as [17].
This limits the generalization capabilities of transform domain-
based methods to effectively fuse real input images, which
contain noise but prior information of noise characteristics
is unavailable. The imperfect forward-backward transforms,
result to blocking and ringing artifacts, due to the Gibbs
phenomenon. Finally, since most of the transform domain-
based MFIF methods are not shift-invariant, possible mis-
registration found in the input images, due to dynamic scene
or camera shake, will result to visible artifacts in the fused
images.

In spatial domain MFIF methods, the fused image is esti-
mated as the weighted average of the input images. Based
on the adopted activity level estimations, weight maps are
constructed and are used to fuse the input images. Spatial
domain methods, can be categorized according to the method
used for activity level estimation, as block-based, region-
based and pixel-based. In block-based methods, the input
images are decomposed in blocks of fixed size and activity
level estimations of the whole blocks are used to construct
the weight maps. The size of the block greatly affects the
quality of the fused images. Region-based methods, provide
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higher flexibility than block-based methods, because they
estimate the activity measurement for a region of irregular size.
However, since blocks and regions are likely to simultaneously
contain both well-focused and out-of-focus pixels, artifacts
near boundaries between well-focused and blurred regions
are likely to appear in both cases. In order to cope with
this problem, pixel-based methods have become more popular,
due to the use of pixel-level activity estimation. Pixel-based
methods have higher accuracy near the boundaries of well-
focused and out-of-focus pixels, however they are likely to
produce noisy weight maps, which also deteriorate the quality
of the fused images. A major drawback of spatial domain-
based MFIF methods is their sensitivity to image noise.

Representative spatial domain-based MFIF methods in-
clude: Dense-SIFT (DSIFT) [18], Image matting (IM) [19],
Guided filtering (GF) [20], Quadtree-based [21], Boundary
Finding (BF) [22] and Cross Bilateral Filtering (CBF) [23].

In order to preserve advantages of both transform and spa-
tial domains, combined-based MFIF methods have emerged.
Bouzos et al. [24] proposed a Conditional Random Field
model, which combined the advantages of both the trans-
form domain Independent Component Analysis (ICA) and
the spatial domain introducing mf-CRF. Yang et al. [25]
combined the advantages of both nonsubsampled contourlet
transform (NSCT) and spatial domain. Wang et al. [26] used
a pulse coupled neural network (PCNN) and a guided filter in
order to solve the MFIF problem. Li et al. [27] introduced
a joint image fusion and denoising method that combined
image decomposition and sparse representation. Chen et al.
[28] combined an Image Matting strategy with top-hat and
bottom-hat transforms in order to develop their model MGIM.
Combined methods are likely to perform better than transform
domain and spatial domain methods.

The performance of conventional MFIF methods, is limited
by the hand-crafted features and the manual design of fusion
rules, that can not fully model the complexity of the MFIF
problem. This led to the increased popularity of deep learning-
based methods for MFIF. The fact that deep learning-based
methods do not require the hand-crafted design of features
for focus measurement or the manual design of fusion rules,
makes them likely to produce fused images of higher quality
than conventional MFIF methods [29].

In [29], Zhang made an extensive study of deep learning
methods for MFIF and classified them in two major categories:
Decision map-based methods and End-to-end methods.

1) Decision-map based methods: In decision map-based
methods, the network predicts a decision map according to
the activity levels of the input images. Then, post processing
methods are usually applied to refine the predicted decision
maps. Lastly, the final decision map is used to guide the fusion
of the input images.

Liu et al. [30] were the first to propose a CNN-based
network for MFIF. More precisely, they trained a siamese
architecture to classify pairs of image patches, as well-focused
or out-of-focus. This block-based classification lead to the
prediction of the labels of the decision map, which were used
to guide the fusion of the MFIF input image. Since then,
various decision-map based deep learning MFIF methods have

been proposed in order to improve the prediction accuracy of
the decision map and thus the performance of MFIF. Typical
decision-map based methods include: P-CNN [31], Ensemble-
CNN [32], MSCNN [33] and fully convolutional network FCN
[34]. In order to improve the quality of the predicted decision
map, Li et al. [35] used the complimentary information of
the input image pairs and introduced DRPL which is a pixel-
based approach. Ma et al. [36] proposed MMF-Net, which
consists of two networks. The first network is used to extract
an initial prediction, while the second is used to improve
the decision boundary between well-focused and out-of-focus
pixels. Xiao et al. [37] introduced GEU-Net, which used a U-
Net architecture in order to estimate the focus maps as a global
two-class classification problem. Decision-map methods have
two major issues: 1) the block-based approaches like CNN-
Fusion [30] have lower accuracy near the boundaries between
well-focused and out-of-focus pixels, since blocks may contain
simultaneously both well focused and out-of-focus pixels. 2)
pixel based classification networks, such as DRLP [35], have
better accuracy near boundaries, however are likely to produce
noisy decision maps.

Decision map-based MFIF deep learning methods usually
adopt post-processing steps in order to refine the predicted
decision maps and remove noisy regions. CNN-Fusion [30]
used Guided filter [38] to refine the decision maps. FCN [34]
and GEU-Net [37] used fully connected Conditional Random
Fields [39] to refine the predicted decision maps. Morpho-
logical operations and consistency verification methods are
also widely used as post-processing steps. Although post-
processing steps may remove noisy predicted regions from the
decision map, they are also likely to decrease the quality of the
final fused images [35]. Liu et al. [40] introduced the MSFIN
network, which is a multiscale feature interactive network and
they used a fully-connected conditional random field as post
processing in order to refine their decision map.

2) End-to-end: In the end-to-end deep learning MFIF meth-
ods, the network is trained with regression optimization in
order to learn the mapping between the input images and the
target image, without the intermediate step of predicting the
decision map.

Xu et al. [41] introduced the unified Image Fusion Network
(U2Fusion), which used the DenseNet architecture and was
trained with unsupervised learning. Li et al. [42] used a U-
net architecture to directly predict the fused image from the
input images. DenseFuse [43] and IFCNN [44] firstly trained
an autoencoder. The encoder was then applied to both input
images followed by hand-crafted fusion rules, in order to
combine the deep feature coefficients. Lastly a decoder was
applied to return the fused image. In [45], the authors trained
an autoencoder network and introduced multiple image fusion
strategies. The use of hand-crafted fusion rules is likely to
reduce the image quality of the fused image. Zhao et al. [46]
proposed MLCNN, an end-to-end deep learning network for
MFIF with enhancement. Ma et al. [47] introduced an end-to-
end image fusion framework based on the Swin Transformer.
Cheng et al. [48] proposed a MUFusion architecture, which
is based on a memory unit architecture. This unit utilized
intermediate fused results during training. The imperfect
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forward and backward transforms between spatial and deep
feature domains are likely to result to fused images of lower
quality, due to the Gibbs phenomenon. Moreover, end-to-
end deep learning MFIF methods are not likely to preserve
accurately the intensity and the contrast of the input images
in the final fused image. Other issues rely on the sensitivity
to mis-registration and the sensitivity to noise.

Some of the issues of deep learning based MFIF methods
include sensitivity to noise, since noise scenarios are not
studied and sensitivity of methods to possible mis-registration
found in the input images. These problems are not widely
considered in the deep learning based MFIF methods. Other
problems include the lack of structure in the predicted decision
map and the prediction being limited by the size of the
receptive field. Lastly, since most deep learning based MFIF
methods consider only pairs of input images, hierarchical
fusion is needed to fuse more than two input images, which
increases the complexity. To cope with the aforementioned
issues, we propose mf-CNNCRF, which is a novel CNN-based
CRF model. The proposed mf-CNNCRF combines advantages
of CNN networks to learn rich priors and the long range inter-
actions of CRF models in order to reach structured inference
for MFIF. The use of efficient architectures allows arbitrary
𝑁 images to be processed in parallel, making mf-CNNCRF
computationally efficient. Lastly the proposed framework is
robust to different types of noise for MFIF.

More specifically, since the proposed method combines
advantages of both convolutional neural networks and energy
minimization through graph-cut optimization, some recent
related work that lies in these categories is briefly described.

Graphical models have been successfully applied for infer-
ence in MFIF methods, Their success lies mostly in the long
range interactions and their close-to-global-optimum solution.
Graphical models for MFIF were either used with explicitly
defined priors or were used as a post processing step. More
precisely, Sun et al. [11] and Bouzos et al. [24] introduced
graphical models for MFIF, that used hand-crafted unary and
smoothness priors. Thus, their performance was limited by
the complexity of their hand-crafted priors. On the other hand
GEU-Net [37] and FCN [34] used the fully connected CRF
model [39] as a post processing step, in order to refine the
binary decision maps, since they were predicted by their re-
spective deep learning-based architectures. Hand crafted priors
were also used to refine the decision maps. This approach
limited the capabilities of the fully connected CRF models
and there was error propagation from the CNN prediction to
the final decision map. The application of graphical models in
MFIF remains limited by the hand crafted priors.

Zagoruyko et al. [49] introduced three neural network
architectures in order to learn similarity functions and com-
pare input image patches, including siamese architectures.
The success of siamese network architectures to compare
input image patches, led us to the development of siamese
architectures for both unary and smoothness terms. In order
to cope with the fusion of an arbitrary number of 𝑁 input
images for MFIF, we introduce efficient siamese architectures
to estimate both terms. The proposed architectures allow both
terms to be efficiently estimated with low computational cost,

since 𝑁 input images can be processed in parallel. Details
of the proposed efficient siamese networks ‘UnaryNet’ and
‘SmoothnessNet’ that estimate the Unary potential 𝑈 and
the Smoothness potential 𝑉 respectively, are described in the
following sub-sections. However, the prediction of the siamese
architectures is limited by the size of the receptive field of each
network.

In order to combine the advantages of both deep learning-
based methods and CRF graphs, while overcoming their indi-
vidual limitations, we introduce the CNN-based CRF model,
named mf-CNNCRF for MFIF.

Compared to the aforementioned applications of CRF mod-
els, the proposed mf-CNNCRF framework is very different.
Most importantly, both unary and smoothness priors are
estimated through CNN architectures that are trained end-
to-end. Thus, rich priors that better describe the mapping
between input images and target image, more suitable for
MFIF are developed. The predicted unary and smoothness
priors provide complimentary information to the CRF model,
in order to reach global optimal or close to optimal structured
inference for MFIF, through solving the energy mininisation
problem with 𝛼-expansion [50], which is based on Graph cuts.
The proposed mf-CNNCRF method is a decision-map based
method.

The main contributions of this manuscript can be summa-
rized as follows:

1) The proposed mf-CNNCRF model, combines advan-
tages of the complex mapping between input-output
of CNN networks and the long range interactions of
CRF model in order to reach structured inference for
MFIF, without requiring further post-processing. Both
UnaryNet and SmoothnessNet are efficient siamese net-
works trained end-to-end with CNN architectures of low
complexity in order to learn rich-complex priors for
MFIF. Both networks provide considerable speedup for
handling arbitrary 𝑁 input images and support commu-
tativity of the input images.

2) The proposed mf-CNNCRF model was trained on a
new synthetic MFIF dataset, which contained both clean
images and images contaminated with Gaussian noise,
Salt and Pepper noise and Poisson noise. The proposed
loss functions along with the proposed dataset, which
were used to train both Unary and Smoothness terms,
make mf-CNNCRF robust to different noise types with-
out requiring prior knowledge about the noise character-
istics of the input images. Thus, mf-CNNCRF has great
generalization capabilities for both clean input images
and input images that contain different types of noise.

3) The major novelty of the proposed energy minimization
approach compared to our previous work mf-CRF [24],
lies in the use of CNN networks in order to model the
complex relations of inputs/outputs, while previous work
used carefully handcrafted priors to model the unary
and smoothness terms in order to solve the multi-focus
image fusion problem.

4) Since SmoothnessNet leads to pairwise smoothness
priors, efficient pairwise solvers can be used, instead
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Fig. 1. Framework of mf-CNNCRF for the estimation of fused image 𝐹 for
𝑁 input images 𝑥1, . . . , 𝑥𝑁 and for their concatenations (𝑥𝑚, 𝑥𝑛 )

of high order CRF solvers that would have increased
complexity.

To the best of our knowledge, training of inference tech-
niques with CNNs has not yet been demonstrated for multi-
focus image fusion. This is the first time that Convolutional
Neural Networks are used to train the Unary and Smoothness
terms of inference method based on graph cuts in image
fusion, in order to achieve structured inference for multi-focus
image fusion.

II. ENERGY MINIMIZATION

The proposed MFIF framework is a decision-map based
framework. For each location in the decision map 𝐷, we
create one node in the CRF graph. The pairwise connections
in the CRF graph are formed by connecting each node to the
respective nodes that lie in the 𝑁8-neighborhood. Both the
unary potential function 𝑈 and the pairwise potential function
𝑉 are estimated with CNNs that are trained end-to-end. More
precisely, the ‘UnaryNet’, which learns the unary potential
function 𝑈, and the ‘SmoothnessNet’, which learns the pair-
wise potential function 𝑉 , using efficient siamese architectures.
These networks allow an arbitrary number of input images
𝑁 to be processed in parallel, providing high computational
efficiency and acceleration for the estimation of both terms for
MFIF. UnaryNet and SmoothnessNet support commutativity of
the input images to the framework, since the branches of each
network share the same architecture and the same weights.
The use of CNN networks allows rich unary and smoothness
potentials to be learned. The proposed energy minimization
approach takes advantage of the rich potentials learned through
the CNN networks and the long range interactions of the CRF
model, in order to reach structured inference with global or
close to global MFIF solution.

In order to estimate the labels ℓ of the decision map, we
use the following energy minimization:

ℓ1..𝑁 = argmin
ℓ1..𝑁


𝑁𝑠∑︁
𝑛=1

𝑈𝑛 (ℓ𝑛) +
∑︁

(𝑚,𝑛) 𝜖𝐶
𝑉𝑚,𝑛 (ℓ𝑚, ℓ𝑛)

 (1)

where 𝑚, 𝑛 are adjacent pixels in clique 𝐶, which is equal to
a 𝑁 − 8 neighborhood and 𝑁𝑠 is the total number of spatial
locations. The whole procedure is summarised in Fig. 1.

The unary potential term 𝑈 is used to estimate the signif-
icant contribution of each of the input images to the fused
image. The smoothness potential term 𝑉 is used to compute
the label compatibility between adjacent pixels 𝑚, 𝑛 of the
decision map in the 𝑁8-neighborhood. Both the unary term
𝑈 and the smoothness term 𝑉 are trained end-to-end with
efficient siamese CNN architectures of low complexity. The
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Fig. 2. Architecture of UnaryNet for 𝑁 input images 𝑥1 . . . 𝑥𝑁

energy minimization problem is solved efficiently with the
𝛼-expansion algorithm [50], which is based on graph-cuts.
Details of the proposed framework can be found in the
following sub-sections.

Finally, for 𝑁 input images and labels ℓ of the decision
map, the fused image 𝐹 is estimated as:

𝐹𝑛 =


𝑥1 (𝑛) , if ℓ𝑛 = 0

. . . . . .

𝑥𝑁 (𝑛) , if ℓ𝑛 = 𝑁 − 1

(2)

where 𝑛 defines each spatial location.

A. Unary term and Unary network

A CNN network called ‘UnaryNet’ is trained through data
in order to learn the probabilities 𝑃 (ℓ𝑛), that each one of the
input images ℓ𝑛 should contribute to the final fused image
at spatial location 𝑛. Fig. 2 demonstrates the architecture of
the siamese network for 𝑁 input images, used to estimate
the probabilities 𝑃 (ℓ𝑛). ‘UnaryNet’ is an efficient siamese
architecture that uses 𝑁 branches equal to the number of
𝑁 input images. Each branch takes as input one of the 𝑁

input images, while the output of each branch is passed to
the decision layer. A 𝑁-way softmax function is used as the
decision layer, in order to predict the probabilities 𝑃 (ℓ𝑛). The
efficient siamese architecture of ‘UnaryNet’ supports 𝑁 images
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that are processed in parallel and the probabilities 𝑃 (ℓ𝑛)
are estimated computationally efficiently. Finally, the Unary
potential 𝑈 (ℓ𝑛) is estimated as the negative log-likelihood of
the predicted probabilities 𝑃 (ℓ𝑛).

𝑈 (ℓ𝑛) = − log (𝑃 (ℓ𝑛)) (3)

The siamese branches of UnaryNet share the same ar-
chitecture and the same weights. Each siamese branch is a
ConvNet architecture with three branches. The first branch of
the ConvNet consists of a convolutional layer with filter size
[3 × 3 × 1 × 16] followed by ReLu. The next 2 convolutional
layers have filter size [3 × 3 × 16 × 16] and each one is fol-
lowed by ReLu. The last of the ConvNet branch convolutional
layer has filter size [3 × 3 × 16 × 1]. In the second branch the
first convolutional layer is the Sobel gradient convolution filter
3×3 in horizontal axis, followed by a convolutional layer with
filter size [3 × 3 × 1 × 16] followed by ReLu, 2 convolutional
layer with filter size [3 × 3 × 16 × 16] followed by ReLu
and a convolutional layer with filter size [3 × 3 × 16 × 1]. In
the third branch, the first convolutional layer is the Sobel
gradient convolution filter 3 × 3 in vertical axis, followed
by a convolutional layer with filter size [3 × 3 × 1 × 16]
followed by ReLu, 2 convolutional layer with filter size
[3 × 3 × 16 × 16] followed by ReLu and a convolutional layer
with filter size [3 × 3 × 16 × 1]. Finally, a depth concatenation
layer is applied to collect the outputs of all three branches and
a convolutional layer with filters [3 × 3 × 3 × 1] is applied to
extract the final output for the given input image.

UnaryNet is trained through data in order to learn the
probabilities efficiently through loss function minimization.
Two branches of the UnaryNet are used to train the weights of
the network on pairs of input images. The two branches share
same architecture and same weights. The ‘UnaryNet’ learns
probabilities that depend on the distance of pixel intensity
and the distance of pixel features between the input images
and the target images. Higher probabilities are learned for the
pixels and edges of the input images that are similar to the
respective ones of the target images, while lower probabilities
are learned for the pixels and edges that are different from
the respective target ones. A major advantage of ‘UnaryNet’
is that the probabilities are not hand-crafted but learned by the
network, which is trained end-to-end.

For two input images 𝑥1, 𝑥2 and target image 𝑦 the loss
function L𝑈 used to train UnaryNet is formulated as:

L𝑈 = − log (𝑃 (ℓ = 0))
[
|𝑦 − 𝑥1 | + 𝑐

|𝑦 − 𝑥0 | + 𝑐
+
��𝑦𝑚𝑎𝑔 − 𝑥1𝑚𝑎𝑔

�� + 𝑐��𝑦𝑚𝑎𝑔 − 𝑥0𝑚𝑎𝑔

�� + 𝑐

]
−

− log (𝑃 (ℓ = 1))
[
|𝑦 − 𝑥0 | + 𝑐

|𝑦 − 𝑥1 | + 𝑐
+
��𝑦𝑚𝑎𝑔 − 𝑥0𝑚𝑎𝑔

�� + 𝑐��𝑦𝑚𝑎𝑔 − 𝑥1𝑚𝑎𝑔

�� + 𝑐

]
(4)

where 𝑥1𝑚𝑎𝑔, 𝑥2𝑚𝑎𝑔, 𝑦𝑚𝑎𝑔 are the Sobel magnitude of first,
second and target images respectively and 𝑐 = 0.01.

The proposed loss function allows the network to learn
probabilities that are proportional to the distance of the pixel
intensity and the distance of sobel magnitude between the
input images and the target image. The loss function is pixel
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Fig. 3. Architecture of SmoothnessNet for input images 𝑖, 𝑗 𝜖 [1, 𝑁 ].
(
𝑥𝑖 , 𝑥 𝑗

)
are depth concatenated input image pairs.

based in order to have better accuracy near the boundary of
focused and out-of-focus pixels.

B. Smoothness term and Smoothness network

The goal of the smoothness term 𝑉𝑝𝑞 is to assign lower
pairwise cost between adjacent pixels 𝑝, 𝑞 that belong to the
boundary of focused-defocused pixels, thus to the graph cut
solution and higher pairwise cost between adjacent pixels 𝑝, 𝑞

that are likely to belong to the same input image. In order to
predict the label compatibility between adjacent pixels 𝑝, 𝑞 in
the N8-neighbourhood of the decision map, ‘SmoothnessNet’
is trained. The ‘SmoothnessNet’ is trained to assign high
probabilities 𝑃

(
ℓ𝑝 = ℓ𝑞

)
to adjacent pixels 𝑝, 𝑞 that are likely

to belong to the same input image and high probabilities
𝑃
(
ℓ𝑝 ≠ ℓ𝑞

)
to pixels that are likely to belong to different input

images and thus to the graph-cut solution.
SmoothnessNet is an efficient siamese architecture that

allows all 𝑀 input image combinations of arbitrary 𝑁 images,
to be processed in parallel, in order to predict the label
compatibility between adjacent pixels 𝑝, 𝑞 for every label
combination ℓ𝑝 , ℓ𝑞𝜖 [1, 𝑁].

Fig. 3 demonstrates the SmoothnessNet architecture used
to predict the probabilities for label compatibility for two
input images and all four label combinations. Each branch
of SmoothnessNet takes as input one of the 𝑀 concatenated
image pair combinations of 𝑖, 𝑗𝜖 [1, 𝑁], where 𝑁 is the total
number of input images. The branches of SmoothnessNet share
same architecture and weights. Each branch consists of five
convolutional layers. More precisely, the first convolutional
layer has filters [3 × 3 × 2 × 16] followed by tanh, next three
convolutional layers have filters [3 × 3 × 16 × 16] and each
convolutional layer is followed by tanh, last convolutional
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layer has filters [3 × 3 × 16 × 4] and provides the pairwise
outputs for the 4 directions in the N8-neighborhood. The
decision layer of ‘SmoothnessNet’ consists of 4 softmax
activation functions. The pairwise outputs of all branches
that correspond to same direction of the N8-neighborhood go
through same softmax function. The probabilities 𝑃

(
ℓ𝑝 , ℓ𝑞

)
are predicted for all 4 directions, where 𝑝, 𝑞 adjacent pixels
in the N8 neighborhood. Lastly, the Smoothness term 𝑉 which
is a function of the predicted label probabilities is estimated
as

𝑉𝑝𝑞 = − log
[
𝑃
(
ℓ𝑝 ≠ ℓ𝑞

) ]
dis(𝑝, 𝑞)−1Iℓ𝑝≠ℓ𝑞 (5)

where dis(𝑝, 𝑞) is the euclidean distance between pixels 𝑝 and
𝑞.

‘SmoothnessNet’ is trained on pairs of input images, thus
four branches with inputs all image combinations are used to
train the network weights. All branches of ‘SmoothnessNet’
share same architecture and weights.

The loss function used to train the SmoothnessNet is:

L𝑣 = − log
(
𝑃
(
ℓ𝑝 ≠ ℓ𝑞

) ) ��∇00
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

�� + ��∇11
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

����∇01
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

�� + ��∇10
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

��
− log

(
𝑃
(
ℓ𝑝 = ℓ𝑞

) ) ��∇01
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

�� + ��∇10
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

����∇00
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

�� + ��∇11
𝑝𝑞𝑥 − ∇𝑝𝑞𝑦

��
(6)

SmoothnessNet predicts all pairwise weights between adja-
cent pixels in the N8-neighborhood. The pairwise weights are
estimated by processing pixels in a large neighborhood, equal
to the receptive field of the Smoothness Network, however,
the use of pairwise weights allows efficient graph solutions
with pairwise solver to be used instead of graph cut solvers
of high-order neighborhoods. Another major advantage of
the proposed Smoothness network architecture is the use of
efficient siamese architecture, which allows many input images
to be processed simultaneously and thus the final smoothness
probabilities.

III. DATASET GENERATION

The optimal way to train deep learning networks for MFIF
would be a real world dataset of multi-focus image pairs with
ground truth. Since such a dataset is not available, synthetic
datasets have been developed in order to train the networks of
deep learning-based MFIF methods. The creation of synthetic
dataset for MFIF is an open research issue and thus different
synthetic datasets have been introduced in order to train deep
learning networks for MFIF.

In order to train the classification-based networks Cnn-
Fusion [30], p-CNN [31], Ensemble-CNN [32], the developed
datasets included whole patches that were either clean or
blurred with Gaussian, in order to simulate the out-of-focus
effect. However, the size of the patches in the aforementioned
methods is limited to 16x16, and 32x32. In [35], the synthetic
dataset used to train the DRPL network included input image
pairs with both well-focused and out-of-focus pixels. In [44]
the dataset was created using RGB-D image sets. A major
issue of the aforementioned datasets is that they do not account
for input image pairs corrupted with noise, which is present

in real-world multi-focus images due to various sources. Thus
the networks are likely to be sensitive to image noise.

In this paper, we introduce a novel synthetic dataset for
MFIF that contains both clean image pairs and image pairs
contaminated with different types of noise. More precisely the
proposed dataset contains synthetic multi-focus image pairs
without noise, with Gaussian noise, with Salt & Pepper noise
and with Poisson noise.

The Pascal VOC 2012 dataset [51], which is used for the
classification challenge, has been used in order to create the
proposed synthetic dataset for our multi-focus image fusion
problem. Thus, 2500 random images with their respective
annotation maps were selected from the dataset. All images
were resized to 224 × 224 using bicubic interpolation, while
their respective annotation maps were resized to 224 × 224
using the nearest neighbor method. Nearest neighbor was
preferred to resize the annotation maps, in order to preserve
the same labels of the original annotation maps to the resized
ones, and avoid the introduction of artificial categories due to
interpolation. Afterwards, the labels of the annotation maps
were reduced to 2 labels, foreground and background.

Using the new annotation maps with the two labels, two
synthetic multi-focus images were created for each of the 2500
images. The first image preserved the background information
(according to the annotation map) of the initial image, while
the rest of the image was blurred with a Gaussian N

(
0, 𝜎2

1
)
.

The second image preserved the foreground information (ac-
cording to the annotation map) of the initial image, while the
rest of the image was blurred with a Gaussian N

(
0, 𝜎2

2
)
. For

each of the 2500 multi-focus image sets, the standard deviation
of the Gaussians were randomly selected, 𝜎1, 𝜎2𝜖 [0.5, 5].

The clean synthetic dataset includes 2000 synthetic multi-
focus image pairs which are used for training purposes, 250
pairs used for validation and 250 image pairs used for testing.

In order to better simulate the noise existing in real multi-
focus images, due to various sources, such as sensor noise,
image compression and image transmission, the images of
training, validation and testing datasets were augmented with
images contaminated with different types of noise. More
precisely, three noise cases are used, additive Gaussian noise
with 𝜎𝑛 = [10, 20, 30], Salt & Pepper noise with density
𝑑 = [0.01, 0.03, 0.05] and Poisson noise.

All input image pairs of the synthetic datasets, are contam-
inated with noise, while the annotation map is used to guide
the creation of the ground truth noisy image, by selecting the
respective pixels from the noisy input images.

The final training dataset contains 16000 input image pairs
with their respective ground truth fused images. The final
validation dataset contains 2000 input image pairs with their
respective ground truth fused results. The final testing dataset
contains 2000 input image pairs with their respective ground
truth fused results.

IV. EXPERIMENTAL RESULTS

First, we describe the training details and the data sets used
for evaluation. Qualitative and quantitative results are then
included in order to evaluate the performance of the proposed
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and the compared state-of-the-art MFIF methods in both real
world datasets and on synthetic datasets with Gaussian noise,
Salt & Pepper noise and Poisson noise.

A. Training Details

The experiments included in this paper, are based on Math-
works Matlab R2019b, implemented on NVidia RTX 2080-
8G with Max-Q Design, GPU graphics processing unit. The
optimizer used is Adam with 𝛽1 = 0.9, 𝛽2 = 0.99 and learning
rate 0.001. The batch size is set to 16 for both UnaryNet
and SmoothnessNet. The training is done for 45 epochs. The
developed code is available at https://github.com/obouzos/.

B. Datasets for experimental results

In order to evaluate the performance of the proposed mf-
CNNCRF and the state-of-the-art MFIF methods, experiments
on 4 real world datasets and on 3 synthetic datasets have been
contacted. The included datasets are: The RGB dataset (Lytro
dataset) which consists of 20 RGB multi-focus image pairs and
can be found in [52], the grayscale dataset, which includes
17 grayscale multi-focus image pairs and can be found in
[22], the MFFW dataset, that consists of 13 multi-focus image
fusion pairs and can be found in [53], the low-light multi-focus
dataset which is introduced in this paper and includes 10 image
pairs that can be found in https://github.com/obouzos/ and the
three synthetic datasets that contain Gaussian noise, Salt &
Pepper noise and Poisson noise respectively.

In order to create the three synthetic datasets that contain
noise for the experimental results, 50 random images along
with their respective segmentation maps of the Pascal VOC
2012 dataset [51], which were not included in the training,
validation or test set have been selected. The labels of the
segmentation maps are reduced to two, background and fore-
ground labels. Based on the segmentation map with the two
labels, two synthetic multi-focus images are developed. The
first image has foreground pixels well in focus while back-
ground pixels out-of-focus. The second image has background
pixels well-focused and foreground pixels out-of-focus. The
out-of-focus pixels have been developed by applying Gaussian
blur with red(` = 0, 𝜎𝜖 [0.5, 5]). The synthetic image pairs
are afterwards contaminated with different types of noise
in order to create three datasets. For the creation of the
‘Gaussian noise dataset’, the image pairs are contaminated
with Gaussian noise (` = 0, 𝜎 = 10, 30, 50) at same locations.
For the development of ‘Salt & Pepper noise’ dataset, im-
age pairs are contaminated with Salt & Pepper noise with
density values 𝑑 = [0.01, 0.03, 0.05]. Lastly, the ‘Poisson
noise’ dataset is constructed by contaminating the input image
pairs with Poisson noise. For every case, the ground truth
image is created by applying the ground truth decision map
(segmentation map with two labels) to the noisy input image
pairs and selecting the respective well-focused input pixels
from each input image.

C. Algorithm comparison

We compare mf-CNNCRF with 16 state-of-the-art MFIF
methods including: the spatial domain-based methods: DSIFT

[18] and GFDF [20], the transform domain-based methods:
DCHWT [54], SIGPRO [16], the combined-based methods:
mf-CRF [24], Joint [27], MGIM [28] and the deep learning-
based methods: CNNFusion [30], SESF [55], IFCNN [44],
ECNN [32], DRPL [35], MSFIN [40], UniFusion [45],
SwinFusion [47] and MUFusion [48].

D. Experiments on Real-World datasets

The evaluation of fused images for the real world datasets,
that do not have reference image, is not easy. In order to assess
fused image quality, image metrics as described in [56] are
employed for the RGB and grayscale datasets. According to
Liu et al. [56] the image quality metrics to assess fused image
quality are classified in four categories: (1) information theory-
based metrics, (2) image feature-based metrics, (3) image
structural similarity-based metrics and (4) human perception-
based metrics. Four metrics, one from each category, are used
in order to assess the fused image quality of the proposed and
the state-of-the-art MFIF methods in the Lytro and grayscale
datasets. The included metrics are: Mutual Information - 𝑀𝐼,
gradient-based fusion performance - 𝑄𝐺 , Piella’s Metric - 𝑄𝑃 ,
Chen-Blum Metric - 𝑄𝐶𝐵. Higher values in the four metrics
indicate better fused image quality.

1) RGB dataset: Fig. 4 shows the source images of the
volleyball scene of the RGB dataset along with the fusion
results of the compared methods and magnifications of two
selected regions. Spatial domain methods DSIFT and GFDF
cannot preserve accurately the well-focused pixels of the
region in the red box, and the background is out-of-focus.
Transform domain DCHWT and IFCNN have lower contrast
than the original images. CNNFusion and SESF cannot pre-
serve accurately the background in the region of the red box.
SESF has visible artifacts near the shoe of the region in the
green area. ECNN cannot preserve in focus the foreground
and background in the region of the red box and has artifacts
near the shoes in the region of the green box. DRPL has
visible artifacts in the region of the green box as shown
in the magnification. Joint has artifacts in the blue region.
SIGPRO and UNIFusion can not preserve accurately the well
focused areas in the red regions. The red region is not well
focused in MSFIN. MGIM has artifacts on the shoe in the
green region. SwinFusion and MUFusion have lower contrast
than the original images and the back of the shoe in the green
region is not well focused. mf-CRF and the proposed mf-
CNNCRF preserve best the well focused pixels found in the
source images for the Volleyball scene of the RGB dataset.

Table I includes the objective evaluation of the proposed
method and state-of-the-art methods for the RGB dataset.
The proposed method has the a) highest 𝑀𝐼, indicating that
during fusion, preserves best the information of the input
images, b) the highest 𝑄𝐺 , i.e. preserves better the edges
that are present in the input images, c) the second best 𝑄𝑃 ,
i.e. preserves better the structures of the input images and d)
highest 𝑄𝐶𝐵, indicating better visual quality according to the
human perception metric. Thus, mf-CNNCRF outperforms the
state-of-the-art methods in the ‘Lytro’ dataset in most metrics.
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(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(l) Joint

(o) UNIFusion (p) MGIM (q) SwinFusion (r) MUFusion

(m) SIGPRO (n) MSFIN(h) SESF (i) IFCNN (j) ECNN (k) DRPL 

(s) mf-CNNCRF

Fig. 4. Source and fused images for the ‘Volleyball’ scene of the RGB dataset

(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(h) SESF (i) IFCNN (j) ECNN (k) DRPL 

(l) mf-CNNCRF

(l) Joint (m) SIGPRO (n) MSFIN

(o) UNIFusion (p) MGIM (q) SwinFusion (r) MUFusion

Fig. 5. Source and fused images ‘Clocks’ scene of the grayscale dataset.

2) Grayscale dataset: Fig. 5 demonstrates the two source
images and the fused images for the ’Clocks’ scene of the
grayscale dataset. The spatial domain methods DSift and
GFDF can not preserve accurately the clock boundary in both
magnified areas. The transform domain method DCHWT can
not preserve the boundary of the left clock in both magnified
regions. mf-CRF preserves accurately the boundary in both

regions. In CNNFusion and SESF, the boundary of the left
clock is out of focus in both regions. In IFCNN there is artifact
in the boundary in the region that corresponds to the red box.
In ECNN the left clock boundary is out of focus in both
magnified regions. In DRPL in the region that corresponds to
the red region, there is artifact on the clock boundary. In Joint,
SIGPRO, MSFIN, MGIMG the boundary of the clock in both
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TABLE I
MEAN VALUES OF METRICS MI, QG, QP, QCB ON THE RGB DATASET.

Methods 𝑀𝐼 𝑄𝐺 𝑄𝑃 𝑄𝐶𝐵

DSIFT [18] 8.9315 0.7633 0.8951 0.8092
GFDF [20] 8.7410 0.7633 0.8975 0.8114

DCHWT [54] 6.7298 0.7184 0.8893 0.6924
mf-CRF [24] 8.9506 0.7641 0.8967 0.8098

CNNFusion [30] 8.6420 0.7629 0.8963 0.8084
SESF [55] 8.6729 0.7611 0.8954 0.8049

IFCNN [44] 7.0400 0.7337 0.8934 0.7292
ECNN [32] 8.8784 0.7599 0.8861 0.8075
DRPL [35] 8.9324 0.7628 0.8935 0.8066
Joint [27] 6.9991 0.7435 0.8528 0.7176

Sigpro [16] 8.8518 0.7632 0.8964 0.8104
MSFIN [40] 8.9507 0.7639 0.8969 0.8099

UNIFusion [45] 7.3254 0.7403 0.8764 0.7410
MGIM [28] 8.8876 0.7553 0.8356 0.8000

SwinFusion [47] 6.5127 0.7118 0.8508 0.6725
MUFusion [48] 6.0381 0.6739 0.8385 0.6497
mf-CNNCRF 8.9533 0.7641 0.8972 0.8121

TABLE II
MEAN OF FOUR METRICS ON THE GRAYSCALE DATASET.

Methods MI Qg Qp Qcb
DSIFT [18] 8.6267 0.7405 0.8212 0.7851
GFDF [20] 8.3826 0.7402 0.8232 0.7840

DCHWT [54] 5.9965 0.6781 0.8096 0.6752
mf-CRF [24] 8.7034 0.7422 0.8210 0.7891

CNNFusion [30] 8.3190 0.7390 0.8233 0.7832
SESF [55] 8.4289 0.7402 0.8232 0.7828

IFCNN [44] 5.9641 0.6743 0.8063 0.6725
ECNN [32] 8.6543 0.7381 0.8094 0.7813
DRPL [35] 8.5751 0.7229 0.8067 0.7628
Joint [27] 6.7541 0.7212 0.8076 0.7234
Sigpro [16] 8.5721 0.7395 0.8173 0.7799

MSFIN [40] 8.6855 0.7365 0.8107 0.7863
UNIFusion [45] 7.0361 0.7112 0.7865 0.7214

MGIM [28] 8.5324 0.7231 0.7635 0.7658
SwinFusion [47] 5.8265 0.6806 0.7815 0.6602
MUFusion [48] 5.1646 0.5959 0.5130 0.7335
mf-CNNCRF 8.7985 0.7431 0.8321 0.7904

regions is not well preserved. In UniFusion and SwinFusion
the boundary of the clock in green region is not well preserved.
The boundary of the clock in the red region is not accurately
preserved in MUFusion method. The boundary of both regions
is accurately preserved in both regions by mf-CNNCRF.

Table II includes the objective evaluation of the proposed
method and state of the art methods for the grayscale dataset
[22]. In essence, mf-CNNCRF exhibits the highest MI for the
grayscale dataset, and thus can preserve better the original
information of the input images. The proposed method has the
highest 𝑄𝐺 value and thus can preserve better the gradient
information of the input images. Moreover, mf-CNNCRF
preserves better the structures of the input images, since it
has highest average 𝑄𝑃 value. Lastly, mf-CNNCRF has better
fused image quality according to the human-perception metric
𝑄𝐶𝐵.

3) MFFW dataset: Table III includes the objective evalua-
tion of the proposed and the compared methods. The proposed
method has higher mean Mutual information value compared
to the other methods, thus preserves the original better. The
gradient information of the original images is preserved best
in the proposed fused image, since mf-CNNCRF has higher
mean 𝑄𝐺 value for the MFFW dataset. mf-CNNCRF ranks

TABLE III
MEAN VALUES OF METRICS 𝑀𝐼 , 𝑄𝐺 , 𝑄𝑝, 𝑄𝑐𝑏 ON THE MFFW DATASET.

Methods 𝑀𝐼 𝑄𝐺 𝑄𝑝 𝑄𝑐𝑏

DSIFT [18] 8.2660 0.7434 0.8311 0.7335
GFDF [20] 7.8174 0.7444 0.8458 0.7526

DCHWT [54] 5.6786 0.6881 0.8389 0.6324
mf-CRF [24] 8.4046 0.7453 0.8373 0.7568

CNNFusion [30] 7.7264 0.7383 0.8400 0.7438
SESF [55] 7.7109 0.7419 0.8376 0.7397

IFCNN [44] 5.8065 0.6867 0.8258 0.6420
ECNN [32] 8.2431 0.7397 0.8286 0.7351
DRPL [35] 8.1611 0.7363 0.8253 0.7176
Joint [27] 6.3374 0.7107 0.7798 0.6616

Sigpro [16] 8.1812 0.7449 0.8398 0.7470
MSFIN [40] 8.3676 0.7370 0.8254 0.7420

UniFusion [45] 5.0203 0.6455 0.7893 0.6432
MGIM [28] 8.1964 0.7366 0.7838 0.7378

SwinFusion [47] 5.4657 0.6402 0.7845 0.6078
MUFusion [48] 5.1433 0.5850 0.7301 0.5717
mf-CNNCRF 8.4133 0.7455 0.8431 0.7594

second in the metric 𝑄𝑃 with very close mean value to GFDF
method. Lastly, according the the human inspired metric 𝑄𝐶𝐵

mf-CNNCRF has higher fused image quality than the state-
of-the-art compared methods.

Fig. 6 demonstrates the source images and the fused images
for the scene ’Flowers’ of the MFFW dataset. Spatial domain
methods DSift and GFDF have artifacts in the green region.
DCHWT has artifacts around the flower in the green region
and the boundaries are not well preserved in the blue region.
SIGPRO has artifacts around the boundaries of the flower
in the blue region. In mf-CRF the boundaries of the flower
in blue region are not well preserved. Joint and MGIM
methods have artifacts in both regions. In CNNFusion there
are artifacts around the flower in the green region. SESF and
IFCNN methods have artifacts in both regions. ECNN can not
accurately preserve the boundaries of the flower in the green
region. DRPL and MSFIN have artifacts in the blue region.
UNIFusion, SwinFusion and MUFusion have artifacts in both
regions.

4) Low light dataset: In low light environments, camera
sensors produce dense noise in order to compensate for the
low light. A dataset of 10 multi-focus image fusion pairs
captured in low-light environment is introduced. These im-
ages have visible camera sensor noise, which was produced
due to the low light available in each schene. The low
light multi-focus image fusion dataset is available online at:
https://github.com/obouzos/.

Fig. 7 demonstrates the source images and the fused images
for the set from the low-light multi-focus dataset. Since the en-
vironment has low-light, the camera sensor noise is dense. Two
regions were selected and magnified. Spatial domain methods
DSIFT and GFDF fail to accurately preserve the boundaries
of well focused objects in both regions. DCHWT, SIGPRO
and mf-CRF can not preserve accurately the boundaries of the
region in green. Joint and MGIM can not preserve accurately
the cup boundaries in the red region, which remain out-of-
focus. In CNNFusion and SESF, the cup in the red region is
not well focused. SESF also cannot preserve well the object
boundaries in the green region. IFCNN can not preserve well
the well-focused object boundaries in both green and red
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(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(h) SESF (i) IFCNN (j) ECNN (k) DRPL (l) Joint (m) SIGPRO (n) MSFIN

(l) mf-CNNCRF(o) UNIFusion (p) MGIM (q) SwinFusion (r) MUFusion

Fig. 6. Source and fused images for scene flowers of the MFFW dataset.

(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(l) mf-CNNCRF(o) UNIFusion (p) MGIM (q) SwinFusion (r) MUFusion

(h) SESF (i) IFCNN (j) ECNN (k) DRPL (l) Joint (m) SIGPRO (n) MSFIN

Fig. 7. Source and fused images from the developed low-light dataset.

regions. In ECNN and DRPL the socket in green region is out-
of-focus. MSFIN can not preserve well the boundaries in both
regions. UNIFusion introduces artifacts in the fused image and
the boundaries of objects in both regions are not well focused.

In SwinFusion, the red region is out-of-focus and part of the
object in the green region is also out-of-focus. In MUFusion,
the fused image has artifacts and the object boundaries in both
regions are not well preserved. In the proposed method, the
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TABLE IV
MEAN VALUES OF METRICS MI, QG, QCB ON THE LOW LIGHT DATASET.

Methods MI 𝑄𝑔 Qcb
DSIFT [18] 7.5831 0.6997 0.7464
GFDF [20] 7.3641 0.7063 0.7456

DCHWT [54] 6.6218 0.6305 0.6697
mf-CRF [24] 7.5523 0.7004 0.7531

CNNFusion [30] 7.3637 0.7043 0.7417
SESF [55] 7.2753 0.6996 0.7306

IFCNN [44] 6.1427 0.6131 0.6782
ECNN [32] 7.4429 0.6949 0.7179
DRPL [35] 7.3200 0.6896 0.7033
Joint [27] 6.8412 0.6699 0.6981

SIGPRO [16] 7.3737 0.6979 0.7365
MSFIN [40] 7.5622 0.6975 0.7372

UNIFusion [45] 5.6853 0.3573 0.6432
MGIM [28] 7.6539 0.6918 0.7465

SwinFusion [47] 5.7312 0.5111 0.6234
MUFusion [48] 5.1575 0.3079 0.5833
mf-CNNCRF 7.5872 0.7101 0.7556

object boundaries in both regions are well-preserved and the
fused image does not have artifacts.

Table IV includes the objective evaluation of the proposed
and the compared methods. The proposed method has higher
Mutual Information than the compared methods for the Low
Light Dataset, thus preserves best the original information.
Moreover, mf-CNNCRF exhibits highest value of 𝑄𝐺 , which
indicates that preserves best the gradients of the original low
light images. Lastly, mf-CNNCRF has highest 𝑄𝑐𝑏 value
which is indicates that the proposed fused image has higher
visual quality than the compared methods. The proposed
method is more robust to the real-world noise of unidentified
type compared to the other methods.

E. Experiments on Noisy Synthetic datasets

In order to evaluate mf-CNNCRF and state-of-the art meth-
ods in the presence of noise, two quality metrics are used,
Root Mean Square Error (RMSE) and Peak Signal to Noise
Ratio (PSNR).

Since ground truth image is available, 𝑅𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅

metrics are used to evaluate the quality of the fused images of
the proposed and the state-of-the-art methods. Lower RMSE
values and higher PSNR values indicate better fused image
quality.

The UNIFusion method was retrained on the proposed
dataset and the results on the noisy datasets are included for
comparison.

1) Gaussian Noise evaluation: Fig. 8 depicts the source
images and the fused images for input images corrupted with
Gaussian noise with 𝜎 = 30. DSift cannot preserve the well
focused region of the red box. GFDF can preserve both
regions. In DCHWT, the image has lower contrast than the
input images and can not preserve the well focused regions
in the red area. The mf-CRF preserves both regions, however,
requires prior knowledge of 𝜎. CNNFusion and SESF can not
preserve the well focused pixels of the red area. IFCNN has
lower contrast compared to the input images. ECNN can not
preserve the well focused pixels in red box area. In DRPL
some of the well focused pixels in the area of the red box

TABLE V
RMSE/PSNR FOR COMPARED METHODS FOR GAUSSIAN NOISE

𝑁

(
0, 𝜎2

)
.

Methods RMSE PSNR

𝜎 = 10 𝜎 = 30 𝜎 = 50 𝜎 = 10 𝜎 = 30 𝜎 = 50
DSIFT [18] 1.5694 1.5591 1.5604 35.9909 35.4506 35.2891
GFDF [20] 1.5060 1.5443 1.5666 37.0070 36.7745 36.7274

DCHWT [54] 3.4690 4.1629 4.2734 32.4730 30.4008 29.8461
mf-CRF [24] 1.2860 1.3507 1.3937 38.0907 37.4330 36.7118

CNNFusion [30] 1.6829 1.6774 1.6654 36.1205 35.9824 35.9422
SESF [55] 1.5289 1.6520 1.6543 36.7794 36.2192 36.2759

IFCNN [44] 3.3746 5.9648 6.8673 32.1912 25.9303 23.4013
ECNN [32] 2.0064 3.1150 4.2832 32.9758 28.9209 25.8115
DRPL [35] 2.1795 3.6554 3.9212 35.4851 29.1489 28.0977
Joint [27] 1.4907 2.4706 2.8470 33.6382 31.7076 31.0473

Sigpro [16] 1.3252 1.5748 1.6880 37.4120 35.6770 34.7140
MSFIN [40] 2.1577 3.5311 3.6073 33.9450 28.5070 28.1089

UNIFusion [45] 4.5071 5.2038 5.0883 26.8822 25.5543 26.1245
UNIFusion (retrained) 4.4546 4.7466 4.6918 27.3591 27.2498 27.7961

MGIM [28] 1.9627 4.1260 3.9405 32.9954 26.0799 26.5090
SwinFusion [47] 1.9674 3.3456 5.2186 30.8878 28.2156 26.0017
MUFusion [48] 1.5928 2.2021 3.1983 21.3574 16.7232 14.3383

mf-CNNCRF 0.5396 0.6717 0.7653 41.5071 40.4088 39.5173

are out of focus. In Joint, SIGPRO, UNIFusion and retrained
Unifusion the red region is not well focused. In MSFIN and
MGIM both regions are out-of-focus. In SwinFusion, the red
region is out-of-focus. In MUFusion red region is out-of-focus
and fused image has more noise than the original images. The
proposed mf-CNNCRF preserves accurately the well-focused
pixels in both region, without requiring any prior knowledge
about the noise and the noise characteristics.

In order to evaluate the performance of fusion methods
in the presence of Gaussian noise, additive Gaussian Noise
with ` = 0 and 𝜎 = [10, 30, 50] is applied to the synthetic
dataset of 50 image pairs. Gaussian Noise is added at the
same positions in both input images of every set. Table V
includes the RMSE and PSNR metrics comparison, in order
to compare the proposed method with state-of-the-art MFIF
methods. It is important to note that the proposed method
does not have any prior knowledge about the 𝜎2, while the
mf-CRF approach requires prior knowledge for the transform
domain coefficient shrinkage. The proposed mf-CNNCRF has
the lowest mean RMSE value and highest mean PSNR value
for all 𝜎𝜖 {10, 30, 50}, demonstrating the robustness of the
proposed method in the presence of Gaussian noise.

Table V includes the RMSE and PSNR metrics in order
to evaluate the performance of the proposed and state-of-the-
art methods in the presence of Gaussian noise. Lower RMSE
values indicate better image quality and fused image that is
closer to the target fused image. The proposed method has
the lowest RMSE value for all 𝜎 = (10, 30, 50) and the fused
image is closer to the target fused image than the compared
methods. Higher PSNR values indicate better fused image
quality. The proposed method has the highest PSNR value
for all 𝜎 = (10, 30, 50). Object evaluation demonstrates the
robustness of mf-CNNCRF in the presence of Gaussian noise,



IEEE TRANS. ON IMAGE PROCESSING, VOL. X, NO. X, AUGUST 2015 12

(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(h) SESF (i) IFCNN (j) ECNN (k) DRPL (l) Joint (m) SIGPRO (n) MSFIN

(o) UNIFusion (p) UNIFusion
(retrained)

(q) MGIM (t) mf-CNNCRF(r) SwinFusion (s) MUFusion

Fig. 8. Source and fused images for the Gaussian dataset for 𝜎 = 30.

without prior knowledge of the noise type and statistics.

2) Salt & Pepper evaluation: Fig. 9 includes the qualitative
evaluation of the compared methods for Salt & Pepper noise
with density 𝑑 = 0.05. DSIFT cannot preserve accurately the
well-focused pixels in the area with the green box. In GFDF
and DCHWT, the fused image has lower contrast than the input
images. In DCHWT, the area in red box is out of focus and
are visible artifacts in the area of the green box. The mf-CRF
can not preserve the focused pixels in both areas of the green
and red boxes. In CNNFusion and SESF, both selected regions
have out of focus pixels. In IFCNN, the fused image has more
noise than each of the input images. In ECNN, both regions of
the green and red boxes remain out of focus. In DRPL, there
are artifacts in the area of the green box. In Joint, SwinFusion
and MUFusion, the red region is not well focused. In SIGPRO,
UNIFusion, retrained UNIFusion and MGIM the green region
is not well focused. The image produced by MUFusion has
lower contrast than the original images and the green region is
out-of-focus. The proposed mf-CNNCRF preserves the well-
focused pixels in both selected areas of the green and red
boxes.

In order to evaluate the performance of fusion methods in
the presence of Salt & Pepper noise, Salt & Pepper noise
with density 𝑑 = [0.01, 0.03, 0.05] is applied to the clean
image pairs and the ground-truth is extracted by selecting the
respective pixels of input images based on the ground-truth
binary map. Table VI includes the RMSE and PSNR values for
densities 𝑑 = [0.01, 0.03, 0.05]. The proposed mf-CNNCRF
has the lowest RMSE value and highest PSNR value than the
state-of-the-art MFIF methods. Thus, mf-CNNCRF is more ro-
bust to Salt & Pepper noise for densities 𝑑 = [0.01, 0.03, 0.05],

TABLE VI
RMSE/PSNR FOR COMPARED METHODS FOR SALT & PEPPER NOISE

WITH DENSITY 𝑑.

Methods RMSE PSNR

𝑑 = 0.01 𝑑 = 0.03 𝑑 = 0.05 𝑑 = 0.01 𝑑 = 0.03 𝑑 = 0.05
DSIFT [18] 1.8015 2.2517 2.5080 27.0784 22.1538 20.2426
GFDF [20] 1.7128 2.2293 2.7115 28.9642 24.0510 21.6412

DCHWT [54] 4.3809 5.8072 6.4859 24.2867 20.5738 18.8345
mf-CRF [24] 1.8513 2.7776 3.0777 24.8823 20.1078 18.0188

CNNFusion [30] 2.1320 2.9551 3.5687 27.8879 22.7490 20.4593
SESF [55] 2.6945 3.5997 4.1030 24.4180 19.4385 17.3319

IFCNN [44] 3.6754 5.6483 6.7252 23.7389 19.4124 17.4541
ECNN [32] 2.5459 4.0012 4.8820 24.9360 18.9538 16.1941
DRPL [35] 1.3734 2.4688 3.1398 23.4983 18.9296 16.8639
Joint [27] 2.8903 4.0363 4.6225 24.1998 20.6993 19.0134

Sigpro [16] 1.3926 1.5614 1.8350 30.9404 27.2993 24.3097
MSFIN [40] 1.1142 1.5945 2.0632 30.8606 25.1948 23.3883

UNIFusion [45] 2.4086 2.8693 3.3102 30.2885 26.4748 23.9677
UNIFusion (retrained) 3.0456 3.5387 3.9595 28.1812 25.0043 22.9938

MGIM [28] 2.0248 2.4053 2.6948 26.1130 22.0677 20.3552
SwinFusion [47] 2.5273 3.5622 4.3311 24.9633 21.1266 19.2653
MUFusion [48] 1.7963 2.5323 3.1271 17.4746 14.7837 13.6316

mf-CNNCRF 0.6086 0.7336 0.9662 36.9693 32.8821 28.5414

compared to the state-of-the-art MFIF methods.
3) Poisson noise evaluation: Fig. 10 includes the qualitative

evaluation for the dataset containing Poisson noise. Two
regions are selected and magnified. In DSIFT, both regions
are out of focus. In GFDF, the chair in the green box remains
out-of-focus. In DCHWT, the image has lower contrast than
the input images. In mf-CRF, the chair in the area with green
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(h) SESF (i) IFCNN (j) ECNN (k) DRPL 

(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(t) mf-CNNCRF

(l) Joint (m) SIGPRO (n) MSFIN

(o) UNIFusion (p) UNIFusion
(retrained)

(q) MGIM (r) SwinFusion (s) MUFusion

Fig. 9. Salt & Pepper Comparison for density 𝑑 = 0.05.

(c) DSift (d) GFDF (e) DCHWT (f) mf-CRF(b) Source 2(a) Source 1 (g) CNNFusion

(t) mf-CNNCRF(o) UNIFusion (p) UNIFusion
(retrained)

(q) MGIM (r) SwinFusion (s) MUFusion

(l) Joint (m) SIGPRO (n) MSFIN(h) SESF (i) IFCNN (j) ECNN (k) DRPL 

Fig. 10. Source and fused images for the Poisson dataset.

box is half out-of-focus. In CNNFusion and SESF, the chair
in the selected region with green box remains out of focus. In
IFCNN, the fused result has lower contrast than each of the
input images. In ECNN, the selected area of the green box
is out-of-focus. In DRPL, there are visible artifacts on the
window in the area of the green box. In Joint, SIGPRO and

MSFIN the green region is not well focused. In UNIFUsion,
retrained UNIFusion and MGIM the green region is out-of-
focus. In SwinFusion and MUFusion the fused image has
lower contrast than the original images and parts of objects
in green region are out-of-focus. The proposed mf-CNNCRF
preserves accurately the well focused pixels in both selected
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TABLE VII
RMSE/PSNR FOR COMPARED METHODS FOR POISSON NOISE.

Methods RMSE PSNR

DSIFT [18] 2.7556 31.4108
GFDF [20] 2.7779 32.0567

DCHWT [54] 5.1700 28.4661
mf-CRF [24] 2.2856 34.9521

CNNFusion [30] 2.9810 31.5903
SESF [55] 3.5593 29.9626

IFCNN [44] 4.9599 28.6489
ECNN [32] 3.1361 29.5647
DRPL [35] 3.9808 28.5953
Joint [27] 3.7800 29.0042

Sigpro [16] 3.1323 30.3853
MSFIN [40] 2.7784 32.5744

UNIFusion [45] 6.8286 23.7262
UNIFusion (retrained) 6.4224 24.0025

MGIM [28] 3.5217 28.1717
SwinFusion [47] 3.5539 27.9271
MUFusion [45] 2.4491 22.2399
mf-CNNCRF 2.0350 36.4569

regions in the presence of Poisson noise. Lastly, in order to
evaluate the performance of compared methods to the presence
of Poisson noise, Poisson noise was used to corrupt the input
image pairs and ground-truth image was computed based on
the ground-truth binary map. Table VII includes the objective
evaluation of compared methods in the presence of Poisson
noise with the metrics RMSE and PSNR. The proposed mf-
CNNCRF exhibits the lowest RMSE value and the highest
PSNR values verifying the robustness of mf-CNNCRF in the
presence of Poisson noise.

V. COMPUTATIONAL COST COMPARISON

In this section, a comparison between the computational
cost of the benchmarked approaches is presented. Since the
presented methods are implemented in different frameworks,
we focused our study only on the deep learning based ap-
proaches. In addition, the comparison is focused on two
factors: a) the number of trainable parameters, b) the prediction
time. In the proposed method, both CNN networks of the
CRF model are efficient siamese architectures. Thus, the
branches of each CNN network, share the same weights and
the same architecture. Table VIII includes the total number
of the trainable parameters for the compared deep learning-
based methods. It is evident that CNNFusion has the greatest
number of trainable parameters, followed by MSFIN and
ECNN. In contrast, the proposed method has the smallest
number of trainable parameters, followed by UniFusion. This
shows that the proposed approach has the smallest complexity
from all examined deep learning based approaches. Table VIII
allows depicts the average prediction time for grayscale input
image pairs of size 224 × 224 for all trained deep learning
based approaches. The measurements were all performed on
the PC, described in Section IV-A. It is clear that ECNN
and CNNFusion are the methods with the highest inference
time, while SESF is the fastest deep learning-based method

TABLE VIII
COMPLEXITY COMPARISON BETWEEN DEEP LEARNING METHODS IN

TERMS OF NUMBER OF TRAINABLE PARAMETERS AND AVERAGE
PREDICTION TIME (SEC).

Methods Parameters Time (𝑠)

CNNFusion [30] 8759 ×103 33.476
SESF [55] 74.8 ×103 0.347

IFCNN [44] 74.2 ×103 0.749
ECNN [32] 1587.2 ×103 86.123
DRPL [35] 1070 ×103 0.424

MSFIN [40] 4588.9 ×103 0.437
UNIFusion [45] 38.7 ×103 6.278
SwinFusion [47] 973.7 ×103 0.874
MUFusion [45] 554.7 ×103 0.53
mf-CNNCRF 22.5 ×103 0.637

with 0.347 sec. The proposed method features a favourable
processing time of 0.637 sec, which is in the same par with
most methods.

VI. CONCLUSION

In this paper, a CNN-based CRF model, named mf-
CNNCRF, for multi-focus image fusion is proposed. The
proposed method uses the rich prior potentials learned through
CNN training and the long range interactions of the CRF
model in order to reach structured inference with global or
close to global solution for multi-focus image fusion. The
proposed framework uses efficient siamese architectures, in
order to support arbitrary number of the input images that
can be processed in parallel, making mf-CNNCRF computa-
tionally efficient. The developed dataset includes both clean
training images and training images with Gaussian noise,
Salt & Pepper noise and Poisson noise. Experimental results
demonstrate that the proposed mf-CNNCRF outperforms state-
of-the-art MFIF methods on both qualitative and quantitative
evaluations for both clean images and images with Gaussian
noise, Salt & Pepper noise and Poisson noise and exhibits
high generalization capabilities. It is important to note that the
proposed algorithm does not require knowledge of the noise
type or statistics. This is the first work, to the best of our
knowledge, that uses a CNN architecture to learn rich CRF
priors. Our future work will focus on refining the network
architectures for UnaryNet and SmoothnessNet and replace the
𝑎-expansion algorithm with a deep learning based network.
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