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ABSTRACT 
Moments constitute a well known tool in the field of 
image analysis and pattern recognition but they suffer 
from the drawback of high computational cost. Efforts for 
the reduction of the required computational complexity 
have been reported, but are mainly focused on binary 
images. Image Block Representation (IBR) has been 
introduced some years ago and is applicable only on 
binary images. The block represented binary image is 
well suited for fast implementation of various processing 
and analysis algorithms and a real-time algorithm for the 
computation of moments has been presented in the past. 
In this paper an application of the image block 
representation on gray images and two fast algorithms for 
the computation of moments are presented. The first 
algorithm provides the exact moment values and is fast 
implemented. The second algorithm derives from the first, 
computes approximated moment values with an error of 
2-3% from the exact values and operates in real-time. 
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1. Introduction 
 
Moments and functions of moments have been 
successfully and extensively used in pattern recognition, 
image classification and scene analysis [1]. In pattern 
recognition applications a small set of lower order 
moments are able to discriminate among different patterns 
[2]. Since the introduction of moment invariants by Hu 
[3], which are invariant to translation, rotation and scale 
change the geometric moments and their derivatives (i.e. 
central, normalized central and invariant moments) have 
been extensively used in these applications.  
The geometric moment of order (p,q) of a 2-D function 
g(u,v) is defined as: 
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The computation of moments up to the order 
( 1, 1L L )− − , directly from (2) requires  power 

calculations,  multiplications and  additions. 
Several researchers have proposed approaches for the 
reduction of the required computational complexity. A 
group of methods is based on Green’s theorem, which 
evaluates the double integral over the object by means of 
single integration along the object boundary [2]. Zakaria 
et al. [4], Dai et al. [5], Li [6], and Flusser [7] proposed 
various approaches based on the decomposition of the 
object into rows or row segments. Spiliotis and Mertzios 
[8] proposed a method for the real-time moment 
computation of binary images representing the image by 
non-overlapping homogenuous orthogonal blocks and 
performing moment calculations using the coordinates of 
the upper left and lower right corner of each orthogonal. 
Chung and Chen [9], extended the idea of [8] to gray 
images by separating gray images to “homogeneous” 
blocks of image intensities and performing moment 
calculation using the blocks. The definition of 
homogeneity introduces an error in the moment 
calculation requiring a compromise between the accuracy 
and the number of homogeneous blocks making the error 
smaller when a large number of homogeneous blocks are 
used.  

2 22N L
2 2N L2 22N L

In this paper the gray level image is decomposed in a 
number of binary images without any loss of information. 
The IBR scheme is applied to the binary images that 
constitute the gray-level image. In the sequel the 
algorithm of Spiliotis and Mertzios [8] is applied for the 
fast and exact computation of the moments of each binary 
image. The moments of the gray images are derived easily 
from the moments of the binary images. 
A second algorithm omits some of the lower order binary 
images from the computation of the moments, with 
significant savings to the computational time. However 
the number of the omitted binary images is small, in order 
to keep the approximation error at accepted levels. 

2 ( , )g x y , the moment of 
order  is defined as: ( , )p q

Moreover the substitution of the omitted binary images 
with chessboard images, reduces drastically the 
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approximation error. This method permits the 
computation of the moments with only 3 higher order 
binary images and keeps the approximation error as low 
as 2-3%, while the proposed algorithm operates in real-
time. 
The remainder of the paper is organized as follows: 
Section 2 gives the basic definitions for the block 
representation of binary images and presents the 
mathematical formulae for the real-time computation of 
moments on binary images. Section 3 presents the 
decomposition of a gray image to a set of binary images. 
In Section 4 the computation of the moments is given, 
while section 5 provides experimental results and 
comparisons. Finally, section 6 provides some concluding 
remarks. 
 
 
2. IBR and moments computation on binary 

images 
 
Suppose that in a binary image the object pixels are 
assigned to level 1. Suppose also that the object pixels are 
represented by a set of non-overlapping rectangles with 
edges parallel to the axes containing integer number of 
pixels, in such way that every object pixel belongs to only 
one block. These rectangles are called blocks. It is always 
feasible to represent a binary image with a set of all the 
nonoverlapping blocks with object level and this 
representation is called Image Block Representation (IBR) 
[10].  
The IBR concept leads to a simple and fast algorithm, 
which requires just one pass of the image and simple 
bookkeeping process. As a result of the application of the 
above algorithm, we obtain a set of all the rectangular 
areas with level 1 that form the object. A block 
represented image is denoted as 

, where k is the number of 
the blocks. Each block is described by four integers, the 
coordinates of the upper left and down right corner in 
vertical and horizontal axes, . 
The block extraction process is implemented easily with 
low computational complexity, since it is a pixel checking 
process without numerical operations. The block 
extraction process requires a pass from each line y of the 
image. In this pass all object level intervals are extracted 
and compared with the previous extracted blocks. In the 
following, an IBR algorithm is given. 
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Algorithm 1: Image Block Representation. 
Step 1: Consider each line y of the image f  and find the 

object level intervals in line y. 
Step 2: Compare intervals and blocks that have pixels in 

line y-1. 
Step 3: If an interval does not match with any block, this 

is the beginning of a new block. 
Step 4: If a block matches with an interval, the end of 

the block is in the line y.    

Given a specific binary image, different sets of different 
blocks can be formed. Actually, the nonunique block 
representation does not have any implications on the 
implementation of any operation on a block represented 
image. The optimum representation is characterized by 
the minimum possible number of blocks. 
Since the background level is 0, only the pixels with level 
1 are taken into account for the computation of the 
moments. Thus, the 2-D geometrical moments of order 
(p,q) of the image f(x,y) are defined by the relation: 
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Since the image is represented by blocks, all the object 
pixels belong to the k blocks and taking into account the 
rectangular form of the block, (3) may be rewritten [8] as: 
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Note that using (4) the computational complexity is 
reduced to  instead of  using (2). Moreover, 
the summations of xp and yq may be computed using the 
above known formulae (5) resulting to further speed-up of 
the calculations.  

( )O N 2(O N )

Spiliotis and Mertzios at [8], have show that their method 
has a computational complexity of O(k), where k is the 
number of the blocks and the method operates in real-
time. They also have show that other sets of statistical 
methods as central moments, normalized central methods 
and Hu’s moment invariants are computed in real-time 
since are based on geometric moments. 
As shown by Liao and Pawlak in [11], eq. (2) is not a 
very exact approximation of (1), due to the zero-order 
approximation of the double integral of (1) with the 
summations of (2) and due to the numeric integration of 

p qx y  over each pixel and proposed a correction for the 
moments computation at the discrete domain. 
In accordance, Flusser in [12] proposed a correction to 
[8], that concludes that: 
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where also proposed that parts of (6) can be precalculated, 
something which may also be done to quantities of eq. 
(5). 
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3. Decomposition of the gray image As already mentioned and illustrated in Fig. (1) the lower 
order bitplanes look like noise with transitions from white 
to black. Condider a  binary chessboard image 

, where each pixel is different from its 4-
neighbors. The substitution of the m omitted binary 
images with the chessboard image, results to: 

1N N×
 
Consider the gray image ( , )g x y

2

, with  gray levels 

and dimensions 

2n

1N N× . The gray image can be 
decomposed in a set of n binary images, so that each 
binary image is a bit plane of the original gray image. 
This way, the first binary image bn-1 contains the most 
significant bits (MSB) of the binary representation of the 
image intensities g(x,y), the second binary image bn-2 
contains the second MSB and so on until the binary image 
b0, containing the least significant bits of the binary 
representation of the gray image intensities. The relation 
between the gray image g(x,y) and the n binary images 
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where pqmc  are the moments of the chessboard image.  
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The percentage error of the approximation, between the 
exact and the approximated moment values, is expressed 
as: 

100pq pq

pq

pq
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m
ε
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Fig. 1, illustrates an image with 256 gray levels and the 8 
corresponding binary images that result from the 
decomposition of the original image. It can be observed 
that lower order binary images are quite noisy. This 
feature is exploited below for the reduction of the 
computational cost of moment calculations. 

The approximation error in the case where some bitplanes 
are omitted is much bigger in comparison with the case of 
substitution of the omitted bitplanes with the chessboard 
image. This is due to the fact that the contribution of the 
lower order bitplanes to the moments of the gray image is 
quite similar to the contribution of the chessboard planes 
to the moments of the gray image.  

 The percentage contribution of the bitplane of the i-th 
plane and the percentage contribution of the chessboard 
image at the i-th plane are calculated according to: 

iCb
4. Computation of moments 
 
4.1 Method 1. The exact - fast method 
Applying eq. (7) to eq. (2) for the computation of 
moments, one obtains the following formula: 
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As implied from eq. (11.2) . 12i iCc Cc
−

=
In pattern recognition applications a small set of low 
order moments is adequate to discriminate among 
different patterns. Hu’s moment invariants that have been 
used extensively for such tasks, are low order moments. 
The approximate method is particularly suitable for 
applications using low order moments because the 
approximation error tends to increase for high moment 
order. 

where  is the -th order moment of the binary 

image that derives from the decomposition of the gray 
image. The binary images are represented by blocks and 
their moments are fast computed using eq. (4) and 
Flusser’s exact formula [12] of eq. (6) with pre-
calculations. 

,i pqmb

ib

( , )p q

 
4.3 Other moment sets 
The two proposed methods are also suitable for the 
computation of other sets of moments. Specifically, the 
central moments, the normalized central moments and the 
Hu’s moment invariants can also be computed using the 
fast and exact method 1, or the approximate and real-time 
method 2. 

 
4.2 Method 2. The approximate - real-time method 
As eq.(8) implies, the moments of lower order bitplanes 
don’t participate equally to the computation of the gray 
image moments, because of the weight factors of . If a 
number of these bitplanes are omitted from the calculation 
of (8) this results to a calculation error and computational 
savings.  

2i
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 1 (a). The original gray image with 200x200 pixels and 256 gray levels. (b) – (i). the decomposition of the original 
image results to these eight binary images b7 to b0, where b7 at (b) derives from the most significant bits and b0 at (i) derives 

from the least significant bits, of the pixel values of (a) 
 
5. Experimental results 
 
Lets first consider the exact computation of moments with 
method 1 of the previous section. For the image of Fig. 1 
the required time for the computation of moments up to 
the order (14,14), with proposed method 1, is 0,672sec, 
while the computation of these moments using the pixel 
values and eq. (2) requires 4,511sec, therefore the 
speedup value is 6,71. Another 0,051 sec are required for 
the IBR process of the 8 binary images. 
The percentage contributions of the i-th binary image and 
the percentage contribution of the chessboard image at the 
i-th plane, Cci, Cbi respectively, for i=0,1,..,5, to the 

eq. (11) and their values are given at Table 1. As shown in 
Table 1, the contributions Cci, Cbi for the first 5 lower 
order planes, are quite close. For the sixth plane i=5, the 
differences of the contributions become larger. The same 
holds for planes 6 and 7 which are not given in Table 1. 
Fig. (2), illustrates the same values in a graphical way. 
The percentage approximation moment computation er

moments of the gray image of Fig. 1, are computed using 

ror 

larger as the moment order increases. 

for m=4,5,6 is given at Tables 2,3,4 respectively, where m 
is the number of chessboard images that used for the 
computation of moments for the image of Fig. 1. As 
indicated from Tables 2,3,4 the percentage error is quite 
low for m=4, for m=5 is still at accepted levels and for 
m=6 is unacceptable. Note also that the error becomes 
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Table 1 The percentage contributions of the binary image f the chessboard image at different plans and o e positions to the 

 Cb0 Cc0 Cb1 Cc1 Cb4 Cc4 Cb5 Cc5 
moments of the gray image, of Fig. 1 

 Cb2 Cc2 Cb3 Cc3 
m 0 5 4 6 7 6 5 5 9 6 9 1 2 1 70 0,403 0,404 0,807 0,808 1,602 1,617 3,215 3,234 6,895 6,469 2,704 2,939
m01 0,3858 0,3886 0,7771 0,7771 1,5304 1,5543 3,1364 3,1086 7,1211 6,2172 10,5664 12,4344
m02 0,3778 0,3817 0,7620 0,7633 1,4990 1,5267 3,1137 3,0534 7,2752 6,1068 9,5462 12,2135
m03 0,3752 0,3795 0,7561 0,7591 1,4879 1,5181 3,1148 3,0362 7,4343 6,0725 9,0647 12,1449
m10 0,4163 0,4173 0,8351 0,8347 1,6566 1,6694 3,3012 3,3387 7,0232 6,6775 12,7210 13,3550
m11 0,3901 0,3933 0,7900 0,7866 1,5515 1,5731 3,1350 3,1463 6,8390 6,2925 10,0361 12,5851
m12 0,3766 0,3810 0,7650 0,7621 1,5000 1,5241 3,0439 3,0483 6,7275 6,0965 8,7415 12,1931
m13 0,3705 0,3755 0,7532 0,7510 1,4775 1,5019 2,9974 3,0039 6,7185 6,0077 8,0878 12,0154
m20 0,4237 0,4244 0,8502 0,8488 1,6794 1,6976 3,3621 3,3952 7,1036 6,7904 12,6997 13,5807
m21 0,3945 0,3976 0,8004 0,7952 1,5646 1,5904 3,1674 3,1807 6,7039 6,3615 9,9214 12,7230
m22 0,3794 0,3841 0,7729 0,7683 1,5107 1,5365 3,0589 3,0731 6,4954 6,1462 8,6736 12,2923
m23 0,3729 0,3785 0,7609 0,7571 1,4904 1,5141 3,0040 3,0282 6,4439 6,0565 8,1125 12,1130
m30 0,4279 0,4284 0,8588 0,8567 1,6902 1,7134 3,4027 3,4269 7,1444 6,8537 12,7319 13,7075
m31 0,3980 0,4011 0,8084 0,8021 1,5734 1,6043 3,2054 3,2085 6,6277 6,4171 9,9650 12,8341
m32 0,3831 0,3881 0,7818 0,7762 1,5231 1,5524 3,0987 3,1048 6,3884 6,2096 8,8226 12,4193
m33 0,3775 0,3837 0,7720 0,7673 1,5090 1,5347 3,0499 3,0694 6,3404 6,1388 8,3913 12,2776

 

 number of real images have been used in experiments, 

m=4 is 0,57% for 

 errors 

 
A
in order to determine the optimum number of binary 
images that have to be used in moment computation for 
keeping the approximation error low.  
Specifically the maximum error for 
moment m33, for the image of Fig. 3(a). The maximum 
error for m=5 is 2,32% for moment m33, for the same 
image of Fig. 3(a). And the maximum error for m=6 is 
4,14% for moment m00, for the image of Fig. 3(b). 
Therefore, from the computation of the percentage
for a number of test images and for accepted moment 
approximation error less than 3% the optimum number of 
chessboard images is determined to be 5. 
 

 
Figure 2 The percentage contributions of the binary 

i  

Table 2 The percentage approximation moment 
c  

mages and of the chessboard image at different plane
positions to the moments of the gray image 

 

omputation error for m=4 for the image of Fig. 1

pqε  p=0 p=1 p=2 p=3 

q=0 3 0 6 80,036 0,051 0,050 0,045

q=1 0,0011 0,0326 0,0371 0,0308

q=2 0,0273 0,0299 0,0401 0,0348

q=3 0,0411 0,0337 0,0497 0,0467
 

Table 3 The percentage approximation moment 
c  omputation error for m=5 for the image of Fig. 1

pqε  p=0 p=1 p=2 p=3 

q=0 0, 0  0  03894 ,2948 ,2626 ,2448

q=1 0,9049 0,5139 0,3054 0,1798

q=2 1,1957 0,6011 0,3092 0,1439

q=3 1,4030 0,6771 0,3377 0,1550
 

Table 4 The percentage approximation moment 
c  omputation error for m=6 for the image of Fig. 1

pqε  p=0 p=1 p=2 p=3 

q=0 9 2 5 70,153 0,339 0,618 0,730

q=1 0,9630 2,0351 2,4962 2,6893

q=2 1,4716 2,8505 3,3095 3,4528

q=3 1,6772 3,2505 3,6628 3,7313
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(a)    (b) 

Figure 3 Sample of test images. (a). Horses with 256x256 
pixels. (b). F16 with 200x200 pixels 

 
In order to have significant computational savings, the 
moments of the chessboard image are precalculated and 
stored and their use requires only one addition per 
moment order as indicated by eq. (9). It is worth noting, 
that at lower bitplanes the number of the blocks is much 
bigger, therefore the savings in IBR time from the 
omission of a lower bitplane is greater than the savings 
from the omission of a higher bitplane. 
The required times for the moments computation up to the 
order (3,3) of the 3 images are presented in Table 5. 
Column BMC refers to the time taken by the proposed 
approximated method 2, while column IMC refers to the 
time taken by using image pixels and eq. (2). Note that the 
whole time with IBR is less than 0.033sec, therefore the 
proposed method operates in real-time with more than 30 
images/sec. 
 

Table 5 Required times(sec) for the computation of 
approximated moments up to the order (3,3) with m=5 

Image IBR BMC IMC 
Lena 0,007 0,007 0,293 
Horses 0,012 0,011 0,481 
F16 0,006 0,006 0,315 

 
5.1 Comparisons 
Chung’s method [9], which mentioned at the introduction, 
uses an error parameter ε  for controlling the process of 
the formation of the blocks. When 0ε = , then the method 
is lossless and the exact reconstruction of the gray image 
from its blocks is possible. The comparison of the two 
proposed methods with Chung’s method is for 0ε = . For 
all the test images, the 2 proposed methods outperform 
Chung’s method. For the image of Fig.1 and the 
computation of moments up to the order (3,3) the required 
times are: 0,007 sec for the proposed method 2 with the 
use of 5 chessboard images, 0,049 sec for the exact 
proposed method 1, 0,076 sec for the method of Chung 
and 0,293 sec for the computation on the pixel values 
using eq. (2). 
All computations are performed using the C programming 
language and a 1.5GHz Athlon PC with 1GB RAM. 
 
 

6. Conclusion 
 
In this paper two methods for the computation of gray 
image moments are proposed. The first method provides 
the exact moment values and operates much faster than 
the conventional moment calculation and faster than other 
fast moment calculation technique. The second method 
provides approximated moment values and operates in 
real-time.  
The two methods are suitable for pattern recognition, 
image retrieval, stereo matching and all the applications 
where moments are used. 
 
 
References 
 
[1] R. J. Prokop and A. P. Reeves, “A survey of 
moment-based techniques for unoccluded object 
representation and recognition”, Graphical Models and 
Image Processing, 54(5), 1992, 438-460. 
[2] L. Yang, F. Albregtsen, “Fast and exact 
computation of cartesian geometric moments using 
discrete Green’s theorem”, Pattern Recognition, 29(7), 
1996, 1061–1073. 
[3] M.K. Hu, “Visual pattern recognition by moment 
invariants”, IRE Trans Inf Theory, 8(1), 1962, 179–187. 
[4] M.F. Zakaria, L.J. Vroomen, P. Zsombor-Murray, 
J.M. van Kessel, “Fast algorithm for the computation of 
moment invariants”, Pattern Recognition, 20(6), 1987, 
639–643. 
[5] M. Dai, P. Baylou, M. Najim, “An efficient 
algorithm for computation of shape moments from run-
length codes or chain codes”, Pattern Recognition, 
25(10), 1992, 1119–1128. 
[6] B.C.Li, “A new computation of geometric 
moments”, Pattern Recognition, 26(1), 1993, 109–113. 
[7] J. Flusser, Fast calculation of geometric moments of 
binary images, Proc. 22nd OAGM’98 Workshop Pattern 
Recognition.Medical Computer Vision, Illmitz, Austria, 
1998, 265–274. 
[8] I.M. Spiliotis, B.G. Mertzios, “Real-time 
computation of two-dimensional moments on binary 
images using image block representation”, IEEE Trans 
Image Processing, 7(11), 1998, 1609–1615. 
[9] K. Chung, P. Chen, “An efficient algorithm for 
computing moments on a block representation of a gray-
scale image”, Pattern Recognition, 38(12), 2005, 2578–
2586. 
[10] Ι.Μ. Spiliotis and B.G. Mertzios, "Fast algorithms 
for basic processing and analysis operations on block 
represented binary images", Pattern Recognition Letters, 
17(14), 1996, 1437-1450. 
[11] S. Liao, M. Pawlak “On image analysis by 
moments”, IEEE Trans PAMI, 18(3), 1996, 254-266. 
[12] J. Flusser, "Refined moments calculation using 
image block representation", IEEE Trans Image 
Processing, 9(11), 2000, 1977-1978. 

 

328


	ABSTRACT
	KEY WORDS




