
A memristive circular buffer for real-time signal
processing

Christos Sichonidis∗, Ioannis Vourkas†, Nikolaos Mitianoudis∗ and Georgios Ch. Sirakoulis∗

∗Department of Electrical and Computer Engineering
Democritus University of Thrace, Xanthi, Greece
Emails: {csichoni, nmitiano, gsirak}@ee.duth.gr

† Department of Electrical Engineering
Pontificia Universidad Católica de Chile, Santiago, Chile

Email: iovourkas@uc.cl

Abstract—Thanks to their ability to store information in a
continuous (analog) form, memristors are termed as well-suited
for several real-time signal processing tasks. In this context, here
we present a memristive circular buffer, using memristor and its
multi-bit storage ability to temporarily store encoded informa-
tion in a compact form, thus improving the area performance
as well as the delay and energy consumption of the circuit,
compared to conventional designs. We introduce the arithmetic
encoding principles for the proposed circuit, explain the en/de-
coding mechanisms for the memristors-based data-management
operations, and finally present the target application. For our
simulation-based study we used a threshold-type device model of
a bipolar voltage-controlled memristor.

I. INTRODUCTION

Arithmetic encoding is a form of entropy encoding used in
lossless data compression. It is defined as a variable-length
message coding based on the frequency of every character.
The message is represented by a fraction which is the re-
peated offset-plus-product reduction of the range (offset) and
probability (product) of each character [1]. The offset can
be practically represented by variable physical sizes which
may take any value between two outliers. The characters, or
symbols, as we may refer to them that the message consists
of, are both encoded/decoded serially by dividing the available
range in smaller intervals and then picking the one that
represents the encoded/decoded symbol, which then becomes
the range for the next symbol. The coding process is stopped
when the offset becomes smaller than the noise level of the
system, making it difficult (or impossible) to distinguish the
different symbols. The encoding is based on the a priori
knowledge of the incidence of the symbols in the message,
so that the maximum number of symbols is encoded.

In our case, we correspond the variable physical size to
the variable resistance of a memristor, taking values within
the range [RON , ROFF] [2]. We particularly apply a constant
input current to the memristors, so we have a resistance
proportional to the corresponding voltage drop on its terminals,
which is easy to measure (and thus manage the size) and
feed to the rest of the circuit components. Via the employed
arithmetic encoding operations, the message is encoded and
stored in memristors, arranged in a circuit known as circular
buffer (CB).

The term CB is frequently used in software programming
and it refers to an area of memory used to store a continuous
stream of data, starting again at the beginning of the buffer
after passing its end. Usually separate processes access the
CB for reading and writing and separate read- and write-
pointers are maintained, which are not allowed to pass each
other’s position. However, implementing CBs in hardware
(HW) could be advantageous in terms of computing speed,
improving significantly the execution of repetitive digital sig-
nal processing (DSP) tasks in complex DSP algorithms.

To this end, in this paper we present a novel implemen-
tation of a CB circuit using memristor technology in multi-
bit memory cells for arithmetic coding. Thanks to multi-
bit storage, i.e. fewer necessary memory cells, the memory
addressing circuitry results simpler, the read/write operations
become faster, and the circuit area is significantly reduced. We
particularly build upon the work presented in [3] and invoke
the proposed here circuits in a novel CB circuit design. In our
implementation we rely on threshold-type switching bipolar
memristors [2], since this type suits best our purposes. In fact,
such memristors are unaffected by noise level lower than their
switching voltage threshold, below which the induced memris-
tance change can be considered negligible, hence guaranteeing
system stability and preventing from bit losses via disturbed
resistive states.

II. THRESHOLD-BASED MEMRISTOR

In his seminal 1971 paper [4], Leon Chua first spoke
about the existence of the fourth fundamental passive circuit
element (besides the resistor, capacitor and inductor) which he
called a memristor (short for memory-resistor). The memristor
(here used to describe both an ideal memristor as well as a
generalized memristive device [5]) is a passive two-terminal
electronic device whose behavior is described by a nonlinear
constitutive relation: v = R(x, i) · i between the voltage
drop at its terminals v and the current flowing through the
device i, where: dx/dt = f(x, i) and x denotes a set of
internal state-variables, whereas the nonlinear function R(x, i)
is called memristance and has the unit of Ohms (Ω). When
the applied voltage is turned off, a memristor still remembers
how much voltage was applied before and for how long; thus

presenting memory of its past, a property which qualifies it as
a fundamental circuit element.

Threshold-type switching is closer to the actual behav-
ior of most experimentally realizable memristive devices.
Throughout this work, in all simulations we use a threshold-
type model of a voltage-controlled bipolar memristor [2],
which attributes memristance-switching to quantum tunneling.
The model is based on the assumption that the switching-
rate is small below (fast above) a voltage threshold (namely
VSET or VRESET). The model permits asymmetric thresh-
olds (|VSET | 6= |VRESET |) and different tunneling distance
change-rates for SET and RESET operations. The values of
the parameters of the model were set as {a, b, c,m, fo, Lo}
= {10, 500, 1, 000, 0.1, 82, 310, 5} with {RON , ROFF } =
{2, 200}kΩ and {VSET , VRESET } = {1.5,−1.5}V. State-
reading of memristors relies on using a voltage lower than the
voltage thresholds, hence it does not affect (or affects negli-
gibly) the stored resistive state. For our particular purposes,
based on the state-dependent Ohm’s Law in (1), in this work
the selected voltage-controlled memristor model was converted
to its current-controlled version, i.e. considering current as the
input signal instead of voltage, without loss of generality.

III. FUNDAMENTALS OF ARITHMETIC ENCODING

This section presents the processes used in arithmetic coding
on memristive devices. Such processes are the basis for the
proposed CB circuit, transferring data to/from memory cells.

A. Write operation

In our work, the write operation to a memristor device
consists of three consecutive steps and the corresponding
circuit is shown in Fig. 1 [3]. The first step is the creation
of a reference voltage on the “Memristor switchbox”. Since
this is the objective of this operation, when it is accomplished,
then the input current flow stops, as shown in the respective
simulation results in Fig. 2. For this reason, the reference
voltage is driven to the inputs of two comparators. Afterward,
the current resistive state of the memristors is read and
then a decision is made whether it should be increased or
decreased, via the application of a negative (BL’) or a positive
(BL) current, respectively. To this end, the “write direction”
comparator selects the corresponding bit-line. The final step
consists in driving the memristors with a constant current
until the voltage drop on their terminals becomes equal to
the reference voltage, and the “write termination comparator”
gives 0V output, i.e. “End” flag signal. The simulation results
in Fig. 2 give an insight to what happens to a memristor based
on the model of [2] during the write procedure.

According to [3], the criterion for the cease of the encoding
procedure is whether the minimum distinguishable voltage
Vmin is smaller than the minimum allowed value, i.e.:

Vmin ≥ 2(Vn + Vdrift + VSH) (1)

where Vn is the voltage corresponding to the circuit noise,
Vdrift is the maximum voltage caused by resistive drift due to
delayed ending of the write operation, and VSH is the voltage

Crossbar
Vref

BL BL WL

Data cell

Vgnd
Vdd

Vwrite

WL

En0 En2 En2

En1

En1

Sense node

Direction select

End

Write termination
comparator

Write direction
comparator

Memristor
Switchbox

Fig. 1. The write operation circuit (adapted from [3]).

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

V
ol

ta
ge

(V
)

Simulation Time (s)
0 0.05 0.1 0.15 0.2

0

0.5

1

1.5

2

2.5
x 10

5

M
em

ris
ta

nc
e(

O
hm

)

Simulation Time (s)

0 0.05 0.1 0.15 0.2

8.06

8.08

8.1

8.12

8.14

8.16
x 10

−6

C
ur

re
nt

(A
)

Simulation Time (s)
0 0.5 1 1.5 2

8.06

8.08

8.1

8.12

8.14

8.16
x 10

−6

C
ur

re
nt

(A
)

Voltage(V)

Fig. 2. Simulation results concerning the change of the voltage and resistance
of a memristor in time.

error introduced to the system by the sample & hold (SH)
component in the read circuit described below and shown in
Fig. 3.

B. Read operation

Reading works much like the iterative procedure described
in the arithmetic coding introduction. The corresponding cir-
cuit is shown in Fig. 3. A constant current of less than 10uA
is provided to the target memory cell, which creates a voltage
drop analogous to its memristance. The initial maximum (Vtop)
and minimum (Vbottom) values, respectively, are given as:
Vtop = Iinit ·Rmax and Vbottom = Iinit ·Rmin. For the n-th
symbol, n ∈ N , the read cell voltage Vread is compared to
the switchbox output Vrn which is the borderline between the
two symbols and is equal to:

Vrn = (Vtop − Vbottom) · p0 + Vbottom (2)

where p0 is the probability of the symbol A (the range below
Vrn), while the probability of the symbol B is p1 = 1 − p0.
Depending on the outcome of this comparison we have: a)
when Vrn > Vread the symbol Sn = A is decoded and Vtop =
Vrn, b) when Vrn ≤ Vread the symbol Sn = B is decoded
and Vbottom = Vrn. Afterwards, Vrn is updated according to
by (2) and the next symbol Sn+1 is decoded. The procedure
is repeated until all symbols are decoded and then sent to a
shift register. The corresponding voltage plot for a four-symbol
decoding example is shown in Fig. 4.

BL BL WL

Data cell

WL

Ensample

S&H

Output to shift register

Vtop

Vbottom

Vrn

Cint

Cint

Vread

(1-p0)Roff

(p0)Roff

Memristor
Switchbox

Fig. 3. Read operation circuit (adapted from [3]).

Fig. 4. An insight of the arithmetic decoding. The cell outputs a voltage
that represents 4 symbols in 4 iterations, with each one having an upper limit
(Vtop), a lower limit (Vbottom) and a borderline (Vrn). Their comparison via
the Decoded Voltage defines each time the symbol. The message decoded is
“ABBA”.

IV. THE CIRCULAR BUFFER

In this section we describe the proposed implementation of
a memristive CB. In this context, all the circuits presented
previously in section 2 are now used. In the DSP scientific
field, it is needed to create a delayed version of the input signal
which interferes with it either destructively or constructively.
Nevertheless, it is quite common to have HW restrictions on
the memory size and the data access time. A circular buffer
manages to use effectively every cell in its dedicated memory.
Its total size is equal to the maximum delay.

The buffer consists of N = 2x, with x ∈ ℵ cells, so that
we can use a binary address decoder. Every storage cell in the
buffer stores data in the memristor. While buffer is functioning,
cells are serially read and written as follows:

1) For a new incoming stream, the access transistor (see Fig.
5) of the cell on the “write position” is switched on via
the WL, as shown in Figs. 1 and 3, using a log2(N)×N
decoder for a duration equal to the write time.

2) Then WL is switched off and the decoder switches on the
cell transistor on the read position for the read process.
The delayed sample is sent to the buffer output.

3) The counter is increased by 1 and waits for the next
sample to point the decoder to the next cells

Write pointer = mod(iteration + unprocessed cells, buffer size) +1 (3)

Read pointer = mod(iteration-1, N)+1 (4)
This is a memory structure preferable to e.g. FIFO type,
because the latter requires each cell to pass its contents to
the next one in every iteration. A block diagram for the
components of a memristive CB is given in Fig. 5.

The CB works in a repetitive process which in short is as
follows: When the stream data arrive to the write circuitry,

Counter

D
e

c
o

d
e
r 3

x
8

Read circuitry

Adaptive write

circuitry

Wordlines WL

Cell 1 Cell 2 Cell 3

Cell 4

Cell 5

Cell 6Cell 7

Cell 8

Fig. 5. Block diagram describing the main parts of an 8-element memristive
circular buffer. The memory cells are numbered in the order in which they
are read during simulation.

the counter provides the decoder with the numbers of the next
cells to read/write. The decoder activates the corresponding
transistors preventing from interference between signals of the
read/write circuitry. The write circuitry encodes the input data.
Then the written cell is deselected and the read circuit goes
on to collect the data from their cell, accessed via the decoder
with a delay of N elements:

D = TDfs (5)

where TD is the delay in seconds and fs is the sampling
frequency. Collected data are sent by the read circuit to the
rest of the system. Among the advantages of using memristors
as memory cells, are the read and write speed, the non-
volatility, and also their ability to work both in digital and
analog manner. Thanks to their inherent analog nature, their
memristance may take any intermediate value within the
[RON , ROFF] range, limited only by the accuracy of signal
encoding/decoding and propagation of the system noise which
is added from them. This provides us with the option of avoid-
ing the procedure of quantization and therefore the disturbance
that causes the mapping of signal on a standard number of
different levels [6]. In this case, the write procedure remains
exactly as it was presented before since it is implemented in
analog circuit. On the other hand, the read procedure does
not keep the intermediate values to find the decoded symbols,
but only the final value of the voltage, which should be
proportional to the device memristance.

V. SIMULATION RESULTS

The simulation-based validation of the proposed CB of
Fig. 5 was done using Matlab, for a conservative 4-character
encoding scheme and multi-bit storage in memristors. The
alphabet was the simplest possible compiled by two symbols
A, B with probabilities p0 = 0.25 and p1 = 0.75, respectively.
The delay elements in (9) have D=8 so that the data have
the maximum possible delay and the read memory cell in
a particular moment is right afterwards overwritten. In the
simulation results shown in Fig. 6, blue line symbolizes the
voltage on all memristors for both reading and writing and, in
order to distinguish them, the End signal from Fig. 1 and the

0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

V
ol

ta
ge

 (
V

)

time (sec)
(a)

Cell 8
 ↓

Cell 1
 ↓

Switchbox output
Memristor Voltage
End
Reading cell Wordline

0.108 0.1085 0.109 0.1095 0.11

0.05

0.1

0.15

0.2

0.25

V
ol

ta
ge

 (
V

)

time (sec)
(b)

Switchbox output
Memristor Voltage
End
Reading cell Wordline

Fig. 6. (a) The diagram of the first iteration of the circular buffer function.
Cell 8 is written and cell 1 is read. (b) The write operation stops with a short
latency after the End signal is pulled down. The caused deviation from the
target value is called voltage drift.

Wordline signal from Fig. 3 are also given. During simulation
the words encoded take progressively values closer to Vtop.
Both write and read circuits are simulated to implement
the operations described previously and to maintain all their
characteristics (see Fig. 6b).

As we see in Fig. 7, the eight last encodings are conducted
through negative voltage, to augment the cell resistance to
the word level. Reading operations require smaller voltages
(maximum 100mV) applied for ∆t = 5ms, while writing
highly depends on the initial value and the switchbox output.
When one of them is between the voltage thresholds, writing
can last up to ∆t =100ms (e.g. the two encodings of Cell 8),
or be faster even than reading (e.g. for Cell 7). It is worth
noting that, due to the threshold-type nature of memristors,
the impact of the read voltage on the device is negligible.

Finally, the simulation characteristics are presented along
with the results of decoding in each iteration. Disparity regards
the probabilities of the encoded symbols and Vmin given by
(1): Disparity = 0.5 and Vmin = 34.8375 mV. For the first
7 iterations the cells have not been edited and the memristor
resistance stays in the ROFF condition and then the written
data begin to appear, due 8-element delay. The repetitive
application of the aforementioned procedure creates a data
flow that is read out of the buffer and back to the DSP system,
identical to its input with only difference the 28-symbol delay
(7 cells delay by 4 encoded symbols each), which is the desired

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

V
ol

ta
ge

 (
V

)

time (sec)

Cell 8
 ↓

Cell 1
 ↓

Cell 2
 ↓

Cell 3
 ↓

Cell 4
 ↓

Cell 5
 ↓

Cell 6
 ↓

Cell 7
 ↓

Cell 1
 ↓

Cell 2
 ↓

Cell 3
 ↓

Cell 4
 ↓

Cell 5
 ↓

Cell 6
 ↓

Cell 7
 ↓

Cell 8
 ↓

Cell 1
 ↓

Cell 2
 ↓

Cell 3
 ↓

Cell 4
 ↓

Cell 5
 ↓

Cell 6
 ↓

Cell 7
 ↓

Cell 8
 ↓

Cell 1
 ↓

Cell 2
 ↓

Cell 3
 ↓

Cell 4
 ↓

Cell 5
 ↓

Cell 6
 ↓

Cell 7
 ↓

Cell 8
 ↓

Switchbox output
Memristor Voltage
End
Reading cell Wordline

Fig. 7. The timeline of a 16-iteration simulation. Arrows indicate the cell
access during every procedure. When End signal is up indicates a write
process, while Wordline is used for reading.

result and in a more general context, the function of a buffer.
The decoder ensures that the buffer will overwrite its old data
when full, without any extravagant pointer circuits making it
not only circular, but also cost-effective.

TABLE I
READING OPERATION RESULTS IN FORM: #ITERATION[RESULT].

#1[BBBB] #2[BBBB] #3[BBBB] #4[BBBB]
#5[BBBB] #6[BBBB] #7[BBBB] #8[ABBA]
#9[ABBB] #10[ABBB] #11[ABBB] #12[BAAB]
#13[BABA] #14[BABB] #15[BABB] #16[BBAA]

VI. CONCLUSIONS

A novel memristive circular buffer architecture is designed
and simulated, along with the peripheral read/write/access
circuits. Circuit functionality is validated through simulations
based on a threshold-type memristor model, leading to more
stable and noise-tolerant system. Simulation results prove
functionality and proper cooperation among the different cir-
cuit parts. Future work concerns using the proposed system to
execute DSP tasks in complex DSP algorithms in HW.

ACKNOWLEDGEMENT

The authors acknowledge support to and wish to thank
European ICT COST Network MemoCIS: IC1401

REFERENCES

[1] P.E. Black, Dictionary of Algorithms and Data Structures, 1998.
[2] I. Vourkas and G.Ch. Sirakoulis, A Novel Design and Modeling Paradigm

for Memristor-Based Crossbar Circuits, IEEE Trans.on Nanotechnology,
vol. 11, pp.1151-1159, 2012.

[3] R. Patel and E.G. Friedman, Arithmetic Encoding for Memristive Multi-
Bit Storage, 2012.

[4] L. Chua, Memristor-The Missing Circuit Element, IEEE Trans. on circuit
theory, Vol. CT-18, No. 5, pp.1151-1159, 1971.

[5] D.B. Strukov, G.S. Snider, D.R. Stewart and R. Stanley Williams, The
missing memristor found, Nature, Vol. 453, pp. 80-83, 2008.

[6] B. Widrow and I. Kollar, Quantization noise in Digital Computation,
Signal Processing Control and Communications, Cambridge University
Press, Cambridge, UK, 2008.

