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features. By directly using part or all of the run-length matrix
as a feature vector, much of the texture information is preserved.
This approach is made possible by the utilization of the multi-
level dominant eigenvector estimation method, which reduces the
computation complexity of KLT by several orders of magnitude.
Combined with the Bhattacharyya measure, they form an efficient
feature selection algorithm.

The advantage of this approach is demonstrated experimentally
by the classification of two independent texture data sets. Experi-
mentally, we also observe that most texture information is stored in
the first few columns of the run-length matrix, especially in the first
column. This observation justifies development of a new, fast, parallel
run-length matrix computation scheme.

Comparisons of this new approach with the co-occurrence
and wavelet features demonstrate that the run-length matrices
possess as much discriminatory information as these successful
conventional texture features and that a good method of extracting
such information is key to the success of the classification. We
are currently investigating the application of the new feature
extraction approach on other texture matrices. We hope our work
here will renew interest in run-length texture features and promote
future applications.
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Real-Time Computation of Two-Dimensional Moments on
Binary Images Using Image Block Representation

Iraklis M. Spiliotis and Basil G. Mertzios

Abstract—This work presents a new approach and an algorithm for
binary image representation, which is applied for the fast and efficient
computation of moments on binary images. This binary image represen-
tation scheme is calledimage block representation, since it represents the
image as a set of nonoverlapping rectangular areas. The main purpose of
the image block representation process is to provide an efficient binary
image representation rather than the compression of the image. The block
represented binary image is well suited for fast implementation of various
processing and analysis algorithms in a digital computing machine. The
two-dimensional (2-D) statistical moments of the image may be used for
image processing and analysis applications. A number of powerful shape
analysis methods based on statistical moments have been presented, but
they suffer from the drawback of high computational cost. The real-
time computation of moments in block represented images is achieved
by exploiting the rectangular structure of the blocks.

Index Terms—Binary image, image analysis, image block representa-
tion, moments.

I. INTRODUCTION

The most common image representation format is a two-
dimensional (2-D) array, each element of which has the brightness
value of the corresponding pixel. For a binary image these values are
zero or one. In a serial machine, only one pixel is to be processed at
a time, by using the 2-D array representation. Many research efforts
have considered the problem of selecting an image representation
suitable for concurrent processing in a serial machine. The need
for such approaches arises from the fact that an image contains a
great amount of information, thus rendering the processing a difficult
and slow task. Existing approaches to image representation aim to
provide machine perception of images in pieces larger than a pixel
and are separated in two categories: 1) boundary-based methods
and 2) region-based methods. Such approaches include quadtree
representations [1], chain code representations [2], contour control
point models [3], autoregressive models [4], the interval coding
representation [5], and block implementation techniques [6]–[8]. One
common objective of the above methods is the representation of an
image in a more suitable form for a specific operation.

This correspondence presents a new advantageous representation
for binary images calledimage block representation(IBR) and con-
stitutes an efficient tool for image processing and analysis techniques
[9], [10]. Using the block represented binary images, real-time
computation of 2-D statistical moments is achieved through analytical
formulae. The computational complexity of the proposed technique
is O(L2), where(L � 1; L � 1) is the order of the 2-D moments
to be computed.

Various sets of 2-D statistical moments constitute a well-known
image analysis and pattern recognition tool [11]–[20]. In pattern
recognition applications, a small set of the lower order moments is
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used to discriminate among different patterns. The most common
moments are geometrical moments, central moments, normalized
central moments, and moments invariants [17], [18]. Other sets of
moments are Zernike moments and Legendre moments (which are
based on the theory of orthogonal polynomials) [19], [21], and
complex moments [20]. One main difficulty concerning the use of
moments as features in image analysis applications is the implied
high computational time. A number of approaches that reduce the
computational time concerning calculation of moments have appeared
[3], [23]–[25]. In [23]–[25], the problem has been reduced from
2-D to a one-dimensional (1-D) one, using Green’s theorem; this
approach reduces the complexity fromO(N2) to O(N), since only
the boundary pixels are considered and the lengthP of the boundary
is linearly related to

p
A, whereA is the object area. In [3] control

point models based on the least-square normalized B-splines are used
for the representation of the object boundary, where the complexity
of the moments computation is analogous to the shape model order
and independent of the scale. The computational cost of this method
is comparable with the cost of the proposed method, but mainly due
to the deviations of the boundary representation model, the moment
values are significantly affected. In [26], the computation formula of
each one central moment has been considered as an impulse response
of a filter, which is then transformed to thez-domain and the transfer
function of the corresponding digital filter is obtained. This latter
approach is also inferior to block-based computation, since it is
dependent on the image size and its computational complexity for
the calculation of the 16 central moments up to the order (4, 4) of an
image withN � N points, is4N2 + 16N + 80 additions and only
32 multiplications or power calculations.

II. I MAGE BLOCK REPRESENTATION

A bilevel digital image is represented by a binary 2-D array.
Without loss of generality, we suppose that the object pixels are
assigned to level one and the background pixels to level zero. Due to
this kind of representation, there are rectangular areas of object value
one, in each image. These rectangulars, which are calledblocks in
the terminology of this work, have their edges parallel to the image
axes and contain an integer number of image pixels. At the extreme
case, the minimum rectangular area of the image is one pixel.

Consider a set that contains as members all the nonoverlapping
blocks of a specific binary image, in such a way that no other
block can be extracted from the image (or equivalently, each pixel
with object level belongs to only one block). It is always feasible
to represent a binary image with a set of all the nonoverlapping
blocks with object level, and this representation is IBR. According
to the above discussion, two useful definitions concerning IBR are
formulated.

Definition 1: Blockis called a rectangular area of the image, with
edges parallel to the image axes, that contains pixels of the same
value.

Definition 2: A binary image is calledblock represented,if it is
represented as a set of blocks with object level, and if each pixel of
the image with object value belongs to one and only one block.

According to Definitions 1 and 2, it is concluded that the IBR
is an information lossless representation. Given a specific binary
image, different sets of different blocks can be formed. Actually,
the nonunique block representation does not have any implications
on the implementation of any operation on a block represented image.

The IBR concept leads to a simple and fast algorithm, which
requires just one pass of the image and simple bookkeeping
process. In fact, considering aN1 �N2 binary imagef(x; y); x =
0; 1; � � � ; N1 � 1; y = 0; 1; � � � ; N2 � 1, the block extraction
process requires a pass from each liney of the image. In this pass,

Fig. 1. Image of the characterd and the blocks.

all object level intervals are extracted and compared with the previous
extracted blocks. In the following, an IBR algorithm is given.

Algorithm 1—Image Block Representation:

Step 1: Consider each liney of the imagef and find the object
level intervals in liney.

Step 2: Compare intervals and blocks that have pixels in liney�1.
Step 3: If an interval does not match with any block, this is the

beginning of a new block.
Step 4: If a block matches with an interval, the end of the block

is in the liney.

As a result of the application of the above algorithm, we obtain a
set of all the rectangular areas with level one that form the object. A
block represented image is denoted as

f(x; y) = fbi : i = 0; 1; � � � ; k � 1g (1)

where k is the number of the blocks. Each block is described
by four integers, the coordinates of the upper left and down right
corner in vertical and horizontal axes. The block extraction process
is implemented easily with low computational complexity, since it
is a pixel checking process without numerical operations. Fig. 1,
illustrates the blocks that represent an image of the characterd.

The optimum representation is characterized by the minimum
possible number of blocks. Different IBR algorithms, which may
result to smaller number of blocks at the cost of the increased required
time, may be implemented. Specifically, the algorithm for finding
the maximal empty rectangle [27]–[29] in an area may be applied
recursively: at each stage the points of this rectangle are labeled as
background points, in order to apply the algorithm recursively to the
remaining points. The time complexity of this method isO(n log n),
wheren is the number of the points of the area at each recursion.
Therefore, the selection of the optimum representation implies an
additional computational cost, which may compensate the achieved
savings due to the minimum number of blocks.

III. COMPUTATION OF MOMENTS

A. Geometrical Moments

Consider a binary digital imagef(x; y), withN1 pixels in horizon-
tal axis andN2 pixels in vertical axis. The 2-D geometrical moments
of order (p; q) of the image are defined by the relation

mpq =

N �1

x=0

N �1

y=0

x
p
y
q
f(x; y); p; q = 0; 1; 2; � � � : (2)

Since the background level is zero, only the pixels with level one
are taken into account for the computation of the moments. Thus, the
2-D geometrical moments of order(p; q) of the imagef(x; y) are
defined by the relation

mpq =
x y

x
p
y
q 8x; y: f(x; y) = 1: (3)
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Specifically, if the imagef(x; y) is represented byk blocks, as it
is described in (1), all the image pixels with level 1 belong to thek

image blocks and therefore (3) may be rewritten as

mpq =

k�1

i=0

mb
pq =

k�1

i=0

x

x=x

y

y=y

xpyq (4)

wherex1;b , x2;b and y1;b , y2;b are the coordinates of the block
b1 with respect to the horizontal axis and to the vertical axis,
respectively. In (4), if the rectangular form appeared within the blocks
is taken into account, then the geometrical moments of one blockb,
with coordinatesx1b; x2b; y1b; y2b; are given by

mb
pq =

x

x=x

y

y=y

xpyq = xp
1b

y

y=y

yq + (x1b + 1)p
y

y=y

yq

+ � � � + xp
2b

y

y=y

yq =

x

x=x

xp
y

y=y

yq : (5)

Using the rectangular form appeared within the block, the com-
putational effort, which is characterized by the complexityO(N2)
for the calculation of moments using (2), is reduced toO(N) for
the calculation of moments using (5). For the computation of (5), it
is adequate to calculate the following summations of the powers of
x and y:

Spx ; x =

x

x=x

xp; Sqy ; y =

y

y=y

yq; x; y; p; q 2 Z:

(6)

Moreover, taking into account the known formulae

S11; n =
n(n+ 1)

2
; S21; n =

n(n+ 1)(2n+ 1)

6
;

S31; n =
n2(n+ 1)2

4
; S41; n =

n(n+ 1)(2n+ 1)(3n2 + 3n+ 1)

30
(7)

and, in the general case for sums of powers greater than four, the
formula

m+ 1
1

S11; n +
m+ 1

2
S21; n + � � �+

m+ 1
m

Sm1; n

= (n+ 1)m+1
� (n+ 1) (8)

wherem; n 2 Z and i

j
= (i!)=[j!(i�j)!] are with combinations of

i objects, takenj each time, it is concluded that the summationSpx ; x

can be directly calculated by the analytical formulae (9), shown at
the bottom of the page.

The summationSqy ; y is computed in a similar manner. Fast
computation of the 2-D geometrical meoments of one block, ac-
cording to (5), is achieved using the above simple and analytical
formulae.

According to (4), the 2-D geometrical moments of the whole image
are computed as the summation of the 2-D geometrical moments of
all the individual blocks of the binary image.

B. Central Moments

The 2-D central moments of an imagef(x; y) are invariant under
image translation and they are defined as

�pq =

N �1

x=0

N �1

y=0

(x� x)p(y � y)qf(x; y) (10)

where x = m10=m00; y = m01=m00 are the coordinates of the
centroid.

Since all the image pixels with level one belong to thek image
blocks, (10) may be rewritten as

�pq =

k�1

i=0

�bpq =

k�1

i=0

x

x=x

y

y=y

(x� x)p(y � y)q (11)

wherex1; b ; x2; b ; y1; b ; y2; b are with coordinates of the block.
The coordinates in (11) refer to the center of gravity of the whole
image and not to the centroid of each block. The computation of
the geometrical momentsm00; m10; m01 using (5) and (9) ensures
the fast computation of the centroid of the image. In (11), if the
rectangular form appeared within the blocks is taken into account,
then the moments of one blockb, with coordinatesx1b; x2b, y1b; y2b,
are given by

�bpq =

x

x=x

y

x=y

(x� x)p(y � y)q

=

x

x=x

(x� x)p
y

x=y

(y � y)q : (12)

The complexity is reduced fromO(N2) to O(N). For the compu-
tation of (12), it is adequate to calculate the two summations of the
product. Using the mathematical identities

(c� d)2 = c2 � 2cd+ d2

(c� d)3 = c3 � 3c2d+ 3cd2 � d3

(c� d)4 = c4 � 4c3d+ 6c2d2 � 4cd3 + d4

(c� d)m = cm �
m
1

cm�1d+
m
2

cm�2d

� � � �+ (�1)m dm (13)

S1x ; x =S11; x � S11; x �1 =
x2b(x2b + 1)� x1b(x1b � 1)

2

S2x ; x =S21; x � S21; x �1 =
x2b(x2b + 1)(2x2b + 1)� x1b(x1b � 1)(2x1b � 1)

6

S3x ; x =S31; x � S31; x �1 =
x22b(x2b + 1)2 � x21b(x1b � 1)2

4

S4x ; x =S41; x � S41; x �1 =
x2b(x2b + 1)(2x2b + 1)(3x22b + 3x2b � 1)� x1b(x1b � 1)(2x1b � 1)(3x21b + 3x1b � 1)

30

Spx ; x =

(x2b + 1)p+1 � xp+1
1b � (x2b � x1b + 1)�

p+ 1
1

S1x ; x �
p+ 1
2

S2x ; x � � � � �
p+ 1
p� 1

Sp�1x ; x

p+ 1
; 8 p 2 Z+

(9)
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TABLE I
REQUIRED NUMBER OF OPERATIONS FOR THECOMPUTATION OF GEOMETRICAL MOMENTS UP TO THEORDER (L� 1; L� 1), OF ONE BLOCK WITH M �M PIXELS

(a) (b) (c)

Fig. 2. Number of operations for the geometrical moments computation up to the order(L � 1; L � 1), of a M �M block, from (2), (5) and (9) with
L = 5 andM = 1; 2; � � � ; 100: (a) number of power calculations; (b) number of multiplications; (c) number of additions.

it is concluded that

x

x=1

(x� x) =S11; x � x2bx;

x

x=1

(x� x)2 =S21; x � 2xS11; x + x2bx
2

x

x=1

(x� x)3 =S31; x + 3x2S11; x � x2bx
3;

x

x=1

(x� x)4 =S41; x � 4xS21; x + 6x2S21; x

x

i=1

(x� x)p =Sp
1; x � x

p
1

Sp�1
1; x + � � �+ (�1)px2bx

p;

8 p 2 Z+ (14)

and
x

x=x

(x� x) =

x

x=1

(x� x)�

x �1

x=1

(x� x)

=S1x ; x � (x2b � x1b + 1)x
x

x=x

(x� x)2 =

x

x=1

(x� x)2 �

x �1

x=1

(x� x)2

=S2x ; x � 2xS1x ; x + (x2b � x1b + 1)x2

x

x=x

(x� x)3 =

x

x=1

(x� x)3 �

x �1

x=1

(x� x)3

=S3x ; x � 3xS2x ; x + 3x2S1x ; x

� (x2b � x1b + 1)x3

x

x=x

(x� x)4 =

x

x=1

(x� x)4 �

x �1

x=1

(x� x)4

=S4x ; x � 4xS3x ; x + 6x2S2x ; x

� 4x3S1x ; x + (x2b � x1b + 1)x
x

x=x

(x� x)p =Sp
x ; x � x

p
1

Sp�1
x ; x + � � �

+ (�1)p(x2b � x1b + 1)xp; 8 p 2 Z+

(15)

and whereSp
x ; x have been calculated from (9).

The above analytical formulae (15) are used for the fast com-
putation of the factor x

x=x
of the central moments (12) of

the block b. The factor y

y=y
(y � y)q, appeared in (12) is

calculated in a similar manner. The fast computation of the central
moments of each block according to the proposed method ensures
the fast computation of the central moments of the whole image,
according to (11).

C. Normalized Central Moments and Moments Invariants

The 2-D normalized central moments of an imagef(x; y) are
defined as�pq = �pq=�



00 where 
 = [(p + q)=2] + 1; p + q =

2; 3; � � � and �pq are the corresponding central moments of the
image. The central moments are required for the computation of the
normalized central moments.

A set of seven moments, which are invariant to translation, rotation,
and scaling factors, calledmoments invariants[17], [18] is derived
from the normalized central moments. Therefore, the fast computation
of the central moments ensures the fast computation of the normalized
central moments and the moments invariants.
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(a) (b) (c) (d)

Fig. 3. Set of test images. (a) Image of the island of Corfu of 512� 512 pixels. (b) Image of the island of Mikonos of 512� 512 pixels. (c) Image
of the island of Santorini of 512� 512 pixels. (d) Aircraft image of 512� 697 pixels.

IV. COMPUTATIONAL COMPLEXITY

It is clear from the IBR algorithm that block extraction is a pixel
checking process, without involving any numerical operations and
requires only one pass from each point of the image. Therefore, IBR
is fast implemented and the required time is proportional to the image
size. However, in pattern recognition applications, the IBR is applied
to the images of the separated objects rather than to the whole image.
In a number of such applications, it resulted that the computation time
for block extraction is much less than the time for image file reading
and image segmentation.

Consider that a binary image contains one rectangular block with
level one. For simplicity and without loss of generality, suppose
a square block withM � M points. In the sequel we estimate
the computational complexity required for the computation of the
geometrical moments of order up to(L � 1; L � 1). The analysis
concerning the computational complexity of other sets of moments
may be given in a similar manner.

It is seen from (2) that the direct computation of one geometri-
cal moment requiresM2 power computations,M2 multiplications
and M2 additions. For the computation ofL2 moments,L2M2

power computations,L2M2 multiplicationsL2M2 and additions are
required.

Consider (5), which exploits the rectangular form appearing within
the block. For the computation of the factorSp

x ; x , LM power
calculations andLM additions are required. The same number of
operations are required for the computation of the factorSq

y ; y .
Therefore, for the computation ofL2 geometrical moments using (5),
2LM power calculations,L2 multiplications and2LM additions, are
required for one block.

Now, consider the analytical formula (9), where the same binomial
coefficients appear for any specific geometrical moment of each block
of the image; therefore, the corresponding computational effort is
reduced by the number of the blocks. Moreover, the factorials for
the determination of the binomial coefficients require the least effort,
i.e., one multiplication for the calculation of each one of the factorial
m! in terms of (m � 1)!.

There are two alternative approaches for the execution of the power
calculations in (9). In the first one, the two power calculations are
considered. Alternatively, the calculation ofxp

1b and(x2b+1)p+1 may
be seen as two multiplications in terms ofxp

1b and (x2b + 1)p+1,
respectively. In the following analysis, the first approach is used.
The factorsSi

x ; x , i = 1; 2; � � � ; p� 1, that have been computed
previously and their values are stored, are used for the computation of
theSp

x ; x . Thus, the computation of theSp
x ; x from (9) requires

two power calculations,p multiplications, andp additions. The
computation of the sum ofSq

y ; y requires two power calculations,
q multiplications, andq additions. The calculation of all theL2

moments requires 4L power calculations,2L2 � L multiplications,
and L2 � L additions.

Table I demonstrates the above results. The complexity is reduced
from 2-D form from (2) to 1-D using image block representation and
(5). Moreover, it results that the complexity is independent of the
size when the analytical formula (9) is used. The required number of
power calculations, multiplications and additions for the computation
of the geometrical moments up to the order (4, 4) of a block with
M �M pixels, whereM varies from 1–100, is shown in Fig. 2.

Lemma 1: Assuming that the complexity of raising a number to a
power is the same as one multiplication, the computation of (5) and
(9) requiresL2 + 2LM and3L2 + 2L multiplications, respectively.
Comparing the above number of multiplications, it is concluded that
(5) has less computational complexity than (9) when

L
2 + 2LM � 2L2 + 3L)M �

L+ 3

2
: (16)

However, in typical pattern recognition applications the moments
usually are calculated up to the order (4, 4). The higher order moments
are not used, since they are very sensitive to noise. From (16), it
becomes clear that forL = 5, if an edge of a block contains less than
four pixels, it is faster to compute the sum of powers of the variable
that corresponds to that edge, directly using (5) instead of (9).

Consider the worst case of anN�N chessboard image withN2/2
blocks. Since nowM = 1, according to the criterion of Lemma
1, the computation using (5) requiresLN2 power calculations,
L2N2/2 multiplications, andLN2 additions. Using (2),L2N2/2
power calculations,L2N2/2 multiplications, andL2N2/2 additions
are required. Thus, it is concluded that the IBR for the computation
of moments is still computationally attractive in comparison with the
use of (2).

V. EXAMPLES

Consider the test images of Fig. 3. Table II shows the number
of the pixels with object level, the number of the rows with object
pixels, the number of the blocks extracted from these images using the
Algorithm 1, the required storage for the 2-D images, and the required
storage for the block represented images are shown. It can been seen
that the storage of the blocks requires less space in comparison with
the required storage for the 2-D images.

In images with a high entropy value, like images of text where
a significant number of small blocks appears, the required time
for the computation of the moments is reduced, using image block
representation by a factor between 10 and 50. In images with large
areas of object level, like images of industrial parts, aircrafts, ships,
etc., the factor of time reduction is much greater. The computation
time of moments up to the order (4, 4), for the set of the test images
of Fig. 3, using the four different methods described earlier, is given
in this section. These methods are



1614 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 11, NOVEMBER 1998

TABLE II
NUMBER OF PIXELS WITH OBJECT LEVEL, NUMBER OF ROWS WITH OBJECT PIXELS, NUMBER OF BLOCKS, REQUIRED STORAGE FOR

2-D IMAGES, AND REQUIRED STORAGE FOR BLOCK REPRESENTEDIMAGES FOR THE SET OF TEST IMAGES OF FIG. 3

TABLE III
COMPUTATION TIME OF THE GEOMETRICAL MOMENTS UP TOORDER (4, 4) OF THE TEST IMAGES OF FIG. 3 USING DIFFERENT METHODS

1) the regular computation from (2);
2) the IBR and the use of (5);
3) the IBR with the analytical formula (9);
4) the IBR with the criterion provided by Lemma 1.

The geometrical moments of the test images of Fig. 3 have been
computed up to the order (4, 4) and the results are summarized in
Table III. It is shown that the use of IBR and (5) results to a reduction
of the computation time by a factor of�20. The use of the analytical
formula (9) decreases the computation time by a factor of�200.
Using the criterion provided by Lemma 1, the computation time is
decreased by a factor of hundreds or thousands, since in most of the
extracted blocks one edge has width less than four points.

VI. CONCLUSIONS

In this work, the image block representation idea and the associated
algorithm are presented. Owing to the nature of the digital image,
only rectangular areas with the same level are present. The IBR
uses these rectangular similarities and offers advantages in image
handling and computational cost. The IBR provides also a perception
about rectangular image regions larger than a pixel. Two-dimensional
moments is a classical image analysis tool, and the use of block
represented binary images dramatically decreases the computation
effort. The complexity of the algorithm for the computation of
moments in block represented images, is independent of the image
size. Using the IBR scheme for the computation of moments a rate
of 35–50 frames/s with 512� 512 images is achieved. The real-time
moments computation in block represented binary images is useful in
motion detection, moving object recognition, target identification, and
tracking and robot vision applications. Other image processing and
analysis tasks can be also performed on block represented images,
but this is a topic for future research.

The extension of the proposed method to gray-level images is
straightforward. Each block is represented by five integers: the
coordinates of the upper left and lower right corners and its gray-
level value. For the moments computation, it is adequate to calculate
the moments of the corresponding binary block and to multiply them
by the gray-level value of the block, since all the pixels of the block
have the same gray-level value.
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Texture Synthesis-by-Analysis with
Hard-Limited Gaussian Processes

Giovanni Jacovitti, Alessandro Neri, and Gaetano Scarano

Abstract—A twin stage texture synthesis-by-analysis method is pre-
sented. It aims to approximate first- and second-order distributions of
the texture, accordingly to the Julesz conjecture. In the first stage, the
binary textural behavior of a given prototype is represented by means
of a hard-limited Gaussian process. In the second stage, the texture is
synthesized by passing the binary hard-limited Gaussian process through
a linear filter followed by a zero memory histogram equalizer.

Index Terms—Bussgang deconvolution, hard limiter, image synthesis.

I. INTRODUCTION

Although there is not a unique notion of textures, they are loosely
thought of as surfaces characterized by more or less regular aggre-
gates of similar patterns. Among different approaches (morphological,
syntactic, fractal, mosaic, etc.), textures are often modeled as realiza-
tions of stationary random fields (RF’s).
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Generally, in analysis and automatic classification problems, the
success of techniques based on RF models relies on the actual
detectability of some distinctive features in the decision space, and
largely depends upon the specific application. For instance, fine
discrimination can be achieved by decomposing the image into
multiple narrow spatial frequency and orientation channels [1], [2].

In human user oriented applications, such as assisted browsing of
image data bases, selection criteria must comply with visual per-
ception requirements. This implies that textures have to be modeled
in terms of visual features, defined on the basis of the available
knowledge about the vision phenomena. The same problem is present
in synthesis problems, where the goal is generation of textures
possessing some characteristics in terms of “perceptive closeness”
to a given prototype. However, artificial reproduction of actual
textures is a very challenging task, due to the unlimited variety of
combinations of possible surfaces and illumination conditions, and
to the strong capacity of the human visual system to discriminate
even slightly different patterns. From a pragmatic viewpoint, we
consider artificial textures to be visually similar to their natural
counterparts if they can not be distinguished in a “preattentive” stage
of vision (before detailed examination). In this respect, experiments
conducted with stochastic models have shown that the human visual
system preattentively distinguishes textures with different first- and
second-order probability distributions, but is generally less sensitive
to differences in higher order distributions (Julesz conjecture [3]).

As a matter of fact, many approaches to texture modeling aim
to copy the histogram and the empirical autocorrelation function
(acf) of a given sample (see, for instance, [4], [5]). In particular,
recent techniques consist of decomposing a texture as a convolution
of a non-Gaussian i.i.d. excitation and a filter, identified by means
of higher order statistical analysis [6]–[8]. In order to deal more
directly with some fundamental characteristics of textures, namely
“repetitiveness,” “directionality,” and “granularity and complexity”
[19]–[21], the texture is preliminary decomposed into its “determin-
istic” (periodic and directional) and indeterministic (unpredictable)
components, according to a two-dimensional (2-D) extension of Wold
decomposition paradigm.

These techniques are often satisfactory for classification purposes,
and some visually good examples of synthesis have been also
presented in literature. However, they are limited by the assumption
of linear stochastic interaction between pixels. In fact, in [8] a
deterministicad hocexcitation has to be added to the independent,
identically distributed (i.i.d.) input random field. In other approaches
[9], [22], this problem is circumvent by using more flexible non-
Gaussian Markov RF’s (MRF’s). The main problems associated with
the latter techniques are related to the difficulty of determining the
MRF parameters (choice of the neighborhood set and identification
of probabilities or potentials) with simple methods.

In this contribution, we propose a new automatic texture synthesis-
by-analysis technique based on a model constituted by a cascade
of linear filters and zero-memory nonlinearities, excited by a white
Gaussian source. A preliminary description of this technique has been
presented in [10].

In essence, the method replaces usual i.i.d. sources employed in
linear texture models with non-i.i.d. binary sources. This choice
is motivated by the simplicity of controlling the second-order dis-
tribution of binary random fields. In fact, under weak symmetry
constraints, the second-order distribution of a binary field is com-
pletely described by its acf. Now, regarding a binary random field
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