

REAL-TIME COMPUTATION OF 2-D MOMENTS ON BLOCK

REPRESENTED BINARY IMAGES ON THE

SCAN LINE ARRAY PROCESSOR

Iraklis M. Spiliotis and Basil G. Mertzios

Department of Electrical and Computer Engineering, Democritus University of Thrace,

67100 Xanthi, HELLAS

Tel: +30 541 79559; Fax: +30 541 26473

e-mail: spiliot@demokritos.cc.duth.gr ; mertzios@demokritos.cc.duth.gr

ABSTRACT
This paper presents an algorithm for the real-time
computation of 2-D statistical moments on binary
images on the Scan Line Array Processor (SLAP). The
binary images are represented as sets of
nonoverlapping rectangular areas. This representation
scheme is called Image Block Representation. The real-
time computation of moments in block represented
images is achieved by exploiting the rectangular
structure of the blocks. The algorithms for image block
representation and for the real-time computation of
moments are implemented on the Scan Line Array
Processor (SLAP).

I. INTRODUCTION
 The most common image representation format
is a two-dimensional (2-D) array, each element of which
has the brightness value of the corresponding pixel.
Other approaches to image representation aim to
provide machine perception of images in pieces larger
than a pixel and are separated in two categories:
Boundary based methods and region based methods.
Such approaches include quadtree representations [1],
chain code representations [2], contour control point
models [3], autoregressive models [4] and the interval
coding representation [5]. One common objective of the
above methods is the representation of an image in a
more suitable form for a specific operation.
 Recently an advantageous representation for
binary images, which is called Image Block
Representation (IBR) and constitutes an efficient tool
for image processing and analysis techniques has been
presented [6]-[8]. Using the block represented binary
images, real-time computation of 2-D statistical
moments is achieved through analytical formulae [6],
[8]. The real-time computation of the moments on the
Scan Line Array Processor (SLAP) is presented in this
paper.
 The SLAP architecture [9]-[12] is a linear
array of N processors. Each processor is indexed in
ascending order from 0 to (N-1). After each scan line is
received, each processor Pk latches in that value with
the corresponding column index k. Each processor Pk
is connected by a bidirectional communication link to
processors Pk−1 and Pk+1 , wherever they exist.
Processors Pk−1 and Pk+1 are referred to as the left and

right neighbors of processor Pk , respectively. The
bandwidth of each communication link is assumed to
be a word, where a word is defined to be logN bits, and
each processor can transfer a constant number of words
to its immediate neighbors in a unit time. The
processors operate together in an SIMD fashion, and
each processor is a general purpose sequential
processor with the capacity for conditional command
execution and local address generation. Each processor
has associated with it a random access memory, which
can hold N words. In a unit of time, each processor can
access its local memory to read or write a word.
Incoming image data is loaded line by line into the
processor array, with a distinct processor receiving
each image column.
 The meaning of the term real-time [10], is that
if the required processing is based on neighborhoods of
size mxm, then the output is generated at a rate of O(m)
operations per line and a latency of O(m) scan lines,
which is the best that can be achieved on this model.

II. IMAGE BLOCK REPRESENTATION
II.1. Concepts of the Image Block Representation

 A bilevel digital image is represented by a
binary 2-D array. Due to this kind of representation,
there are rectangular areas of object value 1, in each
image. These rectangulars, which are called blocks in
the terminology of this paper, have their edges parallel
to the image axes and contain an integer number of
image pixels. At the extreme case, the minimum
rectangular area of the image is one pixel.
 Consider a set that contains as members all the
nonoverlapping blocks of a specific binary image, in
such a way that no other block can be extracted from
the image (or equivalently each pixel with object level
belongs to only one block). It is always feasible to
represent a binary image with a set of all the
nonoverlapping blocks with object level, i.e. by IBR.
 The IBR concept leads to a simple and fast
algorithm, which requires just one pass of the image
and simple bookkeeping process. In this pass all object
level intervals are extracted and compared with the
previous extracted blocks. In the following, the IBR
algorithm is given.

Algorithm 1: Image Block Representation.

Step 1: Consider each line y of the image f and find the
object level intervals in line y.

Step 2: Compare intervals and blocks that have pixels
in line y-1.

Step 3: If an interval does not match with any block,
this is the beginning of a new block.

Step 4: If a block matches with an interval, the end of
the block is in the line y.

�
 As a result of the application of the above
algorithm, we obtain a set of all the rectangular areas
with level 1 that form the object. A block represented
image is denoted as:

f x y b i ni(,) { , ,..., }= = − : 0 1 1 (1)

Figure 1. Image of the character d and the blocks.

(a) (b)

(c) (d)

Figure 2. A set of test images. (a). Image of the
island Corfu of 512x512 pixels. (b) Image of the island
Mikonos of 512x512 pixels. (c) Image of the island
Santorini of 512x512 pixels. (d) Aircraft image of
512x697 pixels.

where n is the number of the blocks. Each block is
described by four integers, the coordinates of the upper
left and down right corner in vertical and horizontal
axes. Fig. 1, illustrates the blocks that represent an
image of the character d.
 In Fig. 2 four test images are illustrated, while
in Table 1 the number of the pixels with object level,

the number of the rows with object pixels, the number
of the blocks extracted from these images (using the
Algorithm 1) and the required storage space for both
the 2-D rerpesented and the block represented images
and are shown. It can be seen that the number of the
blocks generated by the Algorithm 1, is significantly
less than the number of the rows with black pixels. In
the worst case of the island Mikonos image of Fig. 5
(b), where the number of the rows with object pixels is
249 and the number of the blocks is 232, it should be
noted that the number of the gulfs and peninsulas of the
island is significantly large and therefore the number of
the blocks is respectively large.

Table 1. The number of the pixels with object level,
the number of the rows with object pixels, the number
of the blocks, the required storage for the 2-D images
and the required storage for the block represented
images for the set of the test images of Figure 2.

Image object

pixels

object

rows

blocks 2-D

image

bytes

bytes

for

blocks

Corfu 41605 411 250 32768 2000

Mikonos 47368 249 232 32768 1856

Santorini 63203 474 257 32768 2056

Aircraft 118831 494 397 44608 3176

II.2. SLAP Implementation of the Image Block

Representation Algorithm
 Consider the binary image F= f j k(,) ,
j,k=0,1,...,N-1 to load to the SLAP. Each image row
f j is loaded simultaneously to the N processors of the

SLAP. Each processor Pk receives the value of the
pixel f j k(,) . Then the following cases are
discriminated:
• If f j k(,) =1, the processor Pk broadcasts the

value k to its left immediate neighbor Pk−1 , if this
latter exists. At the next time unit, the processor
Pk broadcasts the value k+1, if it has been sent
from the processor Pk+1 to the processor Pk−1 . At
the next time unit, the processor Pk broadcasts the
value k+2, if it has been sent from the processor
Pk+2 , to the processor Pk−1 , e.t.c.

• If f j k(,) =0, the processor Pk broadcasts the
value 1 to its right immediate neighbor Pk+1 , if
this latter exists.

 Using the above procedure, each processor
Pk1 for which f j k(,)1 1= , k1 0> and receives the
value 1 from its left processor, or if f j k(,)1 1= ,
k1 0= , corresponds to a left limit of an object level
interval in row f j . Also the processor Pk1 receives the
broadcasted value k2 from the processor Pk 2 at the
right end of the object level interval. Clearly, this
maximum requirement of this process is O(N) time
units per scan line, in the case where an object interval
occupies an entire image row.
 Finally, each processor Pk1 that corresponds
to the left limit of an object level interval of this image
row f j , or to a left limit of a block from the previous

row, checks the triplet (, ,)k k j1 2 with the triplet
(, ,)x x y1 2 1 that corresponds to a block of the previous
row, if this exists. If such a block does not exist, the
triplet (, ,)k k j1 2 is stored in the local memory of the
processor Pk1 and this is the beginning of a new block.
If the triplet (, ,)x x y1 2 1 exists, while the triplet
(, ,)k k j1 2 does not exist, the previous row block is
stored as (, , ,)x x y y1 2 1 2 , where y j2 1= − . If both the
triplets exist and k x1 1≠ or k x2 2≠ , then the previous
row block is also stored as (, , ,)x x y y1 2 1 2 , where
y j2 1= − .

 The whole IBR process requires O(N
2) unit

times, where NxN are the image dimensions.

III. COMPUTATION OF THE 2-D MOMENTS
III.1. Computation of the moments on block

represented binary images
 Consider a binary digital image f(x,y), with
N 1 pixels in horizontal axis and N 2 pixels in vertical
axis. The 2-D geometrical moments of order (p,q) of
the image are defined by the relation:

m x y f x y p qpq

x

N

y

N

p q=
=

−

=

−

∑ ∑
0

1

0

11 2

 , = 0,1,2,...(,),

(2)

Since the background level is 0, only the pixels with
level 1 are taken into account for the computation of
the moments. Therefore, if the image f x y(,) is
represented by n blocks, as it is described in (1), all the
image pixels with level 1 belong to the k image blocks
and therefore (2) may be rewritten as:

m m x ypq

i

n

pq
b

i

n

x x

x

y y

y

p qi

bi

bi

bi

bi

= =
=

−

=

−

= =
∑ ∑ ∑ ∑

0

1

0

1

1

2

1

2

,

,

,

,

(3)

where x xb bi i1 2, ,, and y yb bi i1 2, ,, are the coordinates of
the block bi with respect to the horizontal axis and to
the vertical axis, respectively. According to (3), the 2-D
geometrical moments of the whole image are computed
as the summation of the 2-D geometrical moments of
all the individual blocks of the binary image.
 In (3), if the rectangular form appeared within
the blocks is taken into account, then the geometrical
moments of one block b, are given by

m x y x ypq
b p q

y y

y

x x

x

p

x x

x

q

y y

y

b

b

b

b

b

b

b

b

= =




























== = =
∑∑ ∑ ∑

1

2

1

2

1

2

1

2

(4)

 Using the rectangular form appeared within
the block, the computational effort, which is
characterized by the complexity O(N

2) for the
calculation of moments using (2), is reduced to O(N)
for the calculation of moments using (4). For the
computation of (4), it is adequate to calculate the
following summations of the powers of x and y :

S x

S y x y p q Z

x x

p

x x

x

p

y y

q

y y

y

q

b b

b

b

b b

b

b

1 2

1

2

1 2

1

2

,

,
, , ,

=

= ∈

=

=

∑

∑

 ,

 ,

(5)

Moreover, taking into account the known formulae:

S
n n

S
n n n

S
n n

S
n n n n n

m
S

m

m
S n n

n n

n

n

n n
m m

1
1

1
2

1
3

2 2

1
4

2

1
1

1
1

1

2

1 2 1

6

1

4

1 2 1 3 3 1

30

1

1

1
1 1

, ,

,

,

, ,

() ()()

()

()()()

... () ()

=
+

=
+ +

=
+

=
+ + + +

+







 + +

+







 = + − ++

 , ,

 ,

(6)

where m n Z, ∈ and
i

j

i

j i j








 =

−

!

!()!
 are the

combinations of i objects, taken j each time, it is

concluded that the summation S
x x

p

1 2,
 can be directly

calculated as S S S
x x

p

x

p

x

p

b b b b1 2 2 11 1 1, , ,
= − − . The summation

S
y y

q

b b1 2,
 is computed in a similar manner. Obviously,

the computation of the moments of a block using the

above analytical formulae (6), is independent of the

size of the block. It has been proved [8], that the

computational complexity of the proposed technique is

in the order of O L()2 , where (,)L L− −1 1 is the order

of the moments to be computed.

III.2. Computation of the 2-D moments on the

SLAP
 The computation of the moments of a block
represented binary images on the SLAP, is executed in
two discrete steps:

Step 1:
 The first step does not involve any
communication among the processors and therefore is
executed very fast. Let the n blocks that constitute the
image f, where usually n is less than the number of the
processors N, i.e n<N. A SLAP architecture with N
processors, as the one described above is sufficient for
the computation of the 2-D statistical moments of the
image. Each block bk , k=0,1,...,n-1 is loaded as input
to the processor Pk , in four time units. The
corresponding values of the moments until the order (L-
1, L-1) are computed according to the analytical
formulae (3), (6) and stored in the local memory of the
processor. If n>N, then this process is repreated for the
rest of the blocks and each processor adds the moment
values of each block and holds this summation.

 The above procedure requires 4L power
calculations, 2 2

L L− multiplications and L L
2 −

additions [8]. The corresponding time units depends on
the type of the general purpose processor, but without
loss it can be assumed that O L()2 2 time units are
required. If n>N, then the relevant time units are
multiplied by the factor modulo(n/N). In the most of
real world images it holds that n N< .

Step 2:
 In the second step each processor broadcasts
in its left immediate processor the value of the moment
with order (0,0), while the first processor from the left
adds the values to the corresponding moment. This
process requires N time units. The same process is
repeated for all the moments and finally the first left
processor holds the moment values of the block
represented binary image.
 Finally the transmition of the values of one
moment to the first processor from the left requires
O N() time units and the transmission of the values of
all the moments requires O L N()2 time units. In typical
pattern recognition applications the moments usually
are calculated up to the order (4,4), since the higher
order moments are very sensitive to noise. Therefore
for L=5, L N

2 < and the computational compexity is
less than O N()2 .

 The whole computational complexity for the
moments computation on the SLAP, is the summation
of the complexity of the two steps. Therefore, the
whole process requires
MOD(/) () ()n N O L O L N2 2 2+ time units and under
the reasonable assumptions that n N< and that
L N

2 < , this value is less than O N()2 time units.

IV. CONCLUSIONS
 In this paper an efficient algorithm for the
computation of the 2-D geometrical moments of a
block represented binary image, on the Scan Line Array
Processor in real-time has been presented. It can be
shown that other set of moments (central, normalized
central, moment invariants) may be also computed on
block represented images and therefore their real-time
computation on the SLAP is a direct extension of the
work presented here.

REFERENCES
[1] H. Samet, "The quadtree and related hierarchical

data structures", Computing Survey, vol. 16, No. 2,
pp. 187-260, 1984.

[2] H. Freeman, "Computer processing of line
drawings", ACM Computing Surveys, vol. 6, pp.
57-97, 1974.

[3] D.W. Paglieroni and A.K. Jain, "Control point
transfroms for shape representation and
measurement", Computer Vision, Graphics and
Image Processing, vol. 42, pp. 87-111, 1988.

[4] R.L. Kashyap and R. Chellappa, "Stochastic
models for closed boundary analysis:
Representation and reconstruction", IEEE Trans.
Information Theory, vol. IT-27, pp. 627-637, No.
5, September 1981.

[5] J. Piper, "Efficient implementation of
skeletonisation using interval coding", Pattern
Recognition Letters, vol. 3, pp. 389-397, 1985.

[6] I.M. Spiliotis and B.G. Mertzios, "Real-time
computation of statistical moments on binary
images using block representation", Proceedings of
the 4th International Workshop on Time-Varying
Image Processing and Moving Object Recognition,
Florence, Italy, June 10-11, pp. 27-34, 1993.

[7] I.M. Spiliotis, D.A. Mitzias and B.G. Mertzios, "A
skeleton-based hierarchical system for learning and
recognition", Proceedings of MTNS 93,
International Symposium on the Mathematical
Theory of Networks and Systems, Regensburg,
Germany, August 2-6, pp. 873-878, 1993.

[8] Ι.Μ. Spiliotis and B.G. Mertzios, "Real-time
computation of two-dimensional moments on
binary images using image block representation",
IEEE Transactions on Image Processing.
Accepted for publication.

[9] A.I. Fisher and P.T. Highnam, "Real-time image
processing on scan line array processors", IEEE
Computer Society Workshop on Computer
Architectures for Pattern Analysis and Image
Database Management, pp. 484-489, 1985.

[10] D. Helman and J. Jaja, "Efficient image processing
algorithms on the scan line array processor", IEEE
Trans. PAMI, vol. 17, no. 1, pp. 47-56, 1995.

[11] S. Knight, D. Chin, H. Taylor and J. Peters, "The
Sarnoff Engine: a massively parallel computer for
high definition system simulation", Proc. of
Application Specific Array Processors, pp. 342-
356, 1992.

[12] A.L. Fisher, "Scan Line Array Processors for
image computation", Intern. Conf. on Computer
Architectures, pp. 348-345, 1986.

