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ABSTRACT 
This paper presents an algorithm for the real-time 
computation of 2-D statistical moments on binary 
images on the Scan Line Array Processor (SLAP). The 
binary images are represented as sets of 
nonoverlapping rectangular areas. This representation 
scheme is called Image Block Representation. The real-
time computation of moments in block represented 
images is achieved by exploiting the rectangular 
structure of the blocks. The algorithms for image block 
representation and for the real-time computation of 
moments are implemented on the Scan Line Array 
Processor (SLAP). 
 

I. INTRODUCTION 
 The most common image representation format 
is a two-dimensional (2-D) array, each element of which 
has the brightness value of the corresponding pixel. 
Other approaches to image representation aim to 
provide machine perception of images in pieces larger 
than a pixel and are separated in two categories: 
Boundary based methods and region based methods. 
Such approaches include quadtree representations [1], 
chain code representations [2], contour control point 
models [3], autoregressive models [4] and the interval 
coding representation [5]. One common objective of the 
above methods is the representation of an image in a 
more suitable form for a specific operation. 
 Recently an advantageous representation for 
binary images, which is called Image Block 
Representation (IBR) and constitutes an efficient tool 
for image processing and analysis techniques has been 
presented [6]-[8]. Using the block represented binary 
images, real-time computation of 2-D statistical 
moments is achieved through analytical formulae [6], 
[8]. The real-time computation of the moments on the 
Scan Line Array Processor (SLAP) is presented in this 
paper. 
 The SLAP architecture [9]-[12] is a linear 
array of N processors. Each processor is indexed in 
ascending order from 0 to (N-1). After each scan line is 
received, each processor Pk  latches in that value with 
the corresponding column index k. Each processor Pk  
is connected by a bidirectional communication link to 
processors Pk−1  and Pk+1 , wherever they exist. 
Processors Pk−1  and Pk+1 are referred to as the left and 

right neighbors of processor Pk , respectively. The 
bandwidth of each communication link is assumed to 
be a word, where a word is defined to be logN bits, and 
each processor can transfer a constant number of words 
to its immediate neighbors in a unit time. The 
processors operate together in an SIMD fashion, and 
each processor is a general purpose sequential 
processor with the capacity for conditional command 
execution and local address generation. Each processor 
has associated with it a random access memory, which 
can hold N words. In a unit of time, each processor can 
access its local memory to read or write a word. 
Incoming image data is loaded line by line into the 
processor array, with a distinct processor receiving 
each image column. 
 The meaning of the term real-time [10], is that 
if the required processing is based on neighborhoods of 
size mxm, then the output is generated at a rate of O(m) 
operations per line and a latency of O(m) scan lines, 
which is the best that can be achieved on this model. 
 

II. IMAGE BLOCK REPRESENTATION 
II.1. Concepts of the Image Block Representation 

 A bilevel digital image is represented by a 
binary 2-D array. Due to this kind of representation, 
there are rectangular areas of object value 1, in each 
image. These rectangulars, which are called blocks in 
the terminology of this paper, have their edges parallel 
to the image axes and contain an integer number of 
image pixels. At the extreme case, the minimum 
rectangular area of the image is one pixel. 
 Consider a set that contains as members all the 
nonoverlapping blocks of a specific binary image, in 
such a way that no other block can be extracted from 
the image (or equivalently each pixel with object level 
belongs to only one block). It is always feasible to 
represent a binary image with a set of all the 
nonoverlapping blocks with object level, i.e. by IBR. 
 The IBR concept leads to a simple and fast 
algorithm, which requires just one pass of the image 
and simple bookkeeping process. In this pass all object 
level intervals are extracted and compared with the 
previous extracted blocks. In the following, the IBR 
algorithm is given. 
 
Algorithm 1: Image Block Representation. 



Step 1: Consider each line y of the image f  and find the 
object level intervals in line y. 

Step 2: Compare intervals and blocks that have pixels 
in line y-1. 

Step 3: If an interval does not match with any block, 
this is the beginning of a new block. 

Step 4: If a block matches with an interval, the end of 
the block is in the line y. 

� 
 As a result of the application of the above 
algorithm, we obtain a set of all the rectangular areas 
with level 1 that form the object. A block represented 
image is denoted as: 
 

f x y b i ni( , ) { , ,..., }= = − :  0 1 1  (1) 

 

 
Figure 1. Image of the character d and the blocks. 
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Figure 2. A set of test images. (a). Image of the 
island Corfu of 512x512 pixels. (b) Image of the island 
Mikonos of 512x512 pixels. (c) Image of the island 
Santorini of 512x512 pixels. (d) Aircraft image of 
512x697 pixels. 
 
where n is the number of the blocks. Each block is 
described by four integers, the coordinates of the upper 
left and down right corner in vertical and horizontal 
axes. Fig. 1, illustrates the blocks that represent an 
image of the character d. 
 In Fig. 2 four test images are illustrated, while 
in Table 1 the number of the pixels with object level, 

the number of the rows with object pixels, the number 
of the blocks extracted from these images (using the 
Algorithm 1) and the required storage space for both 
the 2-D rerpesented and the block represented images 
and are shown. It can be seen that the number of the 
blocks generated by the Algorithm 1, is significantly 
less than the number of the rows with black pixels. In 
the worst case of the island Mikonos image of Fig. 5 
(b), where the number of the rows with object pixels is 
249 and the number of the blocks is 232, it should be 
noted that the number of the gulfs and peninsulas of the 
island is significantly large and therefore the number of 
the blocks is respectively large. 
 
Table 1.  The number of the pixels with object level, 
the number of the rows with object pixels, the number 
of the blocks, the required storage for the 2-D images 
and the required storage for the block represented 
images for the set of the test images of Figure 2. 

Image object 

pixels 

object 

rows 

blocks 2-D 

image 

bytes 

bytes 

for 

blocks 

Corfu 41605 411 250 32768 2000 

Mikonos 47368 249 232 32768 1856 

Santorini 63203 474 257 32768 2056 

Aircraft 118831 494 397 44608 3176 

 
II.2. SLAP Implementation of the Image Block 

Representation Algorithm 
 Consider the binary image F= f j k( , ) ,  
j,k=0,1,...,N-1 to load to the SLAP. Each image row 
f j  is loaded simultaneously to the N processors of the 

SLAP. Each processor Pk  receives the value of the 
pixel f j k( , ) . Then the following cases are 
discriminated: 
• If f j k( , ) =1, the processor Pk  broadcasts the 

value k to its left immediate neighbor Pk−1 , if this 
latter exists. At the next time unit, the processor 
Pk  broadcasts the value k+1, if it has been sent 
from the processor Pk+1  to the processor Pk−1 . At 
the next time unit, the processor Pk  broadcasts the 
value k+2, if it has been sent from the processor 
Pk+2 , to the processor Pk−1 , e.t.c. 

• If f j k( , ) =0, the processor Pk  broadcasts the 
value 1 to its right immediate neighbor Pk+1 , if 
this latter exists. 

 
 Using the above procedure, each processor 
Pk1  for which f j k( , )1 1= , k1 0>  and receives the 
value 1 from its left processor, or if f j k( , )1 1= , 
k1 0= , corresponds to a left limit of an object level 
interval in row f j . Also the processor Pk1  receives the 
broadcasted value k2  from the processor Pk 2  at the 
right end of the object level interval. Clearly, this 
maximum requirement of this process is O(N) time 
units per scan line, in the case where an object interval 
occupies an entire image row. 
 Finally, each processor Pk1  that corresponds 
to the left limit of an object level interval of this image 
row f j , or to a left limit of a block from the previous 



row, checks the triplet ( , , )k k j1 2  with the triplet 
( , , )x x y1 2 1  that corresponds to a block of the previous 
row, if this exists. If such a block does not exist, the 
triplet ( , , )k k j1 2  is stored in the local memory of the 
processor Pk1  and this is the beginning of a new block. 
If the triplet ( , , )x x y1 2 1  exists, while the triplet 
( , , )k k j1 2  does not exist, the previous row block is 
stored as ( , , , )x x y y1 2 1 2 , where y j2 1= − . If both the 
triplets exist and k x1 1≠  or k x2 2≠ , then the previous 
row block is also stored as ( , , , )x x y y1 2 1 2 , where 
y j2 1= − .  

 The whole IBR process requires O( N
2 ) unit 

times, where NxN are the image dimensions. 
 

III. COMPUTATION OF THE 2-D MOMENTS 
III.1. Computation of the moments on block 

represented binary images 
 Consider a binary digital image f(x,y), with 
N 1  pixels in horizontal axis and N 2  pixels in vertical 
axis. The 2-D geometrical moments of order (p,q) of 
the image are defined by the relation: 
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Since the background level is 0, only the pixels with 
level 1 are taken into account for the computation of 
the moments. Therefore, if the image f x y( , )  is 
represented by n blocks, as it is described in (1), all the 
image pixels with level 1 belong to the k image blocks 
and therefore (2) may be rewritten as: 
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where x xb bi i1 2, ,,  and y yb bi i1 2, ,,  are the coordinates of 
the block bi  with respect to the horizontal axis and to 
the vertical axis, respectively. According to (3), the 2-D 
geometrical moments of the whole image are computed 
as the summation of the 2-D geometrical moments of 
all the individual blocks of the binary image. 
 In (3), if the rectangular form appeared within 
the blocks is taken into account, then the geometrical 
moments of one block b, are given by 
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(4) 

 
 Using the rectangular form appeared within 
the block, the computational effort, which is 
characterized by the complexity O( N

2 ) for the 
calculation of moments using (2), is reduced to O(N) 
for the calculation of moments using (4). For the 
computation of (4), it is adequate to calculate the 
following summations of the powers of x and y : 
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Moreover, taking into account the known formulae: 
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where m n Z, ∈  and 
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combinations of i objects, taken j each time, it is 

concluded that the summation S
x x

p

1 2,
 can be directly 

calculated as S S S
x x

p

x

p

x

p

b b b b1 2 2 11 1 1, , ,
= − − . The summation 

S
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q

b b1 2,
 is computed in a similar manner. Obviously, 

the computation of the moments of a block using the 

above analytical formulae (6), is independent of the 

size of the block. It has been proved [8], that the 

computational complexity of the proposed technique is 

in the order of O L( )2 , where ( , )L L− −1 1  is the order 

of the moments to be computed. 

 
III.2. Computation of the 2-D moments on the 

SLAP 
 The computation of the moments of a block 
represented binary images on the SLAP, is executed in 
two discrete steps: 
 
Step 1: 
 The first step does not involve any 
communication among the processors and therefore is 
executed very fast. Let the n blocks that constitute the 
image f, where usually n is less than the number of the 
processors N, i.e n<N. A SLAP architecture with N 
processors, as the one described above is sufficient for 
the computation of the 2-D statistical moments of the 
image. Each block bk , k=0,1,...,n-1 is loaded as input 
to the processor Pk , in four time units. The 
corresponding values of the moments until the order (L-
1, L-1) are computed according to the analytical 
formulae (3), (6) and stored in the local memory of the 
processor. If n>N, then this process is repreated for the 
rest of the blocks and each processor adds the moment 
values of each block and holds this summation. 



 The above procedure requires 4L power 
calculations, 2 2

L L−  multiplications and L L
2 −  

additions [8]. The corresponding time units depends on 
the type of the general purpose processor, but without 
loss it can be assumed that O L( )2 2  time units are 
required. If n>N, then the relevant time units are 
multiplied by the factor modulo(n/N). In the most of 
real world images it holds that n N< . 
 
Step 2: 
 In the second step each processor broadcasts 
in its left immediate processor the value of the moment 
with order (0,0), while the first processor from the left 
adds the values to the corresponding moment. This 
process requires N time units. The same process is 
repeated for all the moments and finally the first left 
processor holds the moment values of the block 
represented binary image. 
 Finally the transmition of the values of one 
moment to the first processor from the left requires 
O N( )  time units and the transmission of the values of 
all the moments requires O L N( )2  time units. In typical 
pattern recognition applications the moments usually 
are calculated up to the order (4,4), since the higher 
order moments are very sensitive to noise. Therefore 
for L=5, L N

2 <  and the computational compexity is 
less than O N( )2 . 
 
 The whole computational complexity for the 
moments computation on the SLAP, is the summation 
of the complexity of the two steps. Therefore, the 
whole process requires 
MOD( / ) ( ) ( )n N O L O L N2 2 2+  time units and under 
the reasonable assumptions that n N<  and that 
L N

2 < , this value is less than O N( )2  time units. 
 

IV. CONCLUSIONS 
 In this paper an efficient algorithm for the 
computation of the 2-D geometrical moments of a 
block represented binary image, on the Scan Line Array 
Processor in real-time has been presented. It can be 
shown that other set of moments (central, normalized 
central, moment invariants) may be also computed on 
block represented images and therefore their real-time 
computation on the SLAP is a direct extension of the 
work presented here. 
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