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features. By directly using part or all of the run-length matribReal-Time Computation of Two-Dimensional Moments on
as a feature vector, much of the texture information is preserved. Binary Images Using Image Block Representation
This approach is made possible by the utilization of the multi-

level dominant eigenvector estimation method, which reduces the Iraklis M. Spiliotis and Basil G. Mertzios
computation complexity of KLT by several orders of magnitude.

Combined with the Bhattacharyya measure, they form an efficient

feature selection algorithm. Abstract—This work presents a new approach and an algorithm for

. . : inary image representation, which is applied for the fast and efficient
The advantage of this approach is demonstrated eXpe”ment@mputaﬂon of moments on binary images. This binary image represen-

by the classification of two independent texture datfi sets. ExP&Hrion scheme is calledmage block representatiarsince it represents the
mentally, we also observe that most texture information is storediinage as a set of nonoverlapping rectangular areas. The main purpose of
the first few columns of the run-length matrix, especially in the firdbe image block representation process is to provide an efficient binary

column. This observation justifies development of a new, fast, paralf@@Je representation rather than the compression of the image. The block
run-length matrix computation scheme ’ ’ represented binary image is well suited for fast implementation of various

) - . processing and analysis algorithms in a digital computing machine. The
Comparisons of this new approach with the co-occurrenggo-dimensional (2-D) statistical moments of the image may be used for

and wavelet features demonstrate that the run-length matric@sge processing and analysis applications. A number of powerful shape
possess as much discriminatory information as these succesénglysis methods based on statistical moments have been presented, but
conventional texture features and that a good method of extract$ y suffer from the drawback of high computational cost. The real-

. . . e ie computation of moments in block represented images is achieved
such |nformat|9n is .key. to the succ.ess.of the classification. Wg exploiting the rectangular structure of the blocks.
are currently investigating the application of the new feature dex T s . . vsis. i block
extraction approach on other texture matrices. We hope our wi Irg: ;’;meerm: inary image, image analysis, image block representa-
here will renew interest in run-length texture features and promote ' '
future applications.
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used to discriminate among different patterns. The most common
moments are geometrical moments, central moments, normalized
central moments, and moments invariants [17], [18]. Other sets of
moments are Zernike moments and Legendre moments (which are
based on the theory of orthogonal polynomials) [19], [21], and
complex moments [20]. One main difficulty concerning the use of
moments as features in image analysis applications is the implied
high computational time. A number of approaches that reduce the
computational time concerning calculation of moments have appeared
[3], [23]-[25]. In [23]-[25], the problem has been reduced from
2-D to a one-dimensional (1-D) one, using Green’s theorem; this Fig. 1. Image of the character and the blocks.
approach reduces the complexity frai{ N?) to O(N), since only

_the_ boundary pixels ate con3|dered and the ledgtt the boundary all object level intervals are extracted and compared with the previous
is linearly related to/A, where A is the object area. In [3] control extracted blocks. In the following. an IBR algorithm is ai
ﬂa . g, gorithm is given.

point models based on the least-square normalized B-splines are use . .
for the representation of the object boundary, where the complexity gorithm 1—|.mage Bloct< Represe.ntatlon.. ) ]
of the moments computation is analogous to the shape model ordepteP 1: Consider each ling of the imagef and find the object
and independent of the scale. The computational cost of this method level intervals in liney. o

is comparable with the cost of the proposed method, but mainly due>€P 2: Compare intervals and blocks that have pixels iryiing.

to the deviations of the boundary representation model, the momenpteP 3: If an interval does not match with any block, this is the
values are significantly affected. In [26], the computation formula of beginning of a new block.

each one central moment has been considered as an impulse responsP 4: If @ block matches with an interval, the end of the block
of a filter, which is then transformed to thedomain and the transfer is in the liney. n
function of the corresponding digital filter is obtained. This latter As a result of the application of the above algorithm, we obtain a
approach is also inferior to block-based computation, since it $6t of all the rectangular areas with level one that form the object. A
dependent on the image size and its computational complexity fJpck represented image is denoted as

the calcutation of the ;L6 centralgmoments up to the.order (4, 4) of an flz,y)={bi: i=0,1,---, k—1} 1)
image with N x N points, is4 N* + 16 N + 80 additions and only
32 multiplications or power calculations. where k is the number of the blocks. Each block is described

by four integers, the coordinates of the upper left and down right
corner in vertical and horizontal axes. The block extraction process
. o . ) is implemented easily with low computational complexity, since it
A bilevel digital image is represented by a binary 2-D armayg 5 pixel checking process without numerical operations. Fig. 1,
Without loss of generality, we suppose that the object pixels afigsirates the blocks that represent an image of the chardcter
assigned to level one and the background pixels to level zero. Due tery,, optimum representation is characterized by the minimum
this ktnd of representation, there are rectangu!ar areas of object V%%sible number of blocks. Different IBR algorithms, which may
one, in each Image. _These rectangulers, which are cbltmd<su_q result to smaller number of blocks at the cost of the increased required
the terminology of this work, have their edges parallel to the ima fine, may be implemented. Specifically, the algorithm for finding
axes and centain an integer number of image pixells. At the extreme 1\ ovimal empty rectangle [27]-[29] in an area may be applied
case, the minimum rectangu!ar area of the image is one pixel. recursively: at each stage the points of this rectangle are labeled as
Consider a set_t_hat t:ontams as members all the nonoverlapp kground points, in order to apply the algorithm recursively to the
blocks of a specific binary image, in such a way that no othetaining points. The time complexity of this methodiér log n),
block can be extracted from the image (or equivalently, each pixghere , s the number of the points of the area at each recursion.
with object level belongs to only one block). It is always fea‘S'bquherefore, the selection of the optimum representation implies an

to represent a binary image with a set of all the nonoverlapping itional computational cost, which may compensate the achieved
blocks with object level, and this representation is IBR. Accordlngavings due to the minimum number of blocks.

to the above discussion, two useful definitions concerning IBR are
formulated.

Definition 1: Blockis called a rectangular area of the image, with
edges parallel to the image axes, that contains pixels of the same )
value. a A Geometrical Moments

Definition 2: A binary image is calleblock representedf it is Consider a binary digital imagg&(z, v), with Ny pixels in horizon-
represented as a set of blocks with object level, and if each pixeltaf axis andV. pixels in vertical axis. The 2-D geometrical moments
the image with object value belongs to one and only one bloak. of order(p, ¢) of the image are defined by the relation

Il. IMAGE BLOCK REPRESENTATION

IIl. COMPUTATION OF MOMENTS

According to Definitions 1 and 2, it is concluded that the IBR Ni—1Ng—1
is an information lossless representation. Given a specific binary m,, = Z Z 2Pyl f(x, y), p,¢g=0,1,2, . (2
image, different sets of different blocks can be formed. Actually, =0 y—0

the notlunique bloek representation_ does not have any implieaticgtmce the background level is zero, only the pixels with level one
on the implementation of any operation on a block represented imagg, a1en into account for the computation of the moments. Thus, the

The IBR concept leads to a si_mple and fast algorithm, Whieﬁt_D geometrical moments of ordép, ¢) of the imagef («, y) are
requires just one pass of the image and simple bookkeeplagﬁned by the relation

process. In fact, considering/8; x N binary imagef(x, y), « =
0,1,---,N, — 1,y = 0,1,---, Ny — 1, the block extraction Mpg = ZZ Pyt Ve, y: flr,y) =1 (3
process requires a pass from each linef the image. In this pass, Ty
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Specifically, if the imagef(z,y) is represented by blocks, as it The summationSy,, ... is computed in a similar manner. Fast

is described in (1), all the image pixels with level 1 belong to the computation of the 2-D geometrical meoments of one block, ac-

image blocks and therefore (3) may be rewritten as cording to (5), is achieved using the above simple and analytical
formulae.
T2.b 0 Y2.b According to (4), the 2-D geometrical moments of the whole image
Mpqg = Z mpy = Z Z Z @) are computed as the summation of the 2-D geometrical moments of
=0 TEEL b USVL Y, all the individual blocks of the binary image.

wherexy s, 2.5, andyi 5., y2,», are the coordinates of the block

b, with respect to the horizontal axis and to the vertical axig§. Central Moments

respectively. In (4), if the rectangular form appeared within the blocks The 2-D central moments of an imagiéz, y) are invariant under
is taken into account, then the geometrical moments of one Blockimage translation and they are defined as

with coordinatesris, 25, y15, ¥25, are given by

Ni—1Na—1
Top  Y2b Yyab Y2 r—T) - @, 10
iyt = St e P SY =2 L D=0y a9
llb Y (‘le Yy =
T=x1p Y=Y1b Y=Yip Y=Y1s

s oon Yo wherez = mio/moo, ¥ = mo1/moo are the coordinates of the
. p q _ p q centroid.
Tt ,/:Zm / <I;w ! ) <,/Zm Y ) ©) Since all the image pixels with level one belong to thémage
o o blocks, (10) may be rewritten as
Using the rectangular form appeared within the block, the com-
. . . . 9 k—1 k—1 T2,b; Y2, b;

putational effort, which is characterized by the complexityN~*) b 4
for the calculation of moments using (2), is reducedxoN) for oo = Z Hrpq Z Z Z (e =7)"(y =) 11
the calculation of moments using (5). For the computation of (5), it
is adequate to calculate the following summations of the powers @here bis 2,5, Y1,b;, Y2,5, are with coordinates of the block.

2,b;

1=0 x=z4 Jby YTYL 8y

x and y: The coordlnates in (11) refer to the center of gravity of the whole
. Yo image and not to the centroid of each block. The computation of
S ey = Z ol 81 = Z s Y. p,q € Z. the geometrical moments.oo, 10, mo1 USING (5) and (9) ensures

the fast computation of the centroid of the image. In (11), if the

=Ty Y=Y1s
' ' (6) rectangular form appeared within the blocks is taken into account,
then the moments of one bloékwith coordinates:1s, 25, Y16, Y20,
Moreover, taking into account the known formulae are given by
n+1 . n+1D2n+1 Top Y206 B B
511,77, = n(nQ )7 Sf,n = n(n )6( “ )e Mfm = Z Z (l’ - I)P(y - y)q
5? _ 71,2(11 + 1)2 . Sf _ n(n+1)(2n+ 1)(3712 +3n+1) 1_:;; e you
. 4 ’ 30 @ = < Z (v — ;L')p> < Z (y — y)q>. (12)
T=T1p T=Y1p
and, in the general case for sums of powers greater than four, thehe complexity is reduced fro?(N?) to O(N). For the compu-
formula tation of (12), it is adequate to calculate the two summations of the
m1\ ma 1 m +1 product. Using the mathematical identities
1 Sl n ) Sl ntoo+ 51 n 5 9 o
(c—d)" =¢ —=2cd+d”
=(n+D)"" = (n+1) (8) (c—d)* =c® —3c2d + 3ed® — d°
. 4 __ 4 3 242 4 i3 4
wherem, n € Z and(’) = (i!)/[j!(i — j)!] are with combinations of (e—d) =c’ —dc'd+6c7d” —ded” +d
i objects, takerj each time, itis concluded that the summati, ., (e d)™ =™ — <'m) gy < ) 2y
can be directly calculated by the analytical formulae (9), shown at 1
the bottom of the page. — e (=Dma™ (13)
L L 1 zop(zas + 1) — xip(w1y — 1)
S-"lbv”‘?b :SLJ‘,Z;) _‘91,,1‘,15—1 = 9
2 2 2 wop(won + 1) (2@ + 1) — xip (21, — 1) (221 — 1)
lebar% :Sle’52& _51,1‘15*1 = 6
2 2 2 2
3 3 3 ey (22p +1)° — 2y (21 — 1)
leb;be :Slel‘zb _51,21571 = 2
g —gt g4 . xap(@2p + 1) (222 + 1)(31317 4+ 3z, — 1) — z1p(w1p — 1) (2215 — 1)(31317 + 3z, — 1)
Tip, @gp P Llixay T Plizmp—1 T 30
1 1 1
(w20 + 1)p+1 ¢€b+1 — (w2p — 1 + 1) — <p T )Siu) Tap <p; )Sflzﬂlzz} - <§i— 1)51‘)151 Tap N
Sf‘w#—'zb = P+ 1 s VpeZ

©)
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TABLE |
REQUIRED NUMBER OF OPERATIONS FOR THECOMPUTATION OF GEOMETRICAL MOMENTS UP TO THEORDER (L — 1, L — 1), oF ONE BLock witH M x M PIXELS

Operations Number Direct computation Computation from Computation from
from equation (2) equation (5) equation (9)
power calculations LM 2LM 4L
multiplications L2M? 12 212-L
additions LM 2LM LI
1000000 - -
10000
Eq ()
Eq. (5)
Eq. (9
100 i
1
1 M 100 1 M 100 1 M 100
@ (b) (©

Fig. 2. Number of operations for the geometrical moments computation up to the(drderl, L —
-, 100: (a) number of power calculations; (b) number of multiplications; (c) number of additions.

L=5andM =1,2, -

it is concluded that

Tap

— 1 —
E (2 = T) =51, 4y, — T2bT,
=1
L2b
_\2 2 ol _2
E (2 = %) =57, 0y, — 2851, 4y, + 22T

=1
L2b

Z(m—?)3

=1
Tap

Z(m—?)J‘

=1

126

/ —\P 1
Z(;L’—ib‘)] _5%7725_‘ < )S{J o
=1

_3
— X2pT ,

3 _2 ol
—51,3325 + 37 Sl,ﬂ"z&
_ o4 o2 2 o2
=57, 0y, — 4757 4, 67757 .,

o+ (—1)Pagx®,

vpezt (14)
and
T2p Top T1p—1
Z(;L’—E): (z —7) — Z(.r—f)
r=x1p z=1 r=1
:Siu, wgp — (T2p — 215 + 1)T
Top T1p—1

Z('T—T) Z(r—r

x=x1p

Z(T—T

1 —2
T, Top 21‘511& gy T (w2p — w15 + 1)7
Top T2y T1p—1
E (x —7)° :E ;L—gL) E (x —7)°
z=x1} z=1
_ o3 2 _2
- 57 16> T2b 3LS7 16> T2b + 3.r 57 1bs T2b

= (wap — 21p + DT

1), of a M x M block, from (2), (5) and (9) with

Top Tap r1p—1
Z (;t—f)4:Z(;B—a_r)4— Z (x —%)*
=21y r=1 r=1
_Srlb z9p “L’LSTUJ zap T GT‘S;M zop

- 4T35m,,x2b + (22 — 215+ 1)T

T2p
1
Z (L_J)p_sflb wop T O < )55)15 T

=21
vpezt
(15)

+ (=1)"(zop — z1p + )T,

and whereS? .., have been calculated from (9).

The above analytical formulae (15) are used for the fast com-
putation of the factory  2* = of the central moments (12) of
the block b. The factor 3-72* (y — ¥)?, appeared in (12) is
calculated in a similar manner. The fast computation of the central
moments of each block according to the proposed method ensures
the fast computation of the central moments of the whole image,

according to (11).

C. Normalized Central Moments and Moments Invariants

The 2-D normalized central moments of an imafier, y) are
defined asipg = ppq/1igo Wherey = [(p +¢)/2] + L.p+ ¢ =
2,3,--- and pu,, are the corresponding central moments of the
image. The central moments are required for the computation of the
normalized central moments.

A set of seven moments, which are invariant to translation, rotation,
and scaling factors, calleshoments invariant$17], [18] is derived
from the normalized central moments. Therefore, the fast computation
of the central moments ensures the fast computation of the normalized
central moments and the moments invariants.
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@ (b) © (d)

Fig. 3. Set of test images. (a) Image of the island of Corfu of 51512 pixels. (b) Image of the island of Mikonos of 53 512 pixels. (c) Image
of the island of Santorini of 512 512 pixels. (d) Aircraft image of 51Z% 697 pixels.

IV. COMPUTATIONAL COMPLEXITY Table | demonstrates the above results. The complexity is reduced
It is clear from the IBR algorithm that block extraction is a pixeffom 2-D form from (2) to 1-D using image block representation and
checking process, without involving any numerical operations afe)- Moreover, it results that the complexity is independent of the
requires only one pass from each point of the image. Therefore, 1BRe When the analytical formula (9) is used. The required number of
is fast implemented and the required time is proportional to the imaggWer calculatlgns, multiplications and additions for the computatl_on
size. However, in pattern recognition applications, the IBR is appliéd the geometrical moments up to the order (4, 4) of a block with
to the images of the separated objects rather than to the whole imalfex M pixels, wherel/ varies from 1-100, is shown in Fig. 2.
In a number of such applications, it resulted that the computation time-€mma 1: Assuming that the complexity of raising a number to a
for block extraction is much less than the time for image file readirRper is the Same as one mg)ltlpllcatlon,.th.e computation of (5) and
and image segmentation. ) requ!resL‘ +2LM and3L” + 2L nju!t|pll_cat|or_1$_, respectively.
Consider that a binary image contains one rectangular block wigpmparing the above _number of mu_ltlpllcatlons, it is concluded that
level one. For simplicity and without loss of generality, suppose) Nas less computational complexity than (9) when
a square block withd x M points. In the sequel we estimate
the computational complexity required for the computation of the L’ +2LM < 2L +3L = M < L+ 3. (16)
geometrical moments of order up t& — 1, L — 1). The analysis 2
concerning the computational complexity of other sets of moments

may be given in a similar manner. However, in typical pattern recognition applications the mo:1ents
It is seen from (2) that the direct computation of one geometri- N Lyp P 9 PP

cal moment requires> power computations)® multiplications usually are calculated up to the order (4, 4). The higher order moments
and M? additions. For the computation of> moments, L2 > are not used, since they are very sensitive to noise. From (16), it

— K H
power computations.2 M2 multiplicationsL>M? and additions are becomes clear that fdf = 5, if an edge of a block contains less than
required. four pixels, it is faster to compute the sum of powers of the variable

. . . . ... that corresponds to that edge, directly using (5) instead of (9).
Consider (5), which exploits the rectangular form appearing within Consider the worst case of @x N chessboard image with2/2

. i LM . . .
the block. For the computation of the factst, ., , power locks. Since nowM = 1, according to the criterion of Lemma

calculations andL M additions are required. The same number o’ the computation using (5) requireBN? power calculations,

operations are reqired for_ the ():omputati(_)n of the faag)lr"zyz"' L?N?/2 multiplications, andLN? additions. Using (2),L>N?/2
Therefore, for the computation & geometrical moments using (5), power calculations> N?/2 multiplications, andL? N?/2 additions

2L M power calculationsl.” multiplications and2 LM additions, are are required. Thus, it is concluded that the IBR for the computation

required for one block. . . .o{ moments is still computationally attractive in comparison with the
Now, consider the analytical formula (9), where the same binomia of (2)

- o . use
coefficients appear for any specific geometrical moment of each bloci
of the image; therefore, the corresponding computational effort is
reduced by the number of the blocks. Moreover, the factorials for V. EXAMPLES
the determination of the binomial coefficients require the least effort, Consider the test images of Fig. 3. Table Il shows the number
i.e., one multiplication for the calculation of each one of the factoriaf the pixels with object level, the number of the rows with object
m! in terms of (m — 1)L pixels, the number of the blocks extracted from these images using the
There are two alternative approaches for the execution of the powégorithm 1, the required storage for the 2-D images, and the required
calculations in (9). In the first one, the two power calculations astorage for the block represented images are shown. It can been seen
considered. Alternatively, the calculationdf, and(x2,+1)** may that the storage of the blocks requires less space in comparison with
be seen as two multiplications in terms @, and (x2, + 1)**',  the required storage for the 2-D images.
respectively. In the following analysis, the first approach is used.In images with a high entropy value, like images of text where
The factorsS} , .,,,7= 1.2, ---, p—1, that have been computeda significant number of small blocks appears, the required time
previously and their values are stored, are used for the computatiorfaf the computation of the moments is reduced, using image block
the ST, ..,. Thus, the computation of the? , ... from (9) requires representation by a factor between 10 and 50. In images with large
two power calculationsp multiplications, andp additions. The areas of object level, like images of industrial parts, aircrafts, ships,
computation of the sum of,, .. requires two power calculations, etc., the factor of time reduction is much greater. The computation
¢ multiplications, andg additions. The calculation of all thé&® time of moments up to the order (4, 4), for the set of the test images
moments requires 4 power calculations2L? — L multiplications, of Fig. 3, using the four different methods described earlier, is given
and L? — L additions. in this section. These methods are
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TABLE I
NUMBER OF PixELS wiTH OBJECT LEVEL, NUMBER OF Rows wWITH OBJECT PIXELS, NUMBER OF BLOCKS, REQUIRED STORAGE FOR
2-D IMAGES, AND REQUIRED STORAGE FORBLOCK REPRESENTEDIMAGES FOR THE SET OF TEST IMAGES OF FIG. 3

Image Pixels with Rows with Number of Storage for the Storage for
object level object pixels blocks 2-D image blocks
Image of the island Corfu 41605 411 250 32768 bytes 2000 bytes
Image of the island Mikonos 47368 249 232 32768 bytes 1856 bytes
Image of the island Santorini 63203 474 257 32768 bytes 2056 bytes
Image of the aircraft 118831 494 397 44608 bytes 3176 bytes
TABLE 1l
CoMPUTATION TIME OF THE GEOMETRICAL MOMENTS UP TOORDER (4, 4) oF THE TEST IMAGES OF FiG. 3 UsING DIFFERENT METHODS
Computation of the geometrical | image of the island | image of the island | image of the island image of the
moments Corfu Mikonos Santorini aircraft
time | reduction | time | reduction | time | reduction | time | reduction
(sec) factor (sec) factor (sec) factor (sec) factor
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binary textural behavior of a given prototype is represented by means - L .
of a hard-limited Gaussian process. In the second stage, the texture is Presented in literature. However, they are limited by the assumption
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