
Parallel Computation of Discrete Orthogonal Moment
on Block Represented Images Using OpenMP

Iraklis M. Spiliotis1 • Charalampos Sitaridis1 • Michael P. Bekakos1

Received: 26 September 2020 / Accepted: 31 March 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Herein, a parallel implementation of Discrete Orthogonal moments on block rep-

resented images is investigated. Moments and moment functions have been used

widely as features for image analysis and pattern recognition tasks. The main dis-

advantage of all moment sets, is the high computational cost which is increased as

higher-order moments are involved in the computations. In image block represen-

tation (IBR) the image is represented by homogeneous areas which are called

blocks. The IBR allows moment computation with zero computational error for

binary images, low computational error for gray images, low computational com-

plexity, while can achieve high processing rates. The results from parallel imple-

mentation on a multicore computer using OpenMP, exhibit significant performance.

Keywords Discrete orthogonal moments � Image block representation � Fast
image analysis � Parallel algorithms � OpenMP

1 Introduction and Related Work

Moments and moment functions used widely as features in image analysis and

computer vision applications [1–4]. The orthogonal moments use orthogonal

polynomials as basis functions, thus they describe a signal with minimal information

redundancy as compared to geometric moments and their variations. The continuous

& Iraklis M. Spiliotis

spiliot@ee.duth.gr

Charalampos Sitaridis

csitarides@gmail.com

Michael P. Bekakos

mbekakos@ee.duth.gr

1 Department of Electrical and Computer Engineering, Democritus University of Thrace,

67100 Xanthi, Greece

123

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-021-00713-2(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6174-858X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-021-00713-2&domain=pdf
https://doi.org/10.1007/s10766-021-00713-2

orthogonal moments have the problem of discretization error. The discrete

orthogonal moments are based on discrete orthogonal polynomials, and they have

superior image representation ability than other moment sets. The most familiar

discrete orthogonal moment (DOM) sets are the Tchebichef [5], the Krawtchouk

[6], and the Hahn moments [7, 8]. The reconstruction of an image from a finite

number of discrete orthogonal moments [5, 6] indicates the discriminative ability of

moments. The Hahn moments considered as a generalization of Tchebichef and

Krawtchouk moments. The Tchebichef moments are able to capture the global

features of an image while the Krawtchouk moments capture local features. It has

been proved that Hahn moments have better image reconstruction quality as

compared to the Tchebichef, Krawtchouk, Charlier [9], Meixner [10], and

Racah [11] discrete orthogonal moments.

Discrete orthogonal moments proposed as features in several computer vision

and pattern recognition tasks [12], as face description [13], 3D object description

[14–16], feature extraction from encrypted images [17], image watermarking [18]

and improved image classification [19, 20].

A significant drawback of moments is the required high computational cost [21].

Several approaches have been proposed for the reduction of this computational

effort. In Image Block Representation (IBR) [22], the binary image is represented as

a set of homogeneous rectangulars with edges parallel to image axes, which called

blocks. The development of algorithms that operate in blocks instead of image

pixels, results in significant computation time savings due to the provided intrinsic

parallelism from the IBR. In specific, algorithms for image preprocessing [22],

skeletonization [23], thinning [24] and Hough transform [25] have been studied.

Also, the real-time computation of geometric moments in block represented binary

images has been proposed [26]. An extension of IBR on gray images permits the

real-time computation of geometric moments [27, 28] and the fast computation of

the Hahn moments [29] to gray images. This latter sequential work is the basis of

the parallel work presented in this paper.

Herein, the IBR scheme is used for the parallel computation of DOM of binary

and gray images. In the proposed method, the binary image is presented by blocks

and the fast computation of DOM in blocks is achieved. In the case of a gray image,

the image is decomposed into a set of binary images, the most significant ones are

represented by blocks and the DOM are computed fast. The least significant binary

images substituted by a constant ideal image called ‘‘half-intensity’’ image, with

known DOM values.

Moment computation is not the only example with high required computational

cost; images include a significant amount of information and image processing

involves complex algorithms. For this reason parallel processing has been used to

achieve faster processing rates. The Shared Memory Parallel Machine (SMPM), a

multicore shared memory computer which usually uses the OpenMP (Open Multi-

Processing) API [30] has been used in image processing and analysis tasks.

OpenMP API is also suitable for Intel Xeon Phi coprocessor accelerators [31] and

GPU accelerators [32]. Some examples of parallel image and video processing on

SMPM are the segmentation of moving objects from background in a video [33], the

continuous orthogonal Legendre moment computation [34], the image segmentation

123

International Journal of Parallel Programming

[35] using watershed operation and the extraction of SIFT and SURF features [36].

Recently, an OpenMP parallel implementation of the Image Block Representation

has been presented [37].

The rest of the paper is organized as follows: In Sect. 2 the DOM are presented.

In Sect. 3, we present the block representation and moment computation method. In

Sect. 4 we propose a parallel algorithm for the DM computation using OpenMP,

while in Sect. 5 the theoretical analysis of the parallel algorithm is presented.

Section 6 presents the experimental results and finally Sect. 7 concludes the work.

2 Discrete Orthogonal Moments

The 2-D Discrete Orthogonal moment of order pq of an image intensity function

f(x,y) with size Nx � Ny is defined as:

Mpq ¼
XNx�1

x¼0

XNy�1

y¼0

Ppðx;NxÞPqðy;NyÞf ðx; yÞ ð1Þ

where p ¼ 0; 1; 2; . . .;Nx � 1, q ¼ 0; 1; 2; . . .;Ny � 1. The Ppðx;NxÞ; Pqðy;NyÞ are

the pth and qth order discrete orthogonal polynomials, which defined by recurrent

relations. The polynomials Ppðx;NxÞ; Pqðy;NyÞ are 1D and are identical for a square

image where Nx ¼ Ny. An image with size Nx � Ny can be reconstructed from a

restricted number of DOM from order (0, 0) up to the order (P,Q) using the inverse

moment transform and this indicates the representative power of the moments.

f̂ ðx; yÞ ¼
XNx�1

x¼0

XNy�1

y¼0

Ppðx;NxÞPqðy;NyÞMpq; ð2Þ

where f̂ ðx; yÞ is the reconstructed image. If the number of moments is equal to the

number of image pixels, then the reconstructed image is identical to the original

image.

It is observed from (1) the high computational complexity for DOM, specifically

for a square image with NxN pixels and for moment order from (0, 0) up to (Q,Q),
the complexity is O(Q2N2). The type of discrete orthogonal polynomial kernel

determines which type of DOM set is calclulated. In the sequel the Hahn

polynomials, as a representative discrete orthogonal polynomial set are presented.

2.1 Hahn Polynomials

The h
ðl;mÞ
p ðx;NÞ is the pth order orthogonal Hahn polynomial, defined by the

following recursive relation:

123

International Journal of Parallel Programming

Ahðl;mÞp ðx;NÞ ¼ B

ffiffiffiffiffiffiffiffiffi
d2p�1

d2p

s

h
ðl;mÞ
p�1 ðx;NÞ þ C

ffiffiffiffiffiffiffiffiffi
d2p�2

d2p

s

h
ðl;mÞ
p�2 ðx;NÞ; p ¼ 2; 3; . . .;N � 1

ð3Þ

with

h
ðl;mÞ
0 ðx;NÞ ¼

ffiffiffiffiffiffiffiffiffi
qðxÞ
d20

s

h
ðl;mÞ
1 ðx;NÞ ¼ ðN þ m� 1ÞðN � 1Þ � ð2N þ lþ m� 2Þxf g

ffiffiffiffiffiffiffiffiffi
qðxÞ
d21

s ð4Þ

where l; m ðl[� 1; m[� 1Þ are adjustable parameters and the values l; m ¼ 0

are suitable for the global feature extraction of the image. The parameters A, B, and

C are defined as:

A ¼ pð2N þ lþ m� pÞ
ð2N þ lþ m� 2pþ 1Þð2N þ lþ m� 2pÞ

B ¼ x� 2ðN � 1Þ þ m� l
4

� ðl2 � m2Þð2N þ lþ mÞ
4ð2N þ lþ m� 2pþ 2Þð2N þ lþ m� 2pÞ

C ¼ ðN � pþ 1ÞðN � pþ lþ 1ÞðN � pþ mþ 1ÞðN � pþ lþ mþ 1Þ
ð2N þ lþ m� 2pþ 2Þð2N þ lþ m� 2pþ 1Þ

ð5Þ

The weighting function q(x) can be solved by using the recursive relation

concerning x as:

qðxÞ ¼ ðN � xÞðN � m� xÞ
xðxþ lÞ qðx� 1Þ; x ¼ 1; 2; . . .;N � 1

qð0Þ ¼ 1

Cðlþ 1ÞCðN þ mÞCðN � pÞ

ð6Þ

The discrete orthogonal polynomial with respect to the y axis Pqðy;NyÞ is

calculated in the same way; for square images Pqðy;NyÞ has identical values with
Ppðx;NxÞ.

123

International Journal of Parallel Programming

3 Moment Computation

3.1 Binary Images

In a binary image, the object level pixels have intensity 1 and the background pixels

have intensity 0. The pixels with object-level are represented by a set of non-

overlapping rectangles with edges parallel to the axes, in such a way that every

object pixel belongs to only one rectangle. These formed rectangles are called

blocks; this representation is lossless and is called Image Block Representation

(IBR). The IBR process, is a fast process without numerical computations and

requires one image scan and simple pixel checking operations.

Algorithm 1 Serial Image Block Representation.

Step 1: Consider each line y of the image f and find the object level intervals in line y.

Step 2: Compare intervals of line y with blocks of line y - 1.

Step 3: If an interval does not match with any block, this is the beginning of a new block.

Step 4: If a block matches with an interval, the end of the block is in line y.

A binary image represented by blocks is described as

f ðx; yÞ ¼ bi : i ¼ 0; 1; . . .; k � 1f g, where k is the number of the blocks and bi is
the ith block described by the coordinates of two opposite diagonal angular points,

as bi ¼ x1;bi ; x2;bi ; y1;bi ; y2;bi
� �

.

Since the background pixels have intensity 0, only the foreground pixels belong

to the k blocks, will take part in the calculation of the moments. The foreground

pixels and Thus a DOM of order pq of a binary image can be defined as:

Mpq ¼
Xk�1

i¼0

XNx�1

x¼0

XNy�1

y¼0

Ppðx;NxÞPqðy;NyÞ ð7Þ

Exploiting the rectangular form of the block with edges parallel to the image

axes, the double sum of discrete orthogonal polynomials can be rewritten as the

product of two separate sums. Each sum contains the polynomial terms for the

horizontal and vertical axis of the block, respectively.

Mb
pq ¼

Xx2;b

x¼x1;b

Ppðx;NxÞ
Xy2;b

y¼y1;b

Pqðy;NyÞ ð8Þ

and the moments of the whole image are

123

International Journal of Parallel Programming

Mpq ¼
Xk�1

i¼0

XNx�1

x¼0

Ppðx;NxÞ
XNy�1

y¼0

Pqðy;NyÞ ð9Þ

The computational complexity using (9) O(N), instead of O(N2) when using (1).

3.2 Gray and Color Images

A gray image has an intensity function g(x,y) and 2n gray levels. This gray image

can be decomposed into n binary images. Each of these binary images, is a bit plane

pi of the original gray image derived from the bits of the same significance of the

values of the corresponding pixel of the gray image. The bit-plane pn�1 is consisted

of the most significant bits (MSB), while the bit plane p0 consisted of the least

Fig. 1 Decomposition of the gray image peppers with 256 gray levels into 8 binary images. a The
original gray image. b–i The binary images p7 at b derived from the most significant bits, and p0 at
i derived from the least significant bits

123

International Journal of Parallel Programming

significant bits (LSB) of the gray image pixel values. The relation between the gray

image g(x, y) and the n bit planes is

gðx; yÞ ¼ 2n�1pn�1ðx; yÞ þ � � � þ 21p1ðx; yÞ þ 20p0ðx; yÞ ð10Þ

An example of the decomposition of an image is illustrated in Fig. 1, where the

initial image of Fig. 1a with 256 gray levels, is decomposed to the 8 corresponding

bit planes of Fig. 1b–i. It is easy to notice that the binary images of lower order are

noisy. In particular, the reduction of the computational cost of moment calculation

is based on this observation and in the fact that the n binary images resulting from

the decomposition of the gray image can be represented by blocks.

Taking into account Eq. (10), the DOM of order pq of the gray image g, is
calculated as:

Mpq ¼
XNx�1

x¼0

XNy�1

y¼0

Ppðx;NxÞPqðy;NyÞgðx; yÞ

¼
XNx�1

x¼0

XNy�1

y¼0

Ppðx;NxÞPqðy;NyÞ 2n�1pn�1ðx; yÞ þ � � � þ 21p1ðx; yÞ þ 20p0ðx; yÞ
� �

¼ 2n�1Mpðn�1Þpq þ � � � þ 21Mp1pq þ 20Mp0pq
� �

¼
Xn�1

i¼0

2iMpipq

ð11Þ

where pn�1ðx; yÞ; . . .; p1ðx; yÞ; p0ðx; yÞ are the bit planes that compose the gray image

g(x, y), with Mpðn�1Þpq; . . .;Mp1pq;Mp0pq their DOM of order pq, which are calcu-

lated fast by using IBR and Eq. (9).

As implied by Eq. (10), due to the factors 2i, the bit planes pi do not contribute

equally to the gray image and the order of each bit plane indicates its significance.

Moreover from Fig. 1, it is observed that the lower order bit planes are quite noisy

with continuous black-and-white transitions and are similar to a chessboard image

or simply with a ‘‘half intensity’’ image h with constant intensity 1/2.

It has been shown [29] that the moment values of an image with intensity 1/2 are

the half of the moment values of an image with intensity 1. Considering the half-

intensity image h ¼ 1=2; 8x; y as one block, the substitution of the (n-m) least

significant bit planes with the half intensity image h(x, y) results to the DOM Mm;pq,

by replacing

Mm;pq ¼
Xn�1

i¼n�m

2iMpipq þ
Xn�1�m

j¼0

2 jMhpq ¼
Xn�1

i¼n�m

2iMpipq þMhpq
Xn�1�m

j¼0

2 j ð12Þ

In the above Eq. (12) the DOM Mpipq of the m higher-order bit planes are

computed fast using IBR and Eq. (9). Considering that a half-intensity plane is

equivalent with a block with image size and intensity�, the DOMMhipq of the half-
intensity planes they are computed fast. Additional computational time gains can be

123

International Journal of Parallel Programming

obtained if the DOM of all the half-intensity planes are pre-calculated, stored, and

used in Eq. (12).

The replacement of the (n-m) lower order bit planes with half-intensity images

results in an artificial image ĝ, which is an approximation of the original input image

g. To evaluate the quality of the approximated gray image both the subjective

observation from the human visual system and an objective metric were used. As

shown in [29], it is adequate to use 3 or 4 real bit planes. A suitable image quality

metric is the Normalized Image Reconstruction Error (NIRE) [38, 39], which is the

normalized square error between the image functions g and ĝ, is defined as

NIREðg; ĝÞ ¼
P

x

P
y ½gðx; yÞ � ĝðx; yÞ�2
P

x

P
y g

2ðx; yÞ ð13Þ

In the Sect. 6 evaluations of the reconstruction quality are given.

In the case of color images, they are decomposed in the three color components

Red, Green, Blue and each component is handled as a gray image using the

procedure described in this Section.

4 Parallel DOM Computation Using OpenMP

The Algorithm 2 describes the parallel computation of the Discrete Orthogonal

moments.

Algorithm 2 Parallel DOM computation.

Step 1. In the case of a gray image execute the image decomposition task.

In the case of a binary image go to step 2.

Step 2. For all used real bit planes of a gray image or for the binary image.

Step 3. Parallel Image Block Representation of the bit plane.

Step 4. Parallel DOM computation of the bit plane.

Step 5. Add weighted bit plane moments to the image DOM.

Step 6. Next bit plane.

Step 7. In the case of a gray image add moments of half-intensity images to DOMa of gray image.

In the sequel the significant steps of the above Algorithm 2 are clarified.

4.1 Parallel Decomposition of the Gray Image

Usually the number of gray levels is 256, thus the corresponding bit planes after the

decomposition are 8. As already mentioned, it is adequate to extract 3 or 4 real bit

planes, since the 5 or 4 lower bit planes are replaced by-half intensity images.

In OpenMP the static, dynamic, and guided scheduling mechanisms and chunk

size can be specified for loop partitioning. Static schedule divides the loop into

123

International Journal of Parallel Programming

equal-sized chunks among the threads. Dynamic schedule uses a work pool with the

loop iterations and assigns chunk sized bundles of iterations to threads, when a

thread finished retrieves the next chunk sized bundle from the work pool. The

guided schedule is similar to dynamic, but the chunk size begins from a large value

and decreases to handle efficiently the load imbalance among the threads. The

specified chunk size in a guided schedule is the minimum value to use. In static

scheduling the default chunk size is the quotient of the number of iterations divided

by the number of threads, while in dynamic and guided scheduling the default chunk

size is 1.

The rows of the gray image are partitioned among the threads using the guided

scheduling. In every thread a pixel by pixel processing is applied; each thread

receives a byte corresponding to the pixel value of the gray image, extracts the bits,

and sets the values of the corresponding pixel on the bit planes. The required

execution time of the gray image decomposition is negligible in comparison to IBR

and moment computation.

4.2 Parallel Implementation of IBR

The parallel OpenMP IBR algorithm (PIBR) has been developed and presented

recently [37], a short description is presented here. The PIBR Algorithm is

constituted from two parts:

Part 1: Interval Extraction The input of PIBR algorithm is an image in a 2D

array form. The L image rows are partitioned equally among the P threads, each

thread t is assigned a bundle of L/P image rows using a static partitioning scheme;

the static partitioning ensures that each thread t is assigned the following image

Fig. 2 The L image rows are partitioned among the P threads. The image has three blocks, b[0][0] which
lies entirely at the rows of thread 0, b[0][1] starts at thread 0 and its continuation at thread 1 is initially
registered as orphan o[1][0]; b[1][0] starts at thread 1 and its part at thread 2 is initially registered as
orphan o[2][0]

123

International Journal of Parallel Programming

rows [t*L/P, (t ? 1)*L/P - 1]. Each thread t extracts the object level intervals in

the L/P image rows.

Part 2: Interval Matching Each thread matches the extracted intervals among

consecutive image rows and creates the blocks. There are two types of blocks, the

regular blocks which are denoted as b and orphan blocks which are denoted as o.
The orphan blocks are temporary ones, they start at the image rows of a previous

thread, and finally are merged into a regular block.

The output of PIBR algorithm is the array of blocks b[][], the first index of the

array is the thread id and the second index of the array is the block id with regards to

thread. Since the number of extracted blocks per thread is different, the rows of the

array have different lengths. The array b[][] uses non-contiguous memory and in

cases that a block has to be accessed isolated from a previous block, then the access

time is O(P). Since P is the number of threads, it has relatively small values and

does not introduce any drawback. Figure 2 demonstrates the PIBR algorithm.

4.3 Parallel Computation of DOM

The moment computation is fully parallelizable, since there are no data race

conditions and no communication among the processors is required; this is achieved

using loop partitioning.

As implied by Eq. (12) the procedure for a gray image has two parts, one for the

higher order real bitplanes and one for the lower order half-intensity planes and is

demonstrated in Fig. 3.

The processing of the real bitplanes is implemented in a sequential manner. The

blocks of each bitplane are partitioned among the threads, using the guided OpenMP

Bitplane
i=5

Block[0]

Block[1]

Block[k5-1]

…

0

1

P-1

...

DOM OF i-th BITPLANE

15.5

2i

MOMENT COMPUTATION OF GRAY IMAGE

DOM OF HALF-INTENSITY PLANES

Bitplane
i=6

Block[0]

Block[1]

Block[k6-1]

Bitplane
i=7

Block[0]

Block[1]

Block[k7-1]

……

BITPLANE SEQUENTIAL PROCESSING QUEUE

BLOCK
QUEUE

Data

Thread

Accumulator

Mul�plier

0

1

P-1

...ΣPp QUEUEΣPq QUEUE

ΣPp

ΣPq

IMAGE
MOMENT

ACCUMULATOR

Fig. 3 The procedure for the parallel computation of moments of a gray image with 3 real and 5 half-
intensity bitplanes

123

International Journal of Parallel Programming

schedule to utilize better the available threads. The computation of the moments of a

block is executed according to Eq. (8). It is obvious by Eq. (8) that the complexity

depends on the width and length of the block and is different for each block. Each

thread receives the four coordinates of a block, computes the moments of the block

using (8), and accumulates moment values in thread’s private variables. The

thread’s local moments are added by the master thread using reduction. Finally, the

moments of the bit plane are multiplied by the weight factor 2i, where i is the index
of the bit plane and accumulated to the moments of the gray image.

The above procedure is also applied for computation of DOM of binary images.

In the second part the moments of the half-intensity-planes are calculated. Since

all planes consisted of one block with intensity �, their DOM have the same values

which are computed according to (8). Since the size of the block is as large as the

image (Nx, Ny), the summations of polynomias in (8) are executed in parallel by all

threads using reductions. In the sequel the DOM is multiplied by � because of the

intensity level and by the the sum of the weight factors 2i, where i is the index of

every half-intensity plane and then added to the moments of the gray image. For

example in Fig. 3 the DOM of the block is multiplied by (24 ? 21 ? _ ? 20)/

2 = 15.5. As already discussed the moment values of half-intensity planes may be

precalculated.

For color images the procedure is repeated three times, each time the DOM of the

gray image, that corresponds to a color component, is calculated. Finally, the

summation of these moment values are the moments of the color image.

5 Theoretical Analysis of the Parallel Implementation

The time complexity of a parallel algorithm is the summation of the execution time

of the processors and the parallel overhead to [40]. For applications with enough

available parallelism and without data dependencies, the parallel overhead usually

consisted of three different components.

1. She creation of additional instructions inserted by the compiler to fork and join

the threads.

2. She idling time of the processors due to imbalanced workload.

3. The memory wall [41] caused by the increasing discrepancy in processor and

memory performance. The granularity [42] impacts on the memory wall

problem, as high rates of memory reads/writes trigger the cache coherence

effect. When the memory accesses are distributed in-depth in different cache

lines [43] the whole effect of memory wall problem is decreased.

The parallel overhead depends on the number of processors P and the problem

size w which is may be considered as the total number of basic operations. The

parallel overhead to acts like a serial fraction e of work that existed in parallel

execution.

The proposed algorithm consisted of the different parts presented in Sect. 4,

which are the parallel gray image decomposition to the bit planes, the parallel IBR,

and the parallel computation of DOM on block represented images. The

123

International Journal of Parallel Programming

decomposition of the image to the bitplanes is required only for grayscale images, in

the case of binary images this step is meaningless. The time complexity of image

decomposition is negligible in comparison with IBR and moment computation, for

this reason theoretical analysis only for the other two parts is investigated.

5.1 Estimation of the Execution Time of PIBR Algorithm

The estimation of the execution time of the PIBR algorithm has been determined in

a previous work [37] as

t̂PIBRðPÞ ¼
tE þ tM

P
þ tE � eZEðPÞ þ tM � eZMðPÞ ð14Þ

where tE, tM are the execution times of the serial interval extraction, and the serial

interval matching, eZE, eZM are the experimentally determined serial fractions of the

parallel interval extraction and interval matching for the zero image of the same size

as the input image. The Karp–Flatt metric [40, 44] for the experimentally deter-

mined serial fraction, defined as:

eðPÞ ¼ 1=SðPÞ � 1=P

1� 1=P
ð15Þ

and used for the determination of eZE(P), eZM(P). Assuming the same serial fraction

for any other input image with the same size, (14) is derived.

5.2 Estimation of the Execution Time of DOM Computation

According to Eq. (8), the execution of the moment computation of one block

requires the sums of the polynomial values over the edges of the block and the

product of the two sums. Considering a block represented binary image with

consisted of k blocks, the total number A of additions and M of multiplications are

A ¼
Xk�1

i¼0

ðx2;bi � x1;bi þ y2;bi � y1;bi þ 2Þ

M ¼ k

ð16Þ

The above Eq. (16) defines the problem size w of moment computation, which is

the number of basic operations. Equivalently the problem size expressed by the

serial execution time

tS ¼ tAAþ tMk ¼ tA
Xk�1

i¼0

ðx2;bi � x1;bi þ y2;bi � y1;bi þ 2Þ þ tMk ð17Þ

where tA, tM the execution time of addition and multiplication. The processing time

for parallel computation using P threads is

123

International Journal of Parallel Programming

tpðPÞ ¼
ts
P
þ toðPÞ ¼

tA
Pk�1

i¼0 ðx2;bi � x1;bi þ y2;bi � y1;bi þ 2Þ þ tMk

P
þ toðPÞ ð18Þ

where to(P) is the parallel overhead time. The moment computation is fully

parallelizable, since no data race conditions exist and no communication among the

processors is required. The parallel overhead to(P) could not be derived analytically,

for its determination the procedure described in Sect. 5.1 and [37] is used.

Profiling the moment computation algorithm for the blocks of an input image,

and for serial and parallel execution with different number of cores used, the

execution times are obtained. This input image is called reference image R and used

for the determination of parallel overhead of all the other input images. Considering

a serial fraction of the problem eR, then the Karp–Flatt metric is used to

experimentally determine the serial fraction eR for reference image R using

Eq. (15).

For other input images, it is assumed that the serial fraction is the same with the

reference image of the same size. Thus the estimated parallel DOM computation

(HM) execution time is

t̂HMðPÞ ¼
tHMs

P
þ eR � tHMs ð19Þ

The assumption that the serial fraction of DOM computation, is of similar value

among the reference and the input image, is quite reasonable and takes into account

the creation of the parallel region, the number of cores used and also the size of the

image which is related to the size of blocks.

6 Experimental Results

For the experimental evaluation, the Greek Research & Technology Network

(GRNET) platform National HPC facility ARIS was utilized, consisting of DELL

PowerEdge R820 nodes, with four Intel(R) Xeon(R) CPUs E5-4650v2, based on

Sandy Bridge-EP microarchitecture, with nominal frequency 2.4 GHz, with 40

cores (10 cores/CPU) and 512 GB RAM. The operating system is Centos 6.7 Linux.

All the programs were implemented in C using the OpenMP API and were compiled

using the Intel compiler icc ver. 15.0.3.

For the performance evaluation of the parallel algorithm the DIVerse 2K (Div2K)

dataset [45, 46], which contains 1000 high quality color images of 2K resolution at

least in one of vertical or horizontal axis has been utilized. The images use 3 bytes/

pixel, one byte for each of the Red, Green and Blue color components. The images

of the Div2K dataset are converted to gray using all the three color components to

obtain a gray images dataset. Also the gray images are converted to binary using

Otsu method [47] for the selection of the binarization threshold per image. The

binary, the gray and the color images dataset were used in the experiments. In

Fig. 4, some original color images and the corresponding gray and binary images

are presented.

123

International Journal of Parallel Programming

Also, a binary and a gray image datasets with small number of images, are used

in order to test the scalability of the proposed method. These later datasets contain

square images which are available in a variety of sizes.

In pattern recognition applications a small number of moment values can

describe the patterns. For the Div2K dataset two moment sets are calculated, one

moment set is from moment order (0, 0) up to the moment order (64, 64) and the

second moment set is from moment order (0, 0) up to the moment order (128, 128).

Fig. 4 The three first images of the Div2K dataset and their corresponding gray and binary images

Table 1 The average time complexities, speedup and efficiency for DOM computation of the binary

images derived from Div2K dataset

IBR (ms) DOM order (0, 0)–(64, 64) DOM order (0, 0)–(128, 128)

BM (s) Total (s) SR ER BM (s) Total (s) SR ER

ts 7.986 0.307 0.315 1.073 1.081

tp(1) 8.138 0.311 0.319 1.00 1.00 1.093 1.101 1.00 1.00

tp(2) 4.618 0.163 0.168 1.90 0.95 0.564 0.569 1.94 0.97

tp(4) 2.512 0.084 0.086 3.70 0.93 0.286 0.289 3.81 0.95

tp(8) 1.624 0.044 0.045 7.02 0.88 0.148 0.150 7.35 0.92

tp(16) 0.840 0.023 0.024 13.11 0.82 0.077 0.078 14.10 0.88

tp(32) 0.586 0.014 0.014 22.03 0.69 0.042 0.042 26.11 0.82

tp(40) 0.523 0.013 0.014 23.17 0.58 0.040 0.041 27.06 0.68

123

International Journal of Parallel Programming

For the smaller datasets with square images of size L 9 L, one moment set order (0,

0) up to the order (L/16 9 L/16) is calculated.
The computation times were measured from the execution of the proposed

algorithms, excluding image reading from disk, etc. All-time complexities are the

average of repetitive executions. The presented experimental results are for the

computation of Hahn moments. However the computation of other moment sets as

Tchebishef, Krawtchouk, Racah e.t.c. has similar computation times as a number of

experiments shown.

6.1 Experimental Results for Binary Images

In Table 1, the average time complexities and the achieved speedup and efficiency

values for the Hahn moment computation on the images of the binarized version of

the Div2K dataset for serial and parallel executions are demonstrated, where IBR is

the time for block representation, BM is the time for moment computation using the

blocks and total is the overall time. In Fig. 5 the relative speedup values achieved

for the parallel Hahn moment computation for different moment orders are

demonstrated. From the results it is observed that the proposed method achieves

significant speedup values.

6.2 Experimental Results for Gray Images

As discussed in Sect. 3.2, it is adequate to represent a gray image g with an artificial

image ĝm constructed from m of higher order bitplanes of g and (8-m) half-intensity
images. It has been observed that preserving only the first three or four bit planes,

while replacing the rest with half intensity images the resulted artificial images ĝ3
and ĝ4 are acceptable using the subjective criterion of the human visual system and

the objective NIRE error metric. An example of this representation is demonstrated

in Fig. 6 and in Table 2 the NIRE metric of the reconstructed images is presented.

0

5

10

15

20

25

30

1 40

(0,0)-(64,64)

(0,0)-(128,128)

32168

Relative Speedup
for binary images

Cores

Fig. 5 The relative speedup for DOM computation of the binary images derived from Div2K dataset

123

International Journal of Parallel Programming

Fig. 6 a The input gray image and b–h the reconstructed images ĝ1, ĝ2, …, ĝ7

Table 2 The NIRE error metric between the input gray image of Fig. 6a and the corresponding recon-

structed images ĝk constructed from m most significant image bitplanes and (8-m) half-intensity planes

Image ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

NIRE 0.261 0.135 0.069 0.037 0.018 0.009 0.005

Table 3 The average time complexities, speedup and efficiency for DOM computation of the ĝ3 gray

images derived from Div2K dataset

ĝ3 images DOM order

(0, 0)–(64, 64)

DOM order

(0, 0)–(128, 128)

DEC3

(ms)

IBR3 (ms) BM (s) Total (s) SR ER BM (s) Total (s) SR ER

ts 6.11 30.81 2.04 2.08 7.87 7.91

tp(1) 21.11 36.24 2.17 2.23 1.00 1.00 8.48 8.54 1.00 1.00

tp(2) 10.70 26.36 1.16 1.20 1.86 0.93 4.51 4.54 1.88 0.94

tp(4) 5.76 20.68 0.58 0.61 3.66 0.92 2.34 2.37 3.61 0.90

tp(8) 2.67 15.06 0.30 0.32 7.00 0.88 1.23 1.24 6.87 0.86

tp(16) 1.47 11.51 0.16 0.17 13.16 0.82 0.67 0.68 12.53 0.78

tp(32) 0.96 7.95 0.10 0.11 20.45 0.64 0.41 0.41 20.59 0.64

tp(40) 1.00 7.36 0.09 0.10 22.64 0.57 0.35 0.36 23.82 0.60

123

International Journal of Parallel Programming

In Table 3, the average time complexities and the achieved speedup and

efficiency values for the Hahn moment computation on the ĝ3 gray images derived

from Div2K dataset for serial and parallel executions are demonstrated, while in

Table 4 the same results for ĝ4 gray images of Div2K dataset, where DECm is the

time for the decomposition of the gray image in m bitplanes, IBRm is the time for

the block representation of m bitplanes, BM is the time for the moment computation

on the real and half-intensity planes using the blocks and total is the overall time. In

Fig. 7 the relative speedup values achieved for the parallel Hahn moment

computation for different moment orders are demonstrated. It is observed that the

proposed method achieves high speedup values.

A significant observation concerns the granularity of the parallelism [42, 48]. The

achieved speedup values are greater for binary images as compared to gray images.

Table 4 The average time complexities, speedup and efficiency for DOM computation of the ĝ4 gray

images derived from Div2K dataset

ĝ4 images DOM order

(0, 0)–(64, 64)

DOM order

(0, 0)–(128, 128)

DEC4

(ms)

IBR4 (ms) BM (s) Total (s) SR ER BM (s) Total (s) SR ER

ts 9.35 57.16 3.93 4.00 14.15 14.22

tp(1) 27.14 62.14 4.13 4.22 1.00 1.00 14.37 14.46 1.00 1.00

tp(2) 12.82 45.09 2.16 2.22 1.91 0.95 7.61 7.67 1.88 0.94

tp(4) 7.03 37.19 1.11 1.16 3.65 0.91 4.01 4.06 3.57 0.89

tp(8) 3.45 27.16 0.56 0.59 7.12 0.89 2.07 2.10 6.88 0.86

tp(16) 1.96 21.18 0.29 0.32 13.29 0.83 1.11 1.13 12.76 0.80

tp(32) 1.49 17.42 0.22 0.24 17.67 0.55 0.72 0.74 19.57 0.61

tp(40) 1.43 15.93 0.21 0.23 18.41 0.46 0.65 0.67 21.67 0.54

0

5

10

15

20

25

30

1 40

 ĝ3 (0,0)-(64,64)
 ĝ3 (0,0)-(128,128)
 ĝ4 (0,0)-(64,64)
 ĝ4 (0,0)-(128,128)

Relative Speedup
for gray images

8 16 32

Cores

Fig. 7 The relative speedup for DOM computation of the gray images derived from Div2K dataset

123

International Journal of Parallel Programming

In gray images and especially in lower significant bit planes there is a huge number

of small blocks, that correspond to a huge number of tasks with small problem size;

this situation leads to an increased memory access time that is comparable to

processing time and described as fine-grained parallelism. In binary images coarse-

grain parallelism appeared, since there is a lower number of tasks with increased

problem size.

The granularity issue is also observable in gray image representations ĝ3 and ĝ4,
the first representation with 3 real bit planes and 5 half-intensity images has greater

speedup values than the second image representation with 4 real bit planes and 4

half-intensity images.

6.3 Experimental Results for Color Images

For the representation of color images a suitable color model which usually used is

the RGB color model; also this is color model in the Div2K dataset. An RGB image

consists of the Red, Green an Blue color components, where each component is a

gray image. Figure 8 demonstrates a color image from the Div2K dataset and its

Fig. 8 a A color image of the Div2K dataset, b the red, c the green, d and the blue color components of
a (Color figure online)

Fig. 9 A set of test binary images: shapes, page, chessboard, tools and fingerprint

123

International Journal of Parallel Programming

Red, Green and Blue components. For the DOM computation the input color image

is extracted to the color components, in the sequel each one of these gray images is

handled using the described process for gray images and finally their moment values

added in order to get the color image’s moment values. As expected, the

experimental average time complexities for the color images of the Div2K dataset

are three times the time complexities of the Tables 3 and 4 when using ĝ3 and ĝ4
images respectively; the speedup and efficiency metrics are identical with the

corresponding metrics of the gray images of Sect. 6.2.

6.4 Scalability of the Algorithm

The scalability of a parallel algorithm is the ability to increase performance as the

number of the processors increases. A scalable system should increase speedup in

such a rate that the efficiency is maintained as the number of processors increases.

However, the parallel overhead increases as the number of processors increases and

the efficiency decreases as the number of processors increases. Increasing the

problem size is a way to maintain efficiency. In order to experimentally verify the

scalability of the proposed algorithm two image sets are utilized. The first set

contains square binary images, the second set contains square gray images and each

image is available in size of 1K 9 1K, 2K 9 2K, 4K 9 4K and 8K 9 8K pixels.

In Figs. 9 and 10 the binary and the gray image sets are demonstrated. Table 5

presents the average time complexities for Hahn moment computation and the

metrics of relative speedup and efficiency for the binary images of Fig. 9. The time

complexities of Table 5, are the average of execution time of same sized images and

include the serial computation using images represented as 2D array, the serial and

the parallel computation for a number of processor cores using block represented

images. In order to improve the readability of the results, the time complexities of

Table 5 are the total including IBR and computation of moments using blocks, also

there is one moment set from order (0, 0) up to the order (L/16 9 L/16), where
L 9 L is the image size.

Table 6 presents the time complexities for Hahn moment computation and the

metrics of relative speedup and efficiency for the gray images of Fig. 10. The time

complexities of Table 6 are averages of same sized images and include the image

decomposition, the block representation and the moment calculation using blocks.

For both binary and gray image cases, the proposed parallel computation is

scalable, since increasing both the number of CPU cores and the problem size, the

Fig. 10 A set of test gray images: island, mountain, drone, horses and MRI

123

International Journal of Parallel Programming

efficiency values are maintained. The problem size is related to the image size, the

image density, and the maximum moment order.

It is worth being noticed that considering the serial 2D array moment

computation versus the parallel block moment computation using 40 cores, the

achieved speedup ts2D/tp(40) reach very large values, for example for 1K 9 1K

images exceeds 1800, for 2K 9 2K images exceeds 8000, for 4K 9 4K images

exceeds 50,000 and for 8K 9 8K exceeds 200,000 as resulted from time

complexities of Table 5.

7 Conclusion

In this paper a parallel OpenMP computation method of DOM in binary and

grayscale images is presented. The proposed method is a parallelization of a

sequential method which is based on the decomposition of the input image to the

corresponding bit planes and the representation of binary images with blocks. The

lower order bit planes can be substituted by a half-intensity image with moment

values equal to the half of full intensity image. The image block representation

creates an intrinsic parallelism which results in the acceleration of the sequential

computation of the DOM on a sequential machine.

From the experimental evaluation it is concluded that the presented method

achieves significant reduction of the required computation time and allows the fast

parallel computation of discrete orthogonal moments on block represented binary,

gray and color images. The parallelization using OpenMP API, achieves significant

speedup and efficiency values and permits high processing rates. Also the proposed

method for parallel DOM computation is scalable as evaluated from experimental

results.

Table 5 The average time complexities for DOM computation for the binary images of Fig. 9 of different

sizes, for serial execution using images represented as 2D array and serial and parallel execution using

block represented images

Cores Image size

1 K 9 1 K
DOM (0, 0)–(64, 64)

Image size

2 K 9 2 K
DOM (0, 0)–(128,

128)

Image size

4 K 9 4 K
DOM (0, 0)–(256, 256)

Image size 8 K 9 8 K
DOM (0, 0)–(512, 512)

T (s) SR ER T (s) SR ER T (s) SR ER T (s) SR ER

ts2D 18.099 284.03 4567.25 71,804.32

ts 0.18 0.78 2.39 8.72

tp(1) 0.18 1.00 1.00 0.80 1.00 1.00 2.48 1.00 1.00 9.43 1.00 1.00

tp(2) 0.09 1.93 0.97 0.41 1.95 0.97 1.27 1.95 0.97 4.71 2.00 1.00

tp(4) 0.05 3.48 0.87 0.20 3.94 0.99 0.63 3.91 0.98 2.30 4.10 1.02

tp(8) 0.03 6.40 0.80 0.11 7.49 0.94 0.32 7.65 0.96 1.19 7.94 0.99

tp(16) 0.01 12.47 0.78 0.06 13.71 0.86 0.19 13.39 0.84 0.60 15.67 0.98

tp(32) 0.01 17.58 0.55 0.04 21.53 0.67 0.11 22.66 0.71 0.32 29.39 0.92

tp(40) 0.01 18.79 0.47 0.03 23.77 0.59 0.08 29.59 0.74 0.33 28.64 0.72

123

International Journal of Parallel Programming

As already discussed in the Introduction, moments are popular features in pattern

recognition tasks. Typical pattern recognition systems, usualy consisted of an

optional image preprocessing unit, the feature extraction unit and the classification

unit. The bottleneck of these systems when use moments, is the feature extraction

unit, since the preprocessing and classifier units are assigned with not computa-

tionally intensive processes. The acceleration of moment computation creates a

similar speedup value in the processing rate of the whole system.

The parallel implementation of the IBR algorithm and the DOM computation, on

Distributed Memory Parallel Machines using MPI, on GPGPUs and on FPGAs are

interesting directios of our current research.

Acknowledgements This work was supported by computational time Granted from the Greek Research &
Technology Network (GRNET) in the National HPC facility - ARIS - under project ID PA170601-PIBR.

References

1. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187
(1962)

2. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930
(1980)

3. Teh, C.-H., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. Pattern Anal.

Mach. Intell. 10, 496–513 (1988)

4. Flusser, J., Suk, T.: Rotation moment invariants for recognition of symmetric objects. IEEE Trans.

Image Process. 15, 3784–3790 (2006)

5. Mukundan, R.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10, 1357–1364
(2001)

6. Yap, P.T., et al.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12,
1367–1377 (2003)

7. Yap, P.T., et al.: Image analysis using Hahn moments. IEEE Trans. PAMI 29, 2057–2062 (2007)

Table 6 The average time complexities for DOM computation for the gray images of Fig. 10 of different

sizes, for serial and parallel execution using block represented images

Image size

1 K 9 1 K

DOM (0, 0)–(64, 64)

Image size

2 K 9 2 K

DOM (0, 0)–(128,

128)

Image size

4 K 9 4 K

DOM (0, 0)–(256,

256)

Image size 8 K 9 8 K

DOM (0, 0)–(512,

512)

T (s) SR ER T (s) SR ER T (s) SR ER T (s) SR ER

ts 0.64 5.19 45.01 365.22

tp(1) 0.91 1.00 1.00 7.62 1.00 1.00 59.49 1.00 1.00 427.55 1.00 1.00

tp(2) 0.51 1.78 0.89 4.19 1.82 0.91 31.84 1.87 0.93 229.39 1.86 0.93

tp(4) 0.27 3.45 0.86 2.15 3.54 0.89 16.06 3.70 0.93 115.85 3.69 0.92

tp(8) 0.14 6.50 0.81 1.10 6.91 0.86 8.36 7.11 0.89 59.40 7.20 0.90

tp(16) 0.08 11.70 0.73 0.64 11.99 0.75 4.74 12.54 0.78 30.85 13.86 0.87

tp(32) 0.06 14.39 0.45 0.37 20.54 0.64 2.82 21.13 0.66 17.40 24.57 0.77

tp(40) 0.04 20.65 0.52 0.33 23.01 0.58 2.22 26.85 0.67 15.40 27.76 0.69

123

International Journal of Parallel Programming

8. Zhou, J., et al.: Image analysis by discrete orthogonal Hahn moments. In: Image Analysis and

Recognition. ICIAR 2005, Lecture Notes in Computer Science, vol. 3656. Springer, Berlin, Hei-

delberg (2005)

9. Karmouni, H., et al.: Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J. Real-

Time Image Process. 17, 1–17 (2020)

10. Jahid, T., et al.: Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77,
19811–19831 (2018)

11. Wu, Y., Liao, S.: Image reconstruction from discrete orthogonal Racah moments. In: IEEE Canadian

Conference on Electrical and Computer Engineering (CCECE) (2016)

12. Flusser, J., Zitová, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley

(2009)

13. Akhmedova, F., Liao, S.: Face recognition using discrete orthogonal Hahn moments. In: International

Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 9 (2015)

14. Mesbah, A., et al.: Robust reconstruction and generalized dual Hahn moments invariants extraction

for 3D images. 3D Res. 8, 1, Article 113 (2017)

15. El Mallahi, M., et al.: Radial Hahn moment invariants for 2D and 3D image recognition. Int.

J. Autom. Comput. 15(3), 277–289 (2018)

16. Mesbah, A., et al.: Fast and efficient computation of three-dimensional Hahn moments. J. Electron.

Imaging 25(6), 061621 (2016)

17. Yang, T., et al.: Image feature extraction in encrypted domain with privacy-preserving Hahn

moments. IEEE Access 6, 47521–47534 (2018)

18. Ahmad, S., Lu, Z.-M.: Geometric distortions-invariant digital watermarking using scale-invariant

feature transform and discrete orthogonal image moments. In: Digital Rights Management: Concepts,

Methodologies, Tools, and Applications (2013). https://doi.org/10.4018/978-1-4666-2136-7.ch013

19. Benouini, R., et al.: Efficient image classification by using improved dual Hahn moment invariants.

In: 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) (2018)

20. Sayyouri, M., et al.: Improving the performance of image classification by Hahn moment invariants.

J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30, 2381–2394 (2013)

21. Mukundan, R.: Some computational aspects of discrete orthonormal moments. IEEE Trans. Image

Process. 13(8), 1055–1059 (2004)

22. Spiliotis, IL, Mertzios, B.G.: Fast algorithms for basic processing and analysis operations on block

represented binary images. Pattern Recognit. Lett. 17, 1437–1450 (1996)

23. Spiliotis, I., Mertzios, B.: A fast parallel skeletonization algorithm on block represented binary

images. Elektrik 1, 161–173 (1997)

24. Spiliotis, I., Mertzios, B.: A fast skeleton algorithm on block represented binary images. In: 13th

International Conference on Digital Signal Processing (DSP97), Santorini, Hellas (1997)

25. Gatos, B., Perantonis, S., Papamarkos, N.: Accelerated Hough transform using rectangular block

decomposition. Electron. Lett. 32, 730–732 (1996)

26. Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments on binary

images using image block representation. IEEE Trans. Image Process. 7, 1609–1615 (1998)

27. Spiliotis, I.M., Boutalis, Y.S.: Parameterized real-time moment computation on gray images using

block techniques. J. Real-Time Image Process. 6(2), 81–91 (2011)

28. Spiliotis, I.M., Boutalis, Y.: Fast and real-time moment computation methods of gray images using

image block representation. In: Proceedings of 5th IASTED International Conference on Signal

Processing, Pattern Recognition and Applications (SPPRA-2008), pp. 323–328, Innsbruck, Austria

(2008)

29. Spiliotis, I.M., Karampasis, N.D., Boutalis, Y.S.: Fast computation of Hahn moments on gray images

using block representation. J. Electron. Imaging (2020). https://doi.org/10.1117/1.JEI.29.1.013020

30. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in

OpenMP. Academic Press, Cambridge (2001)

31. Barth, M., et al.: Best Practice Guide—Intel Xeon Phi (2014). http://www.prace-ri.eu/best-practice-

guide-intel-xeon-phi-html/

32. Beyer, J., Larkin, J.: Targeting GPUs with OpenMP4.5 device directives. In: NVIDIA GPU Tech-

nology Conference, Silicon Valley (2016)

33. Szwoch, G., Ellwart, D., Czyzewski, A.: Parallel implementation of background subtraction algo-

rithms for real-time video processing on a supercomputer platform. J. Real-Time Image Process. 11,
111–125 (2016)

123

International Journal of Parallel Programming

https://doi.org/10.4018/978-1-4666-2136-7.ch013
https://doi.org/10.1117/1.JEI.29.1.013020
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/

34. Hosny, K., et al.: Fast computation of 2D and 3D Legendre moments using multi-core CPUs and

GPU parallel architectures. J. Real-Time Image Process. (2017). https://doi.org/10.1007/s11554-017-

0708-1

35. Mahmoudi, R., Akil, M., Hedi, B.M.: Concurrent computation of topological watershed on shared

memory parallel machines. Parallel Comput. 69, 78–97 (2017)

36. Lu, Y., et al.: Parallelizing image feature extraction algorithms on multi-core platforms. J. Parallel

Distrib. Comput. 92, 1–14 (2016)

37. Spiliotis, I.M., Bekakos, M.P., Boutalis, Y.S.: Parallel implementation of the Image block repre-

sentation using OpenMP. J. Parallel Distrib. Comput. 137, 134–147 (2020). https://doi.org/10.1016/j.

jpdc.2019.11.006

38. Camacho-Bello, C., et al.: Reconstruction of color biomedical images by means of quaternion generic

Jacobi–Fourier moments in the framework of polar pixels. J. Med. Imaging 3(1), 014004 (2016)

39. Hosny, K.M., Darwish, M.M.: Feature extraction of color images using quaternion moments. In:

Recent Advances in Computer Vision: Theories and Applications. Springer (2019)

40. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill (2003)

41. Hutcheson, A., Natoli, V.: Memory Bound vs. Compute Bound: A Quantitative Study of Cache and

Memory Bandwidth in High-Performance Applications. Stone Ridge Technology, Internal White

Paper (2011)

42. Gentile, A., Sander, S., Wills, L., Wills, S.: The impact of grain size on the efficiency of embedded

SIMD image processing architectures. J. Parallel Distrib. Comput. 64, 1318–1327 (2004)

43. Intel Corporation: Avoiding and Identifying False Sharing Among Threads (2011). https://software.

intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

44. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Commun. ACM 33, 539–543
(1990)

45. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and

study. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

46. DIV2K Dataset: DIVerse 2K Resolution High Quality Images as Used for the Challenges @ NTIRE

(CVPR 2017 and CVPR 2018) and @ PIRM (ECCV 2018). https://data.vision.ee.ethz.ch/cvl/DIV2K/

47. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern.

9(1), 62–66 (1979)

48. Chen, S., Dongarra, J., Hsiung, C.: Multiprocessing linear algebra algorithms on the CRAY X-MP-2:

experiences with small granularity. J. Parallel Distrib. Comput. 1, 22–31 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

International Journal of Parallel Programming

https://doi.org/10.1007/s11554-017-0708-1
https://doi.org/10.1007/s11554-017-0708-1
https://doi.org/10.1016/j.jpdc.2019.11.006
https://doi.org/10.1016/j.jpdc.2019.11.006
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://data.vision.ee.ethz.ch/cvl/DIV2K/

	Parallel Computation of Discrete Orthogonal Moment on Block Represented Images Using OpenMP
	Abstract
	Introduction and Related Work
	Discrete Orthogonal Moments
	Hahn Polynomials

	Moment Computation
	Binary Images
	Gray and Color Images

	Parallel DOM Computation Using OpenMP
	Parallel Decomposition of the Gray Image
	Parallel Implementation of IBR
	Parallel Computation of DOM

	Theoretical Analysis of the Parallel Implementation
	Estimation of the Execution Time of PIBR Algorithm
	Estimation of the Execution Time of DOM Computation

	Experimental Results
	Experimental Results for Binary Images
	Experimental Results for Gray Images
	Experimental Results for Color Images
	Scalability of the Algorithm

	Conclusion
	Acknowledgements
	References

