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ABSTRACT 

We examine the problem of blind audio source separation using 
Independent Component Analysis (ICA). In order to separate 
audio sources recorded in a real recording environment, we need 
to model the mixing process as convolutional. Many methods 
have been introduced for separating convolved mixtures, the 
most successful of which require working in the frequency 
domain [1], [2], [3], [4]. This paper proposes a fixed-point 
algorithm for performing fast frequency domain ICA, as well as 
a method to increase the stability and enhance the performance 
of previous frequency domain ICA algorithms. 

1. INTRODUCTION 

 Suppose we have N audio sources and take M 
instantaneous mixtures of these signals, producing M 
observation signals. The whole procedure can be modeled by the 
following equation: 

 ][][ nsAnx =  (1) 

where s[n] is a vector representing the audio sources, x[n] is a 
vector representing the observed signals and A is the mixing 
matrix. For simplicity, we are going to assume that the number 
of sensors is equal to the number of sources. The source 
separation problem is basically focused on finding the unmixing 
matrix W ≈ A-1, so as to recover the original signals from the 
observed signals x(n).  

 ][][ nxWnu =  (2) 

Independent Component Analysis (ICA) is a quite 
promising method aiming to perform separation, exploiting the 
nonGaussianity and statistical independence of audio signals.  
Many ICA methods try to estimate W, by maximizing kurtosis or 
negentropy, as measures of nonGaussianity [6]. Others employ 
maximum likelihood methods, imposing probabilistic priors to 
model the sources [5] [6]. 

However, if we try to apply these algorithm in a real life 
situation, where the observation signals x come from real 
microphone recordings of audio sources in a room, we will 
discover that source separation is impossible. The reason is that 
the previous model doesn’t counter for the room acoustics. In a 
real room environment, our microphones record apart from 
direct path signals coming from the audio sources, some 
attenuated, delayed versions of the same signals, due to 
reflections on room’s walls. Generally, our microphones pick up 

more than one delayed version of our source signal. 
Consequently, the N sensor signals xi[n] can be modeled in 
terms of the N input sources si[n] as follows: 
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L denotes the maximum delay in terms of discrete points. If we 
look in the equation above, we can see that it is actually the 
summation of the convolution of the N sources with N filters 
with maximum length L. 

In order to solve the problem of convolution, Smaragdis [1] 
[2] [3] proposed applying a STFT to the mixture signals x[n], 
using windows of greater length than L, and work in the 
frequency domain. Consequently, the whole separation problem 
is divided into N linear complex source separation problems, 
one for every frequency bin. Smaragdis [1] [2] [3] applied the 
natural gradient ICA algorithm [5], using a complex, non-linear 
activation function, for complex source separation.  

 )())(()( ωϕδω WuuIW H−=∆  (4) 

However, there is an inherent permutation problem in all 
ICA methods. Although permutation problems are of minor 
importance in the instantaneous mixtures case, it’s absolutely 
crucial to keep the correct permutations in the frequency domain 
ICA. We must ensure that we get the same permutation for every 
frequency bin. Smaragdis proposed a heuristic coupling of 
adjacent frequency bins. However, he noted that this was not 
very effective. 

Davies [4] introduced a time-frequency model to solve the 
permutation problem. This is performed by adding a time 
dependent β(t) term to the frequency model of the separated 
sources. 
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This can also be interpreted as a time average over 
frequency, which will impose frequency coupling between 
frequency bins. This alters the natural gradient algorithm, by 
incorporating the β(t) term as follows: 

WtututIW H )),()),(()(()( 1 ωωϕβδω −−=∆  (6)
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where φ(u) is a nonlinear complex activation function. 
Assuming laplacian priors for the sources, one can use the 
following activation function: 
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In order to fix the permutation problem, we can apply a 
likelihood ratio jump. For the 2x2 case, we actually compare the 
likelihood of the unmixing matrix W with that of [0 1; 1 0] W. 
We calculate LR using the following formula and if LR< 1, we 
have to permute W. 
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This method seems to be capable of sorting out the permutation 
problem in the majority of the cases. 

2. EXTENSIONS  

A common problem in an adaptive learning procedure as 
described in (4) and (6) is that we have to ensure the algorithm’s 
stability. In other words, if we don’t set the increment step 
correctly, the algorithm may skip the desired stationary point 
and may not finally converge.  

At first, one might say that the increment step can be 
controlled by the learning rate δ. If we are using the formula to 
separate instantaneously mixed sources, we can set a proper δ 
that allows convergence. However, in the frequency domain 
case, we have N separation problems. For each frequency bin, 
input signals x(ω,t) have completely different signal levels. It’s 
well known that audio signals have greater low frequency terms 
than high frequency terms. As a consequence, keeping a 
constant learning rate in the formula for every frequency bin 
may hinder the convergence of the algorithm in some frequency 
bins. This can give a reason why this method cannot perform 
good separation in the higher frequency bins (Smaragdis [1] [2] 
[3]).  

We can ensure the algorithm convergence by setting a 
different learning for every frequency bin. However, a more 
elegant way to ensure stability is to calculate the signal level for 
every frequency bin and then normalize the signal with the 
signal level before separating. This ensures that input signals 
x(ω,t) have the same variance for every frequency bin and 
therefore we can use the same learning rate in our separation 
algorithm. We store the signal levels and multiply u(ω,t) after 
separation.  
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As a signal level metric, we can use either the standard deviation 
(10) or the absolute maximum (11) of the complex sequence. 
We can also interpret this normalization scheme, as an attempt 
to force the algorithm pay equal attention to every frequency 
bin. 

3. A FIXED POINT SOLUTION 

Hyvarinen et al proposed a family of fixed point ICA 
algorithms for performing ICA of instantaneous mixtures [6] [7] 
[8]. The basic advantage of these ICA algorithms is that they 
converge much faster than gradient descent algorithms with the 
same separation quality. Their disadvantage is that they are more 
computationally expensive, but as the number of iterations for 
convergence is much decreased, they tend to be faster then 
common ICA techniques.  

In [8], Hyvarinen explored the connection of his fixed-
point algorithm with the natural gradient algorithm [5]. The 
fixed-point algorithm is basically a deflation algorithm, isolating 
one independent component every time. It employs a 
decorrelation scheme to prevent the algorithm converging to the 
same maximum. The one-unit learning rule for the fixed-point 
algorithm is the following: 
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where }{ TxxEC =  and )(uϕ is an activation function. 
Making certain assumption on x, Hyvarinen shows that the 
learning rule can be represented by the following rule: 
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] ...  [ 21 NwwwW = . If we compare equations (14) and (4), we 
will see that the two methods look very similar. In fact, (14) is a 
more adaptive version of (4).  Instead of a constant learning rate 
δ, we apply an optimal step size in terms of D. Replacing I by 
diag(-αi) is beneficial for convergence speed [8]. If we use pre-
whitened data x, then the formula in (14) is equivalent to the 
original fixed-point algorithm, while it is expressed in terms of 
the natural gradient algorithm. 

This algorithm achieves fast, excellent separation of 
instantaneous mixtures. Here we wish to replace the natural 
gradient algorithm with the fixed-point algorithm, as described 
in (14), in the frequency domain framework, so as to accelerate 
the convergence of audio separation algorithms.  

More specifically, we are going to divide our observation 
signals into overlapping windowed frames, and take the STFT 
forming a time-frequency representation x(ω,t). We pre-whiten 
x(ω,t) before proceeding. The next step is to estimate the 
unmixing matrix for every frequency bin. This is achieved by 
iterating the following equation, using random initial value for 
W. 
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All the parameters in the equation above are calculated as 
discussed earlier. However, we should pay attention to the 
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choice of the activation function φ(u). A proper activation 
function for the processing of complex data is (8), as introduced 
by Davies [4]. By differentiating, we get the derivative of φ: 

321 ||||)(' −− −= uuuuϕ ,  for all u ≠ 0 (16) 

Another thing we should take into account is the permutation 
problem. In order to solve the permutation problem in this case, 
we can follow a method similar to the one described earlier. 
Firstly, we enhance frequency coupling by adding a time 
dependent β(t) term to the frequency model of the separated 
sources, as we did in the natural gradient method.  If we look at 
(6), we might say that the β(t) term can be incorporated in the 
activation function φ(u). Therefore, in order to impose frequency 
coupling in the fixed-point algorithm, we can use the following 
activation function in (15). 
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As a second step, we use the likelihood ratio jump solution, as 
presented in (9), (10), in order to get the same permutation of 
the separated sources for every frequency bin. 

Another important issue when performing frequency 
domain ICA is to return the separated signals u to their original 
space (represented by x vectors). More specifically, if Wf is the 
unmixing matrix for the frequency bin f, we can write: 
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 Note that for pre-whitened sources, we also need to return 
the sources to the original space before pre-whitening. Suppose 
that Vf is the pre-whitening matrix for each frequency bin. We 
have: 
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After performing all these linear transforms, we can group 
the xisj signals to form the separated outputs as follows: 
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The new fixed-point frequency domain algorithm is 
summarised as follows: 

 
1. Pre-whiten input data 
2. Incorporate β(t) function in the activation function, i.e. 

use formula (17) 
3. For the derivative of (17), use (16) as an approximation

  
 

4. Use the learning rule presented in (15), to estimate the 
umixing matrices for every frequency bin. 

5. Return separated signals to the observation space, as well 
as re-decorrelate separated signals. 

4. EXPERIMENTS 

In our first series of experiments, we investigated the 
maximum likelihood method’s performance using the extensions 
presented in 2. Although the difference is not audible, the 

spectrograms of the separated sources tend to be smoother and 
closer to the original sources. Moreover, we never experienced 
any instability in the algorithm, whatever data we used. Actually, 
this was the main objective of the extensions. 

In a second series of experiments, we were looking into the 
fixed-point frequency domain algorithm’s performance. We 
tested the algorithm using different data sets. 

Initially, we applied it to some real data available from [9] 
of two people speaking simultaneously in a room, as they are 
commonly used in ICA benchmarks. Our first conclusion is that 
the fixed-point algorithm takes about 40-50 iterations to 
converge, which is much faster compared to common maximum 
likelihood algorithms. Commonly, the solutions proposed by 
Davies [4] and Smaragdis [1] [2] [3] require usually about 200 –
300 iterations to converge for the same quality of separation. 
Convergence speed has become a quite important factor for 
frequency domain ICA, as previous approaches required 
considerable time to run. As far as the separation quality is 
concerned, we can say that you can almost hear no cross-talk. 

We tested the algorithm using the dataset proposed by 
Davies [4], which was used to demonstrate the permutation 
problem in Smaragdis ’s algorithm. The likelihood ratio jump 
solution combined with the frequency coupling imposed by (17) 
seemed to be working very well in this fixed-point framework, 
and the algorithm seems to have no problem sorting out the 
correct permutation. The convergence speed is quite fast, and the 
separation quality can be compared to that of the previous 
algorithms. 

In order to demonstrate the separation quality of the 
algorithm, we constructed a synthetic mixture of two sources. 
The mixtures contained delayed components of 25ms maximum, 
as well as the direct path signals. The fixed-point algorithm 
managed to separate the input sources quite well. We can see the 
spectrograms of the original and separated sources in figures 1,2. 

 
Figure 1. (a) Spectrogram of the original source and (b) 

spectrogram of the separated source using the fixed-point 
algorithm 

The separation quality is quite good, and almost all the 
frequency components of the original sources are preserved in 
the separated outputs. We can clearly see that there is no 
permutation problem visible or audible in these spectrograms. 
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The permutation problem is well described in [4], where it is 
shown that although some algorithms perform reasonable 
separation for every frequency bin, we can see source 
permutation changes at certain frequencies. As a result, each 
source estimate contains large proportions of both sources which 
are both audible. 

Another test was to apply the algorithm to audio signals. 
We used some real data available from [9] of somebody 
counting and some music playing simultaneously in a room. The 
results were equally satisfactory as with the previous 
experiments. 

 
Figure 2. (a) Spectrogram of the original source and (b) 
spectrogram of the separated source using the fixed-point 
algorithm 

Finally, we have also recorded two guitars playing triads in 
harmony and created a synthetic mixture using the mixing 
function, used in the previous example. This separation 
experiment is quite demanding, as there is strong correlation 
between the two sources, and it is even difficult for the human 
ear to separate them. Applying the fixed-point algorithm, we get 
quite promising results. Although there is some audible cross-
talk, the algorithm provides reasonable separation of the two 
sources. These results are quite encouraging for instrument 
separation from audio recordings. 

5. CONCLUSIONS 

In this study, we have shown that we can improve the 
performance and the stability of maximum likelihood ICA 
methods, by introducing a pre-scaling of the time-frequency 
input data before processing. 

Moreover, we have introduced a new fixed-point algorithm 
for frequency domain source separation of convolved mixtures. 
The algorithm proved to be more stable and faster compared to 
former maximum likelihood approaches, as it is based on a 
second order optimization method. The quality of the separation 
is quite good, although there is a small amount of cross-talk.  

Furthermore, the likelihood ratio jump solution introduced 
in [4] proved to be able to solve the permutation problem, even 

in a fixed-point framework. However, this likelihood test 
becomes more complicated for more than two sources. 

In future, we hope to formulate this likelihood ratio jump 
test for more sources. Moreover, we hope to improve the 
performance and speed of this fixed-point solution as well as 
introduce more sophisticated time-frequency models. 
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