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Abstract

This paper describes a binary image representation scheme, which is called I'mage Block Representation
and presents a new skeletonization algorithm, which is fast implemented on block represented binary
images. The main purpose of the Image Block Representation is to provide an efficient binary image
representation that permits the execution of operations on image areas instead of image points. The
skeletonization clgorithm operates in four subiterations: each subiteration deletes the north, the south,
the west and the east boundary points, respectively. Due to the substitution of the boundary points by the
blocks’ boundary points, the relevant operations are performed fast, while preserving the end points and
the object connectivity.
Keywords: Image Block Representation, Skeleionization, Thinning.

1. Introduction

The most common image representation format is the two-dimensional {2-D) array. However, many research
efforts for deriving alternative image representations have been motivated by the need for fast processing of
huge amount of data. Such image representations aim to provide machine perception of images in pieces
larger than a pixel and are separated into two categories: boundary based methods and region based
methods. The region based representations include quadtree [1], run length encoding [2],[3] and interval
coding representation [4]. The boundary based representations include chain code [5], contour control point
models [6] and autoregressive models [7]. In the context of binary images, the run length and interval coding
representations are identical. Recently, a region based method, called Image Block Representaiion has been
presented [8] - [12]. In the image block representation process the whole binary image is decomposed into a
set of rectangular areas with object level, which are called blocks, so the fact that many compact areas of a
given binary image have the same value is exploited.

As in every other region based method, the most important characteristic of the image block repre-
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sentation is that a perception of image parts greater than a pixel, is provided to the machine and therefore,
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all the operations on the pixels belonging to a block may be substituted by a simple operation on the block.
Taking this feature into account, the implementation of new algorithms for binary image processing and
analysis tasks, leads to a substantial reduction of the required computational complexity. The image block
representation method is superior to run length coding and to quadtree representation.

A number of approaches for thinning and skeletonization have appeared in the literature. These
approaches may be separated in two classes: the iterative and the noniterative methods. The iterative
methods [13]-[17] are based on successive removal of the outermost layers of the object until a unit width
connected skeleton remains. The Medial Azis Transform (MAT) introduced by Blum in 1967 [13], is a
classical way to obtain skeleton, where the number of the required iterations is proportional to the width of
the object. Because of their repetitive nature the above algorithms appear to have a high time complexity.
The noniterative methods {18], [19] produce a center line of the object in a single pass of the image. A survey
of thinning algorithms is provided in [20].

This paper presents a skeletonization algorithm, which is characterized by a low computational cost
and it is suitable for fast processing rates, due to the substitution of image pixels with blocks. The algorithm
operates in four subiterations: each subiteration deletes the north, the south, the west and the east boundary
points, respectively. Due to the substitution of the boundary points by the blocks boundary points, the
relevant operations are performed very fast.

2. Image Block Representation

A bilevel digital image is represented by a binary 2-D array. Due to this kind of representation, there are
rectangular areas of object value, in each image. These rectangular areas, which are called blocks, have their
edges parallel to the image axes and contain an integer number of image pixels. At the extreme case, one
pixel is the minimum rectangular area of the image. It is always feasible to represent a binary image with
a set of all the nonoverlapping blocks with object level and this information lossless representation is called
Image Block Representation (IBR). According to the above discussion, two useful definitions are formulated:

Definition 1
A block is a rectangular area of the image, with edges parallel to the image axes, that contains pixels

of the same value. n
Definition 2 )

A binary image is called block represented, if it is represented as a set of blocks with object level, and
if each pixel of the image with object value belongs to one and only one block. ]

A block represented binary image f(z,y) is comprised of a set of nonoverlapping blocks that com-
pletely cover the image areas with object level and it is denoted as:

flz,y)={bi:i=0,1,....k—1} (1)

where k is the number of the blocks. Each block is described by the coordinates of two corner points, i.e.:

L]

bi = (T1,00 T2,005 Y1ber Y2,05) (2)

where for simplicity it is assumed that: 5, < 2,5, and Vib S U2, » 88 shown in Fig. 1. In Fig. 2, the
blocks that represent an image of the character d are illustrated.
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The block representation concept leads to a simple and fast algorithm, which requires just one pass
of the image and a simple bookkeeping process. In fact, considering a Ny x N, binary image f(z,y),z =
0,1,,...,Ny =1, y=0,1,..,N; -1 , the block extraction process requires a pass from each line y of the
image. In this pass all object level intervals are extracted and compared with the extracted blocks that
have pixels in the previous line. The extracted blocks are denoted by b, : § = 0,1,...,k, the indices of the
extracted blocks that have pixels in the previous line at each stage are denoted by p; :i=0,1,..., ky and
the indices of the extracted blocks that have pixels in the current line are denoted by ¢; :i=0,1,...,k,.
Then the first block that has been extracted at the previous line is the b,, and the last block that has been
extracted at the current line is the bei, -, - In the sequel the algorithm for the Image Block Representation
is given.
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Figure 1. Each block b is described by the co-ordinates of its two corner points.

]

Figure 2. Image of the character d and the blocks.

Algorithm 1: Image Block Representation ~ ~

Step 1: Consider each line y of the image f and find the object level intervals in line y.

Step 2: Compare intervals and blocks that have pixels in line y ~ 1.

Step 3: If an interval does not match with any block, «tHis i§ the beginning of a new block.

~ Step 4: If a block matches with an interval, the end of the block is in the line y. ]

_ In many operations it is important to have information concerning not only the location of the blocks
but also information concerning the neighbor and connected blocks. The following definition provides a
- template for block connectivity:
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Definition 8
Two blocks are defined as connected, if their projections on both the z or y axis are overlapped or
they are neighbors. |

The information concerning block connectivity requires a suitable data structure for storage. There-
fore, each block b; is represented as the ordering;:

b‘i = (:El,buz2,bi:y1,bny2,b”ncivci) (3)

where x;4,,225, are the coordinates of the i-th block according to the horizontal axis, Y1,b,, V2,5, are the
coordinates of the block according to the vertical axis, nc; is the number of the connected blocks and ¢; is
a list with the indexes of these connected blocks.

The Image Block Representation reduces to run length encoding or to quadtree representation of
binary images at the extreme cases, where each block is comprised of pixels belonging to only one row of
the image. Such a case is that of a chessboard image, where the transitions from white to black have 1
pixel length and the number of the blocks is N?/2, i.e. it is exactly equal to the object run lengths or to
object quadtree nodes. However, in real world situations, the image block representation is superior to run
length encoding and quadtree representation, since the number of the blocks is significantly smaller than the
number of runs and the number of nodes with object level, respectively.

In Fig. 3 three test images are illustrated, while in Table 1 the number of pixels with object
level, the number of rows with object pixels, the number of blocks extracted from these images (using
Algorithm 1), the number of object runs, the number of object quadtree nodes and the required time for
the three representations are shown. It can be seen that the number of blocks generated by Algorithm 1 is
significantly less than the number of rows with object pixels and therefore the IBR is superior in comparison
with the run length. Also, it is obvious from Table 1 that the IBR is superior in comparison with the
quadtree representation. Since the time complexity of the algorithms that are based on a region based image
representation method, it is usually strongly related to the number of image areas that each specific method
handles, it is expected that the algorithms based on the IBR are faster than algorithms based on the run
length or the quadtree representation.

From Table 1 it is worth noting that the number of quadtree nodes with object level is significantly
larger in comparison with the two other representation schemes. This is explained by the fact that in the
quadtree representation, square image areas should be extracted with the additional requirement that these
areas should be located at specific image positions. This results in an extended partitioning of the extracted
areas and therefore in a large number of object quadtree nodes. The computational times of Table 1, as well
as the times of Tables 2 and 3, have been measured in a SUN Sparcstation 4 and the relevant algorithms
have been implemented using the C language.

Different IBR algorithms, which may result in a smaller number of blocks at the cost of increased
time, may be implemented. Specifically, the algorithm for finding the maximal rectangle [21]-[23] in an area
may be applied recursively. At each stage the points of this rectangle are labelled as background points, in
order to apply the algorithm recursively to the remaining points. The time complexity of this procedure
is O(n log n), where n is the number of the points of the area at each recursion. Obviously, the total
complexity of this method depends.on the number of the extracted blocks, i.e. is image dependent. The
optimum representation is characterized by the minimum possible number of blocks. However, the selection
of the optimum representation implies an additional computational cost, which may compensate the achieved
savings due to the smaller number of blocks. It is pointed out that, given a specific binary image, different
sets of different blocks can be formed. Actually, the nonunique block representation does not have any
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" implications on the implementation of any operation on a block represented image.

(a) (b) - ©

Figure 3. A set of test images. (a) Image of the island Corfu of 512 x 512 pixels. (b) Image of the island Mikoncs
of 512 x 512 pixels. (c) Image of the island Santorini of 512 x 512 pixels.

Table 1. The number of the pixels with object level, the nuﬁxber of the rows with object pixels, the number of the
blocks, the number of runs with object level and the number of the quadiree nodes with object level for the set of
the test images of Figure 3.

Image Block Run Length Quadtree
Image Object | Object | Representation Coding Representation
pixels rows :

| blocks time | object | time | object time
(sec) runs (sec) | nodes | (sec)
Island Corfu 41605 411 250 | 0.615 526 | 0.598 | 2074 | 0.534
Island Mikonos 47368 249 232 1 0.615 530 | 0.598 | 1876 | 0.549
Island Santorini | 63203 474 257 | 0.619 353 | 0.598 | 2048 | 0.512

3. Logic Operations

Logic operations are performed fast in block represented binary images [10), [11]. In this Section the
required logic algorithms for the execution of the skeletonization process, are presented. Since each image
is represented by a set of nonoverlapping blocks, binary operations among the pixels of the images may
be substituted by binary operations on the blocks of the images. The results are always block represented
images. The implementation of the Set Difference operator which is used as an auxiliary operator for the
execution of the OR, XOR and NOT operations in bleck ref;resented ,imixges is also presented.

A. The SET DIFFERENCE operation _
The Set Difference (SETDIF) operator is used as an auxiliary operator for the execution of the
OR, XOR and NOT operations in block represented images. The execution of the SETDIF operation is
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implemented easily with blocks that represent 2-D arrays. In the following the implementations of the
operation SETDIF between two blocks and two images are described.

Operation SETDIF between two blocks

The execution of the operation SETDIF between two blocks bg, b; results in all the points of by that
do not belong to b;. In order that the output of the SETDIF operation be represented by blocks, the
determination of the relative positions of the two blocks is required. In Fig. 4 all the possible relative
positions between two blocks by, b; in a rectangular grid are shown.

At first the projections of the two blocks on each of the two axes are examined. A corresponding
variable X that describes the relative position of the projections of the two blocks in the z-axis, is set to
an appropriate value, according to the following criteria:

K zyp > 225, +1 OR T2, +1 < 715, then X=-1
If 215, < 21,5, AND 234, < x24, then X=0
If 15, < %16, AND Zg, > 22, then X=1
If 21,6 > 21,5, AND 225, < 235, then X=2
If 21 by > 21,6, AND 223, > 3, then X=3

Using the same criteria for the projections of the two blocks in the y-axis, the coneéponding variable Y is
set to the appropriate value.

At the next stage the relative position of the two blocks is determined by the index function
P(X,Y)=X+4Y, which is defined for X,Y > 0. If X<0 or Y<0 then the two blocks do not intersect
and the result of SETDIF operation is ldentxcal to by.

After the determination of the relative position of the two blocks, the appropriate resultant blocks
are formulated for each value of the function P, as shown in Fig. 5. For example for the case of P=5§, four
blocks are formulated with coordinates (1,69, %2,80:¥1,60: Y161 = 1), (T150: 1,60 = 1, Y050> Y200 ) (z2p, +
L, 22,80, Y1,6, 1 ¥2,81) s (Z1,00» T2,80, ¥1,6; + 1, ¥2,8,) , While in the case of P=10 the result is no blocks.

B. The OR operation

Considering the fact that the blocks consist of object level pixels (ones) in block represented binary
images, it is seen that the OR operation is a union region operation and is easily implemented with blocks.
Care has to be taken to avoid the existence of overlapping blocks in the results. The use of the SETDIF
operation guarantees this requirement. The application of the OR operation between two blocks b, and b,
is executed according to the following formula:

bp OR b, = SETDIF(bg,b;) Uby (4)
where the symbol of the set union | means that the block by is contaxned in the results.

C. The NOT operation

The NOT operation cannot be executed directly, since the image block representation carries only
information concerning image regions with object level and not image regions belonging to the background.
However, the NOT operation in block represented mages is implemented by defining an image fg with
the same width and height as the input image that contains only one block © covering all the image. The
execution of the operation SETDIF (8, f) results in the inverse of the image , i.e.

NOT(f) = SETDIF(fo, f) (5)
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The blocks that result from the operation SETDIF (bo, b1) for each specific relative position of the blocks
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Table 2 shows the required time for the execution of the logic operations, considering block represented
images and 2-D array represented images respectively, for the test images of Fig. 3. The pixel based
method, which has been used for the time comparisons of Table 2, consists of the execution of the logic
operation between each pixel of the first image and the corresponding pixel of the second image. The fast
implementation of the AND and XOR operations [10], {11] also permitted using block represented images.

Table 2. The required time for the execution of the logic operation OR among the binary images of the islands Corfu
and Mikonos and the NOT operation for the image of the island Corfu, using the pixel and block based algorithms.
The last column gives the time reduction factor when the image block representation based algorithm is used in
comparison with the pixel based algorithm.

Logic Operation | Pixel based method Block based method | Reduction factor

OR 2.308 sec 0.328 sec 7.0
NOT 1.408 sec 0.276 sec 5.1

4. Fast Parallel Skeletonization Algorithm

The following criteria should be valid, for any skeletonization algorithm:
(i) does not remove end points
(ii) does not break connectivity
(iii) does not cause excessive erosion of the region.

A skeletonization algorithm is sequential, if the deletion of a pixel in the nth iteration depends on the
result of the (n — 1)th iteration and on the pixels already processed in the nth iteration. A skeletonization
algorithm is parallel, if the deletion of a pixel in the nth iteration depends only on the result of the (n— 1)th
iteration. "

In the proposed algorithm each iteration is divided into four subiterations. In the first, second, third
and fourth subiteration, the north, west, south and east pixels of the object, are removed respectively, The .
main advantage of the proposed algorithm is that it operates in blocks and therefore it permits the deletion
of areas of pixels, instead of a single pixel. :

Consider the pixel p and their 8 neighbors, as defined in Fig. 6. B(p) is defined as the number of

8

nonzero neighbors of p, i.e. B(p) = ZP" and A(p) is defined as the /number of transitions of 01 patterns
=1 .

in the ordered set P1,02,...,D0s.

D1 P2
PP
Ps | Pa

FI¥|®

Figure 8. The neighborhood- of the pixel p.
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At first the neighboring blocks of the considered block are determined, sorted and placed in two lists; one
for the upper neighbors and one for the lower neighbors. Different procedures are a.pphed for those blocks
that have unity width than those with greater width.

A.1. Blocks with unity width
For the blocks with unity width, the blocks that remain after the subiteration are described as:

R=NUSUA (6)

where N are the areas that have a north neighbor, S are those areas that have a south neighbor and A
are those areas that have transitions from 01 patterns different from 1. If b is the considered block and
ai,t = 1,...,k are the north neighbor blocks of b, then

N = (ma'x(bz‘lx ai,:vl): min(bz2y ai,zZ))yi =1,...,k. (7)

S is computed in a similar manner, and § is computed using logic operations in blocks, as described in [11].
The algorithm counts the transitions for the two extreme pixels of the considered block. For the

middle pixels of the block, the algorithm recognizes the areas A as those that have at least one north and
at least one south neighbor pixel.

A.2. Blocks with width greater than 1

For the blocks with width greater than 1, the algorithm determines the remaining areas as those that have a
north neighbor block. The two extreme pixels, the upper left and the upper right of the block, are remaining
pixels only if the number of transitions from 01 patterns is different than 1.

B. FEast subiteration
At first, the neighboring blocks of the considered block are determined, sorted and placed in two lists; one

for the upper neighbors and one for the lower neighbors.

B.1. Blocks with unity width

In the case of a block with unity width, its right pixel p is a remaining pixel if the following two conditions
are valid:

B(p)=10R B(p) =7

Alp) #1

B.2. Blocks with width greater than 1

In the case of a block with width greater than 1, the algorithm deletes all the middle points of the left side
of the block if the length of the block is greater than 1. For the two extreme pixels, the upper left and the
lower left of the block, the criteria of case B1 are also applied.

The procedures for the south and west subiterations are quite similar with those of north and east
subiterations, respectively. At the end of each subiteration the new formed blocks are the input to the next
subiteration.
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- 5. Examples

The aigorithm is fast implemented, since it operates on image areas instead on single pixels. Table 3
demonstrates the required computational times for the execution of the skeletonization for the images of
Fig. 3, using the well known Zhang and Suen [14] algorithm and the proposed algorithm that operates in

R
b e

y

(a) (b) (c)

~ Figure 7. (a). Images of the islands Corfu, Mikonos and Santorini. (b) Skeletonization using the Zhang and Suen
algorithm. (c). Skeletonization using the proposed algorithm.

L)

In Fig.. 8 some character images and their skeletons are shown. The skeletons which are produced
using the proposed algorithm are almost identical with the skeletons produced using the Zhang and Suen
algorithm, while the average time reduction factor is almost 6. A direct analysis concerning computational
complexity of the propoced algorithm in comparison with the Zhang and Suen algorithm is not possible,
since the time and space complexity is image dependent.
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Table 3. The required computaﬁional times in seconds, for the execution of the skeletonization operation:u-ain’g' t?he .
Zhang and Suen algorithm and the proposed algorithm. The third column is the reduction factor. -

Image | Zhang - Suen | Blocks | Reduction
factor

Corfu 12.1 29 4.1

Mikonos 14.6 2.8 5.2

Santorini 12.6 31 4.1

>
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Figure 8. (a) Character images. (b) Their skeletons produced with the proposed algorithm.

6. Conclusions

In the recent years fast image processing and analysis algorithms that operate on block represented binary
images have been presented in the literature: specifically the real-time computation of the statistical moments
(both software [9] and hardware algorithms [12]), the fast implementation of image shift, image scale,
image rotation, determination of the minimum and of the maximum distance from a point to an object,
perimeter measurement, area measurement, logic ,pperaitions, connectivity checking, object detection and
edge extraction [11]. The proposed skeletonization algorithm may be considered as a parallel skeletonization
algorithm that operates in a serial machine. This conclusion arises from the fact that the algorithm decides
which are the pixels that should form a new block, or equivalently deletes simultaneously a number of
boundary pixels for which the conditions of removing are valid.
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