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Abstract  

Herein, a parallel implementation in OpenMP of the Image Block Representation 

(IBR) for binary images, is investigated. The IBR is a region-based image 

representation scheme that represents the binary image as a set of non-overlapping 

rectangular areas with object level, called blocks. The IBR permits the execution of 

operations on image areas instead of image points and therefore leads to a substantial 

reduction of the required computational complexity. The experimental and the 

analytically derived results from parallel implementation in OpenMP, on a multicore 

computer, proved that a very good overall performance can be achieved. 
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1 Introduction 

In our days vast amounts of data are generated, processed, analyzed and transferred. 

According to Cisco Inc., global IP traffic will reach 396 exabytes (EB) per month by 

2022, and IP video traffic will be 82 percent of all IP traffic by 2022 [37]. Images 

include large amount of information, thus, the majority of image processing and 
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analysis techniques are not fast; the acceleration of these techniques is of great 

importance and vital for a number of applications.  

The existence of various parallel computing platforms permits the parallel 

implementation of various algorithms and operations. A popular parallel platform is 

the Shared Memory Parallel Machine (SMPM) which is a multicore, shared memory 

computer which usually uses the OpenMP (Open Multi Processing) API [14]. The 

OpenMP parallelism is accomplished using threads, where a thread of execution is 

the smallest sequence of programmed instructions that can be managed independently 

by a scheduler and typically each CPU core executes a thread. The OpenMP is also 

suitable for Intel ® Xeon Phi™ coprocessor accelerators. 

A second parallel computing platform is the Distributed Memory Parallel Machine 

(DMPM) model, usually consisted of a cluster of standalone machines, a 

communication network infrastructure and the MPI API. The newer parallel 

computing platform is the General-Purpose Graphics Processing Units (GPGPUs) and 

the OpenCL API from ATI or the CUDA API created by Nvidia. All the above 

platforms are in service today in supercomputers and High Performance Computing 

(HPC) centers.  

SMPM and the OpenMP API have been used for the parallel implementation of 

various image processing and analysis algorithms. Specifically SMPM and OpenMP 

have been used for the implementation of a fast neural network face detection system 

[15], for the parallel object identification on multi-spectral imaging [16], for the 

parallel implementation of the topological watershed operation for image 

segmentation [17], for the parallel implementation of the separation of moving objects 

from static background on real-time video processing [18] and for the efficient 

parallel implementation of Connected Component Labeling on images [19] and for 

the  parallel Legendre moments computation [20]. Moreover, SMPM have been used 

for the parallel computation of the local image features SIFT and SURF using p-

thread library [21]. 

In this paper, an image representation scheme which is called Image Block 

Representation (IBR) and its parallel algorithm is investigated, which is suitable for 

implementation on SMPMs with the OpenMP API. The proposed parallel 

implementation of IBR, provides a basis for the development of parallel issues of 

other image processing and analysis algorithms for block represented images.  
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2 Related Work 

The classical image representation format is the 2-D array, where the value of an 

array element represents the intensity of the respecting pixel. However, many research 

efforts to derive alternative image representations have been motivated by the need 

for fast processing of huge amounts of data. Such image representation approaches 

aim to provide machine perception of images in pieces larger than a pixel and are 

separated into two categories: region-based methods and boundary-based methods. 

The region-based representations include quadtree [1], run length encoding [2], [3] 

and interval coding representation [4]. The boundary-based representations include 

chain code [5], contour control point models [6] and autoregressive models [7]. In the 

context of binary images, the run length and interval coding representations are 

identical. A region-based method, called IBR has been studied in the past [8]. In the 

IBR process the whole binary image is decomposed into a set of rectangular areas 

with object level, called blocks and the fact that many compact areas of a given binary 

image have the same value is exploited. 

As in every other region-based method, the most important characteristic of the IBR is 

that a perception of image parts greater than a pixel is provided to the machine and 

therefore, all the operations on the pixels, belonging to a block, may be substituted by 

a simple operation on the block. This is a key point for block represented images and 

the IBR process may be considered as the creation of an intrinsic data parallelism, in 

comparison with the classical 2-D array image representation. 

Taking this feature into account, the implementation of new algorithms for binary 

image processing and analysis operations, leads to a substantial reduction of the 

required time and computational complexity. Based on this representation, the fast 

shift, scale and rotation, connected component labeling, logic operations [8], the real 

time moments computation [9], a fast parallel skeletonization algorithm [10], a fast 

thinning algorithm [11] and a fast algorithm for the computation of the Hough 

transform [12] have been studied. The IBR scheme has been also used for gray image 

analysis and specifically for the real time computation of image moments on a serial 

computer [13]. 

 

3 Image Block Representation 
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Suppose that in a binary image the object pixels are assigned to level 1 and the 

background pixels are assigned to level 0 and that the object pixels are represented by 

a set of non-overlapping rectangles with edges parallel to the axes which are called 

blocks. It is always feasible to represent a binary image with a set of blocks with 

object level; this representation is called Image Block Representation (IBR)[8]. 

A binary image is called block represented, if it is represented by a set of blocks with 

object level, and if each pixel of the image with object value belongs to one and only 

one block. The IBR is an information lossless representation.  

A block represented image is denoted as the set of the blocks, where each block is 

described by four integers, the coordinates of the upper left and down right corner in 

vertical and horizontal axes as shown in Fig. 1 (a). A block represented image is 

denoted as: 

1, 2, 1, 2,
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Fig. 1. (a) A block b. (b) Image of the character d and the blocks. 

 

Considering a WxL binary image f(x,y), x=0,1, ... ,W-1,  y=0,1, ... ,L-1, the block 

extraction process requires a pass from each line y of the image. In this pass all object 

level intervals are extracted and compared with the previous extracted blocks. In the 

following, an IBR algorithm is given. 

 

Algorithm 1. Serial Image Block Representation 

1 kp:= 0; blockno:=0; 

2 for (y:=0; y<L; y++){ 

3  kc:=0; intervalfound:=0; j_last:=0; j_curr:=0; 

4  for (x:=0; x<W; x++){ 

5   try2match:=0; 

6   if (img[y][x] && !intervalfound) 
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7    {intervalfound:=1;   x1:=x; } 

8   if (!img[y][x] && intervalfound) 

9    { intervalfound:=0;  x2:=x-1; 

10    try2match:=1; } 

11   if ( x==W-1 &&  img[y][x]  &&  intervalfound) 

12    { x2:=x;  try2match:=1; } 

13   if (try2match) { 

14    intervalmatched:=0; 

15    for (j:=j_last; j<kp   &&   x1>=block[p[j]].x1 ;  j++) 

16     if (x1==block[p[j]].x1  &&  x2==block[p[j]].x2) { 

17      c[kc]:=p[j];   block[p[j]].y2:=y; 

18      intervalmatched:=1;  j_curr := j; 

19     } // end if 

20    j_last := j_curr; 

21    if (! intervalmatched){ 

22     block[blockno].x1:=x1; block[blockno].x2:=x2; 

23     block[blockno].y1:=y; block[blockno].y2:=y; 

24     c[kc]:=blockno++; 

25    } enf if (!intervalmatched) 

26    kc++; 

27   }// end if try2match 

28  } end for x loop 

29  for (i:=0;i<kc;i++) p[i]=c[i]; 

30  kp:=kc; 

31 }// end for y loop 

 

In the Algorithm 1, the input is the array img[][] which contains the input image and 

the variables L, W are the length and width of the image in pixels. The output of the 

Algorithm 1 is the vector block[] and the integer variable blockno which indicates the 

number of the extracted blocks. In Fig. 1(b) the blocks that represent an image of 

character d, as extracted when using Algorithm 1, are illustrated. 

Usually the number of blocks in a binary image of size WxL containing one or two 

objects, is smaller than the width W or the length L of the image, as it has been shown 

experimentally in [8]. 

 

4 Parallel implementation of IBR  

For the creation of the Parallel IBR Algorithm (PIBR), the Algorithm 1 is examined 

for data or task decomposition. At first a data partitioning scheme was considered, 

where the L image rows are partitioned among the p threads. This approach results to 

the following important data dependencies: 

D1. A dependency appears in the boundary between two successive threads, 

specifically to match the intervals of first row of the bundle of rows that is 
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assigned to thread pi, to the intervals of the last row of the bundle of the thread 

pi-1.  

D2. A data race condition appears with the access on the variable blockno, which 

stores the number of the extracted blocks. The number of blocks created from 

an image row, is the number of intervals of the image row that do not match to 

the intervals of the previous image row. Therefore, it is not possible to predict 

or to precalculate this number for each row and each thread and this results to 

a data race condition, since all threads should have a simultaneous access for 

read and write operations in order to increase the value of blockno for each 

new block.  

D3. Another important issue is the arrangement of the indices of the extracted 

blocks which is also related with the variable blockno. In certain applications 

on block represented images, it is desirable that neighboring blocks or blocks 

from successive image rows to allocate successive positions in the vector 

block[]. Such applications include the connected component labeling [8], 

skeletonization [10] and thinning [11]. Therefore it is not allowed to shuffle 

the storage locations of the extracted blocks; for example, the i-th block starts 

in row 100: block[i].y1=100 and the (i+1)-th block starts in row 50: 

block[i+1].y1=50. 

Due to the above dependencies the parallelization using data partitioning or 

concurrent task partitioning is not possible in the current form of the Algorithm 1. In 

order to parallelize the Algorithm 1, a divide and conquer strategy is followed: the 

algorithm is decomposed into more elementary parts and the parallelization of these 

parts is examined.  

 

4.1 Decomposition of the serial IBR algorithm 

In Algorithm 1 two discrete parts can be easily distinguished:  

 Part1, Interval extraction, which extracts the object level intervals in every 

row of the image. 

 Part2, Interval matching, which matches the extracted intervals of each row 

with the blocks of the previous row of the image. If an interval does not match 

with a block from previous row, then a new block is created. 



7 
 

For the implementation of the above Parts 1 and 2, it is required to define a suitable 

data structure for storing the output of Part 1, consisted of the object intervals, that is 

used as input to the Part 2. This data structure called intervalrowt, and contains the 

integer variable irno that stores the number of object level intervals in an image row 

and an array of pointers to the triples (x1, x2, b) of the coordinates of each interval on 

x-axis and the block in which the interval belongs. Also, an array called ir[] with 

length L is defined; each element of the array is of type intervalrowt and corresponds 

to a row of the image. This data structure is not required in Algorithm 1, since each 

object level interval is matched immediately after its extraction and there is no reason 

to store the intervals. 

The decomposition of the serial Algorithm 1 leads to the following serial Algorithms, 

2, 3, that implement sequentially the above Parts 1 and 2. Algorithm 2 scans each row 

of the input image and extracts all object level intervals.  

 

Algorithm 2. Serial Interval Extraction 

1 for (y:=0;y<L; y++){ 

2  intervalfound:=0;  ir[y].irno:=0; 

3  for (x:=0;  x<W-1;  x++){ 

4 if (img[y][x]  &&  !intervalfound){ 

5  intervalfound:=1; 

6  ir[y].x1[ir[y].irno]:=x;  

7   } 

8 else if (!img[y][x]  &&  intervalfound){ 

9  intervalfound:=0; 

10  ir[y].x2[ir[y].irno++]:=x-1; 

11 } 

12  } // end x loop 

13  if (!img[y][W-1]) {  // last column 

14   if (intervalfound) ir[y].x2[ir[y].irno++]:=W-2; 

15  } 

16  else { // case img[y][imagewidth-1]  == 1 

17   if (!intervalfound) ir[y].x1[ir[y].irno]:=W-1; 

18   ir[y].x2[ir[y].irno++]:=W-1; 

19  } 

20 }// end y loop 

 

The interval matching among consecutive image rows, results to the extraction of the 

blocks, as shown in Algorithm 3. To achieve this goal, a scan on the array ir[] is 

required. The intervals that have been extracted from the image row y are matched to 

the blocks of row y-1, if an interval from the current row is matched to a block of the 
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previous row, then the end of the block is in the row y, otherwise a new block is 

created.  

 

Algorithm 3. Serial Interval Matching 

1 blockno:=0; 

2 for (i:=0; i<ir[0].irno; i++)    { 

3  block[blockno].x1:=ir[0].x1[i];  block[blockno].x2:=ir[0].x2[i]; 

4  block[blockno].y1:=0;  block[blockno].y2:=0; 

5  ir[0].b[i]:=blockno++; 

6 } // end for i loop 

7 for (y:=1;y<L; y++) { 

8  j_prev:=0;  j_curr:=0; 

9  for (i:=0; i<ir[y].irno; i++) { // i for current row, j for previous row 

10   intervalmatched:=0; 

11   for (j:=j_prev; j<ir[y-1].irno  &&  ir[y].x1[i]  >=  ir[y-1].x1[j];  j++) 

12    if (ir[y].x1[i]==ir[y-1].x1[j]  &&  ir[y].x2[i]==ir[y-1].x2[j])  

13     {ir[y].b[i]:=ir[y-1].b[j];  block[ir[y].b[i]].y2:=y; 

14     intervalmatched:=1;  j_curr:=j; } 

15   j_prev := j_curr; 

16   if (! intervalmatched) { 

17    block[blockno].x1:=ir[y].x1[i];  block[blockno].x2:=ir[y].x2[i]; 

18    block[blockno].y1:=y;  block[blockno].y2:=y; 

19    ir[y].b[i]=blockno++; 

20   } // end if (!intervalmatched) 

21  } // end i loop 

22 } // end y loop 

 

An example is shown in Fig. 2. Fig. 2(a) is the result of the execution of Algorithm 2, 

while the form of the array ir[] is also shown. The first image row (row 0) has 2 

intervals, the second image row (row 1) has 4 intervals, the row before the last (row 

L-2) has no interval and the last row (row L-1) has 1 interval. 

The execution of Algorithm 3 is described in Fig. 2 (b). The two intervals of row 0 are 

assigned to blocks b0, b1. In row 1, three new blocks b2, b3, b4 are created and the 

interval with (x1, x2)=(200,358) is assigned to block b1. Therefore, after the interval 

matching of the first two rows, the following blocks have been created: b0={5,70,0,0}, 

b1={200,358,0,1}, b2={3,43,1,1}, b3={86,126,1,1}, b4={524,835,1,1}. 

 



9 
 

 

(a) 

 

(b) 

Fig. 2. (a) An example of array ir[] after the interval extraction procedure.   (b) A 

snapshot of the array ir[] after the execution of interval matching for the first two 

rows. 

 

4.2 Parallel implementation of the interval extraction 

Algorithm 2, for interval extraction can be easily implemented in parallel, since the 

image rows assigned to a thread are different from the image rows assigned to every 

other thread; therefore, this data partitioning scheme among the threads is suitable for 

parallelization. Each thread scans every image row assigned to it, finds all object level 

intervals in this image row and stores the results in array ir[]. 

Algorithm 4, implements the parallel interval extraction using a parallel for loop. The 

array ir[] is a shared variable, but each thread stores the range of image rows assigned 

to it. The L image rows are partitioned among the P threads using guided loop 

scheduling. 

The term loop scheduling in OpenMP, refers to the type of the partitioning of the loop 

iterations among the threads and the optional parameter chunksize specifies the 

number of loop iterations assigned to a thread each time. The available loop 

partitioning types are the static scheduling where the loop iterations are partitioned 

equally among the threads and each thread is assigned L/P rows of the image, from 

the first row t*L/P to the last row (t+1)*L/P - 1, where t  is the thread id number; the 
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dynamic scheduling where the iterations are separated into chunksized bundles, each 

available thread receives a bundle and when is finished receives another bundle from 

the work queue; and the guided scheduling which is similar to the dynamic but starts 

with a large number of iterations and decreases in order to utilize better by avoiding 

threads' idling periods. As proved by the experimental data provided in Subsection 

6.2, the faster execution of the Algorithm 4 is achieved using the guided loop 

scheduling with smallest chunk size 1, which is the default value. 

 

Algorithm 4. Parallel Interval Extraction 

1 #pragma omp parallel for schedule(guided,1) shared(ir) private(x, intervalfound) 

2 for (y:=0;y<L; y++){ 

3  intervalfound:=0;  ir[y].irno:=0; 

4  for (x:=0;  x<W-1;  x++){ 

5 if (img[y][x]  &&  !intervalfound){ 

6  intervalfound:=1; 

7  ir[y].x1[ir[y].irno]:=x;  

8   } 

9 else if (!img[y][x]  &&  intervalfound){ 

10  intervalfound:=0; 

11  ir[y].x2[ir[y].irno++]:=x-1; 

12 } 

13  } // end x loop 

14  if (!img[y][W-1]) { // not last column 

15   if (intervalfound) ir[y].x2[ir[y].irno++]:=W-2; 

16  } 

17  else { // case of last column 

18   if (!intervalfound) ir[y].x1[ir[y].irno]:=W-1; 

19   ir[y].x2[ir[y].irno++]:=W-1; 

20  } 

21 }// end y loop 

 

4.3 Parallel implementation of interval matching  

A parallel implementation of Algorithm 3, has to resolve the D2 and D3 data 

dependency issues that were previously discussed. Using the vector block[] and the 

variable blockno in their current form, the data race condition D2, cannot be resolved 

efficiently in parallel. Also, there is no efficient solution for the dependency D3, for 

the parallel arrangement of the indices of the vector block[].  

A suitable data structure for the blocks is a 2D array b with number of rows equal to 

the number of threads, or equivalently a vector b where each element is a pointer to a 

vector of the extracted blocks from a specidic thread. Each block is stored in the array 

b and specifically in the i-th row and the j-th column b[i][j], where the indices indicate 
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that is the j-th block extracted from the i-th thread. The numbers of the extracted 

blocks are stored using the vector bno[], each element is the number of the extracted 

blocks from the corresponding thread.  

There are two types of blocks for the thread t: The regular blocks b[][] that start in 

image rows which are assigned to the current thread t; thus, they belong to thread t. 

The orphan blocks o[][] that start in previous image row, and are continued in the 

rows of the current thread t; therefore is a list of temporary blocks that they belong to 

different threads. The vector ono[] holds the number of orphan blocks for every 

thread. 

Algorithm 5, implements the parallel interval matching. In the following a description 

of the algorithm is presented. P is the number of threads, L is the number of image 

rows, each thread has id t = 0, 1, .., P-1, and initially bno[t] has the value 0. Each 

thread is assigned a bundle of L/P image rows using a static partitioning scheme; the 

static partitioning ensures that each thread t is assigned the following image rows 

[t*L/P , (t+1)*L/P-1]. Each thread t examines and matches the intervals of its 

corresponding rows from the vector ir[] and extracts the blocks.  

For the first image row y assigned to the thread t, the thread checks the intervals of 

ir[y] with the intervals of ir[y-1] of previous row y-1. In the case of no matching, then 

a new block is created and stored to the b[t][bno[t]] and bno[t] is increased. In the 

case of matching with an interval of row y-1 the corresponding block does not belong 

to thread t, but to a previous thread t-1, t-2, e.t.c. At this specific time the previous 

thread t-1 examines its first image rows and not its last row y-1, thus the intervals of 

row y-1 are not yet assigned to any regular block b. Therefore, the matched interval of 

row y is registered as orphan block o[t][ono[t]] by thread t. Fig. 3 demonstrates the 

process of the creation of regular and orphan blocks. 

As discussed in Subsection 3.1 and presented in Fig. 2, eash interval stores the block 

id that is assigned to. The interval that is assigned to an orphan is designated by a 

negative index, in order to be distinguished from the intervals that assigned to regular 

blocks. In order to simplify the code, the initial value of ono[t] is 1 and increases. 

Then an interval k of row y, that belongs to an orphan block is assigned the followind 

block id, ir[y].b[k] = - ono[t];. Since ono[t] starts from value 1, the number of orphan 

blocks at this thread is ono[t]-1. At the following image rows, intervals that match 

with an interval of an orphan block are also assigned to the same orphan block. 
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After the extraction of regular and orphan blocks for each thread, there is a barrier for 

thread's suncronization. In the sequel each thread t checks its regular block k that 

exists on its last image row with the orphan block m  of the next thread t+1. If there is 

a matching then the end row y2 of the regular block is assigned the value of y2 of the 

orphan block, i.e. b[t][k].y2 = o[t+1][m].y2. If the end of the orphan o[t+1][m].y2  is 

the last row of thread t+1, then the process is repeated for the orphans of thread t+2, 

etc., until the regular block is assinged the correct y2 value. 

When the parallel region ends, the threads are joined and the structures ir[], o[][], 

ono[] are released from memory. 

The structure b[][] uses non contiguous memory and in cases that a block has to be 

accessed isolated from previous block then the access time is O(P). Since P is the 

number of threads, it has relatively small values and does not introduces any 

drawback.  

 

 

Fig. 3. The L image rows are partitioned among the P threads.The image has three 

blocks, b[0][0] which lie entirely at the rows of thread 0, b[0][1] starts at thread 0 and 

its continuation at thread 1 is initially registered as orphan o[1][0]; b[1][0] starts at 

thread 1 and its part at thread 2 is initially registered as orphan o[2][0].  

 

Algorithm 5. Parallel Interval Matching 

1 #pragma omp parallel shared(ir, b, bno,  P, first_y, M) private(intervalmatched, 

j_prev, j_curr, t, i, j, y,flag, next_t) 

2 { 

3  t=omp_get_thread_num(); 

4  P=omp_get_num_threads(); 
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5  M = L * W /(2*P); // max blocks per thread 

6  bno[t]=0; ono[t]=1; 

7  flag=0; 

8  #pragma omp for schedule(static) 

9  for (y=0; y<L; y++) { 

10   if (!flag) { first_y[t]=y; flag=1; } 

11   if (y == 0) 

12    for (i=0; i<ir[0].irno; i++)  { 

13     b[t][bno[t]].x1=ir[y].x1[i]; 

14     b[t][bno[t]].x2=ir[y].x2[i]; 

15     b[t][bno[t]].y1=y; 

16     b[t][bno[t]].y2=y; 

17     ir[y].b[i]= t*M+(bno[t])++;   

18    } 

19   else { 

20    j_prev=0;j_curr=0; 

21    for (i=0; i<ir[y].irno; i++) { //for each interval i of current row y. Index j    

indicates an interval of previous row 

22     intervalmatched=0; 

23     for (j=j_prev; j<ir[y-1].irno && ir[y].x1[i] >= ir[y-1].x1[j]; j++) 

24      if (ir[y].x1[i]==ir[y-1].x1[j] && ir[y].x2[i]==ir[y-1].x2[j]) { 

25       intervalmatched=1; j_curr=j; 

26       if (y==first_y[t]) { // 1st row for thread t, matched interval 

27        ir[y].b[i]=-ono[t];  //Intervals of orphan have negative b index 

28        o[t][ono[t]].x1=ir[y].x1[i]; o[t][ono[t]].x2=ir[y].x2[i];  

29        o[t][ono[t]].y1=y; o[t][ono[t]++].y2=y; 

30       } 

31       else { // other than 1st row of thread t, matched interval 

32        ir[y].b[i]=ir[y-1].b[j]; 

33        if (ir[y].b[i] >=0) b[t][ir[y].b[i]-t*M].y2=y; 

34        else o[t][-ir[y].b[i]].y2=y; 

35       } 

36     } 

37     j_prev = j_curr; 

38     if (! intervalmatched) { // create new block 

39      b[t][bno[t]].x1=ir[y].x1[i]; b[t][bno[t]].x2=ir[y].x2[i]; 

40      b[t][bno[t]].y1=y; b[t][bno[t]].y2=y; 

41      ir[y].b[i]=t*M+(bno[t])++; 

42     } 

43    } 

44   } 

45  } 

46  #pragma omp barrier // wait  to finish all threads 

47  y = (t+1)*L/P-1;  // y = last row of current thread t  

48  for (i=0; i<ir[y].irno && t < P-1; i++) { // each interval of last row of thread t 

49   if (ir[y].b[i] < t*M) continue; // only blocks that belong to thread t  

50   next_t=t+1; 

51   do { // check b[ir[y].b[i]] with the orphan blocks of next threads 

52    flag=1; 

53    for (j=1; j<ono[next_t]; j++) { 
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54     if (b[t][ir[y].b[i]-t*M].x1 == o[next_t][j].x1 && b[t][ir[y].b[i]-t*M].x2 == 

o[next_t][j].x2) { 

55      b[t][ir[y].b[i]-t*M].y2 = o[next_t][j].y2; 

56      if ((next_t < P-1) && (o[next_t][j].y2 == first_y[next_t+1] - 1)) {  

57       flag = 0; next_t++; 

58      } 

59      break; 

60     } 

61    } 

62   } while (! flag); 

63  } 

64 } // parallel region of interval matching 

 

5 Theoretical analysis of the PIBR algorithm 

The PIBR algorithm consists of the parallel Algorithm 4 for interval extraction and 

the parallel Algorithm 5 for interval matching. We define 1 2 3, ,t t t , as the execution 

times of the serial Algorithms 1, 2, 3; t4(P) and t5(P) as the execution times of parallel 

Algorithms 4, 5, respectively, using 1P   cores, and tPIBR(P) as the execution time of 

the PIBR algorithm using P cores, where tPIBR(P) = t4(P) + t5(P).  

A variety of performance metrics of parallel processing have been used [22]-[27]. 

According to the well known Amdahl's law [22], the maximum achievable speedup S 

is defined as: 

1

1
SIBR

PIBR

t
S

ft
f

P

 




 
(2) 

where tSIBR and tPIBR are the serial and parallel execution times, respectively, P is the 

number of the processors used and 0 1f   is the fraction of the work that is 

executed sequentially; thus 1-f is the parallel fraction of the work. 

Gustafson [23] suggested the scaled speedup and according to the known as 

Gustafson-Barsis's law the maximum achievable speedup is: 

(1 )S P P f    (3) 

Amdahl's and Gustafson-Barsis's laws they do not take into account the parallel 

overhead and therefore overestimate the speedup. 

The parallel overhead [25] incurs from the parallelization process, the idling time of 

the processors caused by imbalanced workload and the communication among 

processors when using shared variables in case of OpenMP. The parallel overhead is 

in general a function of the problem size w and the number of processors P. Taking 
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into account the parallel overhead to and considering the PIBR algorithm, speedup is 

written as: 

2 3

2 3

( ) ( )
( , )

( ) ( )
( , )o

t w t w
S w P

t w t w
t w P

P







 
(4) 

The problem size is defined in terms of the total number of basic operations of the 

algorithm. It is beyond any doubt that the execution time of the IBR process depends 

on the image size, i.e. the number of image pixels and on the content of the input 

image [8], [9]. The qualitative characteristics that affect the execution time of the IBR 

for a given image size, is the density and the patterns appeared in the image.  

In the Appendix, a latency analysis is presented considering the estimation of the 

clock cycles of the interval extraction of an image with size WxL, that contains m 

intervals. The analysis concludes that the total required clock cycles of the serial 

Algorithm 2 is: 

lg2_ 14 25A lat WL m  (5) 

Therefore, the problem size w2 of Algorithm 2 is analogous to Alg2_lat and the 

execution time t2=Θ(14WL+25m) , where Θ(x) is a function with the same growth 

rate as x. Since the number of pixels WL is usually much greater than the number m of 

the intervals, it is concluded without loss of generality that the term 14WL grows 

much faster than the term 25m. Therefore, the main factor that affects the serial 

interval extraction time is the image size, while the image density and content is a 

secondary factor.  

The problem size for the interval matching process, depends on the number L of 

image rows, on the number m of the intervals and also on the number k of the blocks 

which is related to the distribution of the intervals among the image rows.  

In our analysis and the experiments, we use some real life images as representative 

average cases and also some extreme image cases. The best image case for IBR is the 

zero image ( , ) 0, ,f x y x y  , since no intervals and blocks are contained. The worst 

image case for IBR is the chessboard image, since it can reach the maximum number 

LxW/2 of intervals and blocks, if the square size is (1x1) pixel.  

 

5.1 Estimation of the execution time of PIBR Algorithm 

Consider the subproblem of finding the object level intervals in a binary image, where 

the binary image is located in memory and the object level intervals are stored in 
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memory using the data structure of Fig. 2 (a). Then, the Algorithm 2 is an effective 

serial solution and the parallel Algorithm 4 is an effective parallel solution to this 

problem. The same applies for the subproblem of interval matching. 

Examining the pairs of serial Algorithm 2 with parallel Algorithm 4 and serial 

Algorithm 3 with parallel Algorithm 5, it is concluded that the serial Algorithms are 

fully parallelizable and there is no serial fraction in interval extraction and interval 

matching. From parallel Algorithm 4, it is obvious that the processing of any image 

row is independent of the processing of any other image row and there is no 

communication among the threads using shared variables. Therefore, it is difficult to 

derive a theoretical estimation of the parallel overhead. A similar conclusion applies 

for the parallel Algorithm 5. 

The parallel overhead acts like a serial fraction e of work that existed in parallel 

execution, caused mainly by the imbalanced workload, thread synchronization and 

other sources of overhead, such as, the architectural overhead. The Karp-Flatt metric 

[25] for the experimentally determined serial fractions e4, e5 of Algorithms 4 and 5, 

respectively, is defined as: 

2
4 2
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5 3
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(6a) 

 

(6b) 

 

where 2 3,  w w  are the problem sizes of Algorithm 2, 3, where t2=Θ(w2) and t3=Θ(w3).  

Profiling the Algorithms 1, 2, 3, 4 and 5 for zero images of different sizes and 

different number of cores used, the execution times t Z1, t Z2, t Z3, t Z4(P) and t Z5(P) are 

obtained. From these values the speedup values 4 2 5 3( , ),  ( , )S w P S w P     and the 

experimentally determined serial fractions 4 2 5 3( , ),  ( , )Z Ze w P e w P   of Algorithms 4 

and 5 for Zero images are calculated. 

For any other input image, if the problem sizes 2 3,  ww  are known, or equivalently if 

the serial times t2, t3 are known, it is feasible to estimate the parallel interval 

extraction and parallel interval matching times, by making the assumption that the 

values of the experimentally determined serial fractions 4 5,  Z Ze e  of zero image are 

quite similar to the corresponding values 4 2 5 3( , ),  ( , )e w P e w P  of the input image with 

same size, i.e., 4 2 4 2 5 3 5 3( , ) ( , ),  ( , ) ( , )Z Ze w P e w P e w P e w P . This assumption is quite 
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reasonable taking into account the fact that the important factor that affects t2 and t3 is 

the image size, while the number of intervals is a secondary factor as denoted by the 

latency analysis. Therofore, the estimated PIBR execution time for any given input 

image is defined as: 

2 3 2 3
2 4 3 5

ˆ ( ) ( ) ( ) ( )PIBR o Z Z

t t t t
t P t P t e P t e P

P P

 
        

(7) 

 

5.2 Speedup and Efficiency metrics 

The relative speedup SR [26] is defined as the ratio of the execution time of the 

parallel algorithm using 1 processor to the execution time of the parallel algorithm 

using P processors. 

(1)

( )

PIBR
R

PIBR

t
S

t P
  

(8) 

The absolute speedup SA [27] is defined as the ratio of the execution time of the best 

sequential algorithm to the execution time of the parallel algorithm using P 

processors.  

( )

SIBR
A

PIBR

t
S

t P
  

(9) 

In (6a), (6b) the absolute speedup values are used and for P=1 the denominators are 

zero and the serial fractions e4 and e5 are undefined. The overhead time ( )ot P  and the 

estimated PIBR time ˆ ( )PIBRt P are also undefined for P=1. 

The efficiency metric is defined as the ratio of speedup to P, /E S P . They are 

defined both absolute and relative efficiency metrics, depending on the speedup 

values that were used. 

 

5.3 Isoefficiency and scalability analysis 

The scalability of a parallel system is the ability to increase performance as the 

number of the processors increases. A scalable system should increase speedup in 

such a rate that the efficiency is maintained as the number of processors increases. 

However, the parallel overhead increases as the number of processors increases and 

the efficiency decreases as the number of processors increases. Increasing the problem 

size is a way to maintain efficiency. The isoefficiency [27], [28] analysis investigates 

the rate of problem size increase with respect to the number of processors in order to 
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maintain a constant efficiency. Obviouly, the isoefficiency is related to the scalability 

of a parallel system.  

The total amount of overhead To(w,P) is the time spent by all processors carrying out 

work not done by the sequential algorithm:  

 2 4 3 5( , ) ( , ) ( , ) ( , )o oT w P Pt w P P t e w P t e w P      (10) 

Also, the total overhead time is interpreted as ( , )o PIBR SIBRT w P P t t   . Then, the 

maximum achievable speedup in (2), is rewritten as: 
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The efficiency is the ratio of speedup to P: 
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(12) 

If a constant efficiency is maintained as the number of processors increases, the 

fraction C=E/(1-E) in (12) is also a constant. In the analysis of Subsection 5.1, it has 

been assumed that the experimentally determined serial fractions of the zero image 

eZ4, eZ5 are equal to the corresponding values e4, e5 of the input image, and since 

0 2 4 3 5t t e t e   , (12) is rewritten as: 

2 3 2 4 3 5( )Z zt t CP t e t e    (13) 

This last relation is the isoefficiency relation and in order to maintain a constant 

efficiency as the number of the processors increases, the problem size t2+t3 should be 

increased so that the above inequality is satisfied. Solving for P, (13) is rewritten as: 

2 3

2 4 3 5[ ]Z z

t t
P

C t e t e





  

(14) 

This relation gives the number of processors required in order to maintain a constant 

efficiency. It is concluded from (13) and (14), that the scalability of the PIBR 

Algorithm depends on the input image and the serial execution times t2  and t3. 

 

6 Experimental results 

For the experimental evaluation, a platform consisting of DELL PowerEdge R820 

nodes, with four Intel(R) Xeon(R) CPUs E5-4650v2 which is based on SandyBridge 
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EP microarchitecture, with nominal frequency 2.4GHz, each with 40 cores and 512 

GB RAM, of the National HPC facility ARIS, of the Greek Research & Technology 

Network (GRNET), was utilized. The operating system is Centos 6.7 Linux. All the 

programs were implemented in C using the OpenMP API and were compiled using 

the Intel compiler icc ver. 15.0.3. 

In order to compare the sequential and the parallel algorithms, the execution time was 

used as a measure. The computation times are measured from the execution of the 

IBR algorithms only, excluding image reading from disk, etc. The execution time 

starts when the relative function of IBR is called, with parameters, a pointer to the 

address of the image in memory, the image width W and the image length L, and ends 

when the function returns the number of the blocks bno[] and the blocks b[][].  

All time complexities were measured using the omp_get_wtime() function of 

OpenMP. To decrease random variation, all the execution time complexities were 

measured as the average of 1000 runs. 

 

      

(a) (b) (c) 

Fig. 3. A set of test images: (a) Shapes, (b) the negative of the image Page, (c) Chess-

10. All the test images were used in different sizes from (1024x1024) to 

(30000x30000) pixels. 

 

Several sets of test images were used to evaluate the performance of the parallel 

algorithms, with varying sizes from (1024x1024) to (30000×30000). In Fig. 3 three 

samples of test images are presented. The test image Shapes, of Fig. 3(a), has small 

number of transitions from 0 to 1, since there are large homogeneous areas; such 

conditions often appear in industrial imaging applications, such as manufacturing and 

robot vision. The test image Page, of Fig. 3(b), is the negative of the image of a book 
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page with printed characters and there is a significantly greater number of transitions 

from 0 to 1 with smaller homogeneous areas; these conditions appear in document 

processing and character recognition applications. The test image Chess-10, of Fig 3 

(c), with square size of (10x10) pixel. The Chess-10 test image does not relate to any 

vision applications and has been used in order to test the proposed algorithms. The 

zero image has been used as a test image, while, the Chess-1, a chessboard image with 

square size of (1x1) pixel was used. The Chess-1 image is the worst case image for 

IBR since it reaches the maximum number of blocks LxW/2 where L,W are the image 

sizes. The zero image is the simplest image case for IBR, since no block is extracted. 

A large number of experiments has been conducted, on different algorithms and their 

variations for the parallelization of the IBR, using different images with different 

sizes and number of cores, from 1 to max 40. Actually, more than 55000 Core hours 

on the ARIS HPC platform have been consumed on computations. 

 

6.1 Compiler optimization levels 

The experimental measurements have been repeated for three different compiler 

optimization levels: O0 which means no compiler optimization; O2 which produces 

executable code optimized for speed by enabling parallelization and vectorization; 

and O3 which includes O2 optimization plus some more aggressive loop and memory 

access optimizations, such as loop unrolling, IF statement collapsing and is suggested 

in applications that have loops with many floating point operations or process large 

data sets [29]. 

Table 1 demonstrates the time complexities of the Algorithms 1, 2 and 3, using the 

compiler optimization levels O0, O2, O3. Since the O2 compiler optimization level 

has the better results, all the following experimental results are measured from 

executables that compiled using the "-O2 -xCORE-AVX-I" compiler optimization 

flags, where the flag -xCORE-AVX-I produces Intel(R) Xeon(R) E5-v2 processor 

specific code. 

 

6.2 Loop partitioning type of Algorithm 4 

As discussed in Subsection 4.2, the loop scheduling type in Algorithm 4 is guided 

with the default chunk size value 1. All the available scheduling types, with different 

chunk sizes, for p threads from 1 to 40 and for 1000 runs have been used in 

experiments. The chunk size in static schedule is /L P , where L is the number of 
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image rows. The dynamic scheduling was evaluated for the following 5 chunksizes: 1, 

/ 4L P , 2 / 4L P , 3 / 4L P , /L P . The chunk size parameter in the guided schedule 

specifies the smallest chunk size, and was evaluated for the values 1, / 8L P , / 4L P . 

The execution times are demonstrated in Table 2; it is observed that the guided 

outperforms the other scheduling types, due to better utilization of the processors. 

Moreover, the smallest chunk size 1 has the better results. Similar results have been 

obtained for all number of threads, therefore the guided scheduling with chunk size of 

1 efficiently handles the load balance among the threads and for this reason is used in 

the parallel Algorithm 4. 

 

6.3 Time complexities and performance 

Table 3 presents the experimental data for the Zero images of different sizes. The first 

(upper) part of Table 3 presents the execution times of the serial Algorithms 1, 2, 3; 

the second part presents the execution time t4(P), the absolute speedup SA4 and the 

Karp-Flatt metric of experimentally determined serial fraction eZ4 of Algorithm 4; the 

third part presents the same data of Algorithm 5; and finally the fourth part presents 

the execution time tPIBR(P) and its relative speedup SR and efficiency ER values. Table 

3 and the subsequent Tables present results only for a specific number of cores 

(powers of 2 and the maximum 40) in order to preserve the readability.  

Tables 4, 5 and 6, present the estimated and the experimental values of time 

complexities and performance metrics for the test images Shapes, Page and Chess-10 

of different sizes. The first part of each Table presents the number of intervals and 

blocks and the execution times of the serial Algorithms 1, 2 and 3. The second part of 

each Table presents the estimated and the experimentally measured execution times of 

PIBR Algorithm. The third part of each Table presents the relative speedup SR and 

efficiency ER values of the PIBR Algorithm. A number of interesting observations 

arise from Tables 3 - 6.  

1. The execution times t2 and t3 of the serial interval extraction depends on the input 

image; this observation validates the analysis of the execution cost of Algorithm 2 

which is based on instruction latency and presented in the Appendix. 

2. Significant speedup values of 32.58, 33.60, 30.38, 19.00 achieved for images Zero, 

Shapes, Page and Chess-10 respectively using 40 cores have been obtained. Also, it is 

observed that the efficiency values increase as the image size increases and decrease 

as the number of cores increases.  
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3.The experimental and theoretically estimated times PIBR PIBR
ˆ,  t t of PIBR Algorithm 

are quite close for all the test images and these results validate the theoretical analysis.  

The relative speedup values for the test images of different sizes are presented 

graphically in Fig. 4. 

 

6.4 Scalability 

The scalability depends on the input image as demonstrated by the theoretical analysis 

and by the experimental data. Table 7 demonstrates the number of cores and the 

image size required in order to maintain relative efficiency at value 0.80, each row 

presents the real and estimated number of cores for a test image at different sizes. The 

real values received from the experimental data and the estimated values using eq. 

(14) for C=4, which corresponds to E=0.80. Since (14) involves P, eZ4(P) and eZ5(P) 

cannot be solved analytically, therefore a recursive approach from P=1 to 40 is used 

until the maximum value of P that satisfies (14) is found, for any given image and 

size. From these results it is observed that for the average case test images the PIBR 

algorithm is scalable, but the PIBR algorithm has lower scalability for the Chess-10 

images. These results are presented graphically in Fig. 5. Thus, it is concluded that the 

scalability of PIBR Algorithm depends on the input image. 

 

6.5 Memory bandwidth issues 

The memory system bandwidth affects negatively high performance applications, 

leaving the processors idle as they wait for memory. This is known as memory wall 

and is a well known problem in parallel processing [32].  

The granularity problem [33]-[35] mainly causes the memory bandwidth problem. 

Also, the numerous occurring memory reads/writes trigger the cache coherence effect 

leading to a memory wall. When these reads/writes are distributed in depth in 

different cache lines [36] the whole effect and performance results are normalized. 

In order to determine if the presented parallel algorithms are affected by the memory 

bandwidth, a different image example is used. The Chess-1 image is a chessboard 

with square size of (1x1) pixel and is the extreme case for IBR since it contains the 

maximum number of intervals and blocks. In this image case although the granularity 

size is not degenerated, the transition from 0 to 1 luminance values occurs in every 

other pixel, therefore there is an interval to store every two-pixel values read. In Table 
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8, are presented the execution times of parallel interval extraction and the evaluated 

minimum memory bandwidth due to pixel reads and interval writes (excluded several 

other overheads, i.e., the read/write of variable intervalfound, addressing, instruction 

fetch, etc.).  

It is observed that due to the memory bandwidth problem for Chess-1 test images and 

sizes from (4Kx4K) and greater, the fastest execution takes place for 8 cores. The 

parallel interval matching algorithm is not affected and the speedup increases with the 

number of cores. For the maximum image size of (30000x30000) pixels less than 

1GB of memory required to fit, for the maximum number of blocks less than 8GB of 

memory required to fit; since each node has 512GB of RAM there is no memory 

amount limitation in the PIBR algorithm and the test images used. 

 

7 Conclusions and Future work 

In this paper, the parallelization of a sequential algorithm for the block representation 

of binary images has been investigated. The sequential algorithm is not directly 

parallelized due to data dependencies and has been decomposed into two discrete 

parts and the corresponding algorithms. The two parts of interval extraction and 

interval matching have been parallelized effectively using the OpenMP API and the 

proposed parallel algorithm (PIBR) achieved significant speedup values.  

The complexity of the proposed PIBR algorithm depends on the input image and 

specifically to the image size and the content of the image. A theoretical analysis and 

estimation of the parallel algorithm execution times and the corresponding 

performance metrics is not directly feasible. The Karp-Flatt metric of experimentally 

determined serial fraction, was used in the Zero test image in order to measure the 

parallel overhead of the interval extraction and the interval matching tasks. The values 

of the Karp-Flatt metric were used for the estimation of the execution times of PIBR 

Algorithm for other input images and the predicted values were very close to the real 

ones and this validates our analysis. A scalability analysis and the isoefficiency 

relation has also been given.  

In the Appendix, a latency analysis is given for the total required clock cycles for the 

interval extraction process, as a function of the number of image pixels WL and the 

number m  of the extracted intervals. A similar analysis concerning the interval 
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matching process is not possible, since it depends on the number m of the intervals 

and on the distribution of the m intervals among the L image rows. 

The representation of binary images with blocks allows concurrent machine 

perception of greater image areas than a pixel; this approach proved superior, as 

compared to the 2D array image representation. This feature has been used in the past 

for the performance enhancement of various image processing sequential algorithms 

on von Neumann computers. There are many ideas and directions for future work as 

the parallel implementation of the sequential algorithms presented in [8]-[13] on 

block represented images and more computational time gains are expected. Also, the 

parallel implementation of the IBR algorithm and the operations on block represented 

images, presented in [8]-[13] using CUDA on GPGPUs, is another quite interesting 

direction for our future work. 
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Appendix. Instruction latency analysis of Algorithm 2 

The clock cycle period tc is considered as the latency of the execution of the simplest 

instruction, such as the execution of the instruction 'AND R1 R2'. According to 

Intel(R) [30]: "Due to the complexity of dynamic execution and out-of-order nature of 

the execution core, the instruction latency data may not be sufficient to accurately 

predict realistic performance of actual code sequences based on adding instruction 

latency data". There is a difficulty to derive the real execution time from the total 

clock cycles periods and the reason is that today's processors are quite complex, they 

decode and use micro-operations (or μops), they execute multiple instructions per 

clock cycle (IPC) and they also use advanced hardware optimizations such as 

pipelining and branch prediction. However, an instruction latency analysis gives an 

indication of the complexity of an algorithm and an estimation of the execution time. 

In order to estimate the execution cost of each operation of the Algorithm 2, the 
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Intel(R) microarchitecture with codename Sandy Bridge that used on the processors 

of the experiments was considered [31]. 

For the zero image the loop of variable y at Line 1 requires L increments and L 

conditional jumps each with cost 1tc and a total latency of 2Ltc. In Algorithm 2, in the 

loop of Line 3 the loop control variable x increases up to W-2. In Lines 13-19, a 

similar process is repeated for the last column of the image, therefore without loss of 

generality it is assumed that the loop at Line 3 considered that has W repetitions. The 

loop of variable x at Line 3 requires WL increments and WL conditional jumps and a 

total of 2WL clock cycles. The movement of a pixel value from memory to register 

depends on the data locality to memory hierarchy and a reasonable requirement is 4tc 

and for all image pixels a minimum total of 4WLtc. The execution of each if statement 

at Lines 4 and 8, requires the execution of two comparisons on the pixel value and the 

flag intervalfound in registers, the execution of one logical AND between registers 

and the execution of the conditional branch of the if statement each with cost 1tc, 

therefore a total of 4WLtc for each of the two if statements. Since every pixel of zero 

image has 0 value, the flag intervalfound is always 0 and the conditions of the two if 

statements in Lines 4 and 8 are always false. This also means that both if statements 

are always executed with a total of 8 WLtc. Moreover, L movements from register to 

memory of the ir[].irno values with a minimum total of 4Ltc are required. Therefore, it 

is concluded that a total of 14WLtc+6Ltc is required for the zero image. 

In other images that contain a number m of intervals, there are m interval starting 

pixels and m interval ending pixels. For the interval starting pixels the condition of the 

1st if statement is true and therefore the execution of the first if statement with 4mtc, 

the m settings of the flag intervalfound with mtc, the m settings of the coordinate x1 

with mtc and  m unconditional jumps to return to the next pixel checking with mtc are 

required . The second if statement at Line 8 is not executed. Moreover, m movements 

from register to memory of the values of x1 with a minimum total of 4mtc are required. 

Therefore, for interval starting pixels, a total of 11mtc is required for the two if 

statements. 

For the m interval ending pixels, the two if statements are executed with 8mtc and also 

the condition of the second if statement is true for interval ending pixels. Therefore 

the two variable settings intervalfound and x2 and the increment of ir[].irno are 

executed and also m unconditional jumps to return to the next pixel checking with a 

total 4mtc are required for the execution of the branch of the 2nd if statement. 
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Moreover, m movements from register to memory of the values of x2 with a minimum 

total of 4mtc are required and the total time units for the interval endings is 16mtc.  

Since 2m pixels of the m intervals require different latency times, the term 2mtc 

should be subtracted from the term 14WLtc+6Ltc of the zero images. Therefore, the 

instruction latency of interval extraction for a WxL image that contains m number of 

intervals using the Algorithm 2 is: 

lg 2 _ 14 6 2 11 16 14 6 25

lg 2 _ 14 25

A lat WL L m m m WL L m

A lat WL m

        


 

(16) 

According to the above relation, the significance of the image size to the execution 

time of Algorithm 2 is much greater than the significance of the number of the 

extracted intervals, since usually WL >> m. Even in the case of the Chess-10 image 

with size (30000x30000), which contains 89 10 pixels and 645 10 intervals, the term 

14WL is 11.2 times greater than the term 25m, while in Chess-1 image with size 

(30000x30000), the term 14WL is 1.1 times greater than the term 25m. 
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Table 1. The time complexities t1, t2, t3 of Algorithms 1, 2, 3 expressed in msec, using different compiler optimization levels, for the test images of size 

(30000x30000). 

Image Zero Shapes Page c10 

Size 30000x30000 30000x30000 30000x30000 30000x30000 

Opt level O0 O2 O3 O0 O2 O3 O0 O2 O3 O0 O2 O3 

t1  3289.08 942.89 949.23 3285.56 1088.36 1089.34 3347.42 1028.78 1031.12 4383.37 2145.81 2200.24 

t2  3063.28 1271.07 1286.11 3048.70 1399.74 1399.81 3073.11 1340.93 1336.96 3398.19 2367.19 2346.37 

t3  0.092 0.082 0.079 7.74 4.69 4.70 27.74 14.28 13.52 1046.41 241.29 244.77 

 

Table 2. The time complexities of Algorithm 4 expressed in msec, using different types and chunksize of loop scheduling, for test images of different sizes. L 

is the number of image rows and P=40 is the number of threads. The results are similar for all the image sizes used. 
Loop 

Scheduling  
Chunksize 

Shapes 

4Kx4K 

Shapes 

16Kx16K 

Page 

4Kx4K 

Page 

16Kx16K 

Chess-10 

4Kx4K 

Chess-10 

16Kx16K 

Static L/P 1.43 23.38 1.40 22.61 1.70 29.24 

Dynamic 1 0.90 13.74 1.89 19.31 7.18 112.66 

Dynamic L/4P  0.87 14.31 0.98 18.78 1.47 23.99 

Dynamic 2L/4P 1.08 20.93 1.12 18.69 1.71 28.30 

Dynamic 3L/4P 1.12 18.73 1.23 17.43 2.00 30.77 

Dynamic L/P 1.31 24.39 1.41 23.22 1.65 27.81 

Guided Smallest 1 0.76 11.94 0.82 13.24 1.51 22.23 

Guided Smallest L/8P 0.92  13.09 0.93 14.62 1.56 22.98 

Guided Smallest L/4P 0.81 13.59 0.87 13.37 1.52 22.48 
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Table 3. First (upper) part:The execution times of Algorithms 1, 2, 3; second part: The execution time t4, the absolute speedup SA4 and the experimentally 

determined serial fraction eZ4 of the parallel Algorithm 4; third part: The execution time t5, the absolute speedup SA5 and the experimentally determined serial 

fraction eZ5 of the parallel Algorithm 5; fourth part: The execution time tPIBR, the relative speedup SR and the relative efficiency ER of the PIBR algorithm 

using 1 to 40 cores for the Zero images of different sizes. All the time complexities are the average of 1000 runs and are expressed in msec. 

Image size   1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000 

t1 1.12 2.2 4.41 17.51 69.99 279.8 942.9 

t2 1.48 2.93 5.89 23.37 93.21 378.18 1271.07 

t3 0.001 0.002 0.003 0.005 0.017 0.040 0.082 

Cores t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 

1 1.49 0.99   2.96 0.99   5.97 0.99   23.40 1.00   93.27 1.00   379.02 1.00   1248.63 1.02   

2 0.75 1.97 0.014 1.50 1.95 0.024 2.96 1.99 0.005 11.74 1.99 0.005 47.46 1.96 0.018 192.56 1.96 0.018 631.21 2.01 -0.007 

4 0.38 3.89 0.009 0.75 3.91 0.008 1.50 3.93 0.006 5.92 3.95 0.004 23.58 3.95 0.004 96.08 3.94 0.005 318.53 3.99 0.001 

8 0.20 7.40 0.012 0.40 7.33 0.013 0.78 7.55 0.008 3.07 7.61 0.007 12.30 7.58 0.008 51.04 7.41 0.011 166.17 7.65 0.007 

16 0.12 12.33 0.020 0.22 13.32 0.013 0.41 14.37 0.008 1.60 14.61 0.006 6.29 14.82 0.005 26.40 14.33 0.008 86.42 14.71 0.006 

32 0.09 16.44 0.031 0.13 22.54 0.014 0.23 25.61 0.008 0.82 28.50 0.004 3.17 29.40 0.003 13.57 27.87 0.005 43.57 29.17 0.003 

40 0.08 18.50 0.030 0.12 24.42 0.016 0.20 29.45 0.009 0.69 33.87 0.005 2.66 35.04 0.004 12.26 30.85 0.008 38.29 33.20 0.005 

Cores t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 

1 0.003 0.33   0.005 0.40   0.008 0.38   0.015 0.33   0.039 0.44   0.086 0.47   0.154 0.53   

2 0.003 0.33 5.00 0.005 0.40 4.00 0.006 0.50 3.00 0.011 0.45 3.40 0.028 0.61 2.29 0.064 0.63 2.20 0.109 0.75 1.66 

4 0.002 0.50 2.33 0.004 0.50 2.33 0.005 0.60 1.89 0.008 0.63 1.80 0.018 0.94 1.08 0.034 1.18 0.80 0.063 1.30 0.69 

8 0.002 0.50 2.14 0.004 0.50 2.14 0.004 0.75 1.38 0.006 0.83 1.23 0.017 1.00 1.00 0.029 1.38 0.69 0.051 1.61 0.57 

16 0.001 1.00 1.00 0.003 0.67 1.53 0.003 1.00 1.00 0.005 1.00 1.00 0.014 1.21 0.81 0.026 1.54 0.63 0.046 1.78 0.53 

32 0.001 1.00 1.00 0.003 0.67 1.52 0.002 1.50 0.66 0.004 1.25 0.79 0.012 1.42 0.70 0.022 1.82 0.54 0.043 1.91 0.51 

40 0.001 1.00 1.00 0.002 1.00 1.00 0.002 1.50 0.66 0.004 1.25 0.79 0.010 1.70 0.58 0.020 2.00 0.49 0.039 2.10 0.46 

Cores tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER 

1 1.49 1.00 1.00 2.97 1.00 1.00 5.98 1.00 1.00 23.42 1.00 1.00 93.31 1.00 1.00 379.11 1.00 1.00 1248.78 1.00 1.00 

2 0.75 1.98 0.99 1.51 1.97 0.99 2.97 2.02 1.01 11.75 1.99 1.00 47.49 1.96 0.98 192.62 1.97 0.98 631.32 1.98 0.99 

4 0.38 3.91 0.98 0.75 3.93 0.98 1.51 3.97 0.99 5.93 3.95 0.99 23.60 3.95 0.99 96.11 3.94 0.99 318.59 3.92 0.98 

8 0.20 7.39 0.92 0.40 7.34 0.92 0.78 7.63 0.95 3.08 7.61 0.95 12.32 7.58 0.95 51.07 7.42 0.93 166.22 7.51 0.94 

16 0.12 12.34 0.77 0.22 13.30 0.83 0.41 14.47 0.90 1.61 14.59 0.91 6.30 14.80 0.93 26.43 14.35 0.90 86.47 14.44 0.90 

32 0.09 16.41 0.51 0.13 22.29 0.70 0.23 25.77 0.81 0.82 28.42 0.89 3.18 29.32 0.92 13.59 27.89 0.87 43.61 28.63 0.89 

40 0.08 18.43 0.46 0.12 24.30 0.61 0.20 29.59 0.74 0.69 33.74 0.84 2.67 34.95 0.87 12.28 30.87 0.77 38.33 32.58 0.81 
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Table 4. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and 

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Shapes images of 

different sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs. 

Image size   1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000 

Intervals 2,078 2,735 8,062 16,348 33,399 67,975 128,264 

Blocks 1,672 2,302 7,041 11,247 16,547 22,942 36,207 

t1 1.38 2.69 5.34 20.83 ` 326.23 1088.36 

t2 1.71 3.33 6.72 26.50 105.09 416.73 1399.74 

t3 0.035 0.043 0.165 0.469 1.138 2.290 4.693 

Cores 
ˆ
PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  

1   1.89   3.52   7.02   27.54   109.06   422.32   1436.64 

2 1.07 0.92 1.94 1.76 3.97 3.56 15.21 13.97 57.65 54.75 222.20 213.47 700.47 732.63 

4 0.53 0.47 0.97 0.90 2.07 1.85 7.70 7.09 28.20 27.26 108.84 107.34 355.47 361.94 

8 0.31 0.25 0.56 0.49 1.15 1.01 4.14 3.79 15.25 14.37 58.69 56.51 187.39 189.78 

16 0.18 0.15 0.32 0.27 0.65 0.56 2.32 2.11 8.12 7.47 30.87 29.34 98.47 99.14 

32 0.14 0.11 0.22 0.17 0.38 0.31 1.32 1.16 4.41 3.88 16.31 15.00 50.65 50.53 

40 0.13 0.11 0.18 0.15 0.34 0.28 1.17 0.99 3.69 3.25 14.76 12.72 44.64 42.80 

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 2.06 1.03 2.01 1.00 1.97 0.99 1.97 0.99 1.99 1.00 1.98 0.99 1.96 0.98 

4 4.04 1.01 3.90 0.97 3.80 0.95 3.89 0.97 4.00 1.00 3.93 0.98 3.97 0.99 

8 7.51 0.94 7.23 0.90 6.94 0.87 7.26 0.91 7.59 0.95 7.47 0.93 7.57 0.95 

16 12.79 0.80 13.08 0.82 12.65 0.79 13.05 0.82 14.60 0.91 14.39 0.90 14.49 0.91 

32 17.69 0.55 20.34 0.64 22.72 0.71 23.84 0.75 28.13 0.88 28.16 0.88 28.43 0.89 

40 17.86 0.45 23.15 0.58 25.44 0.64 27.73 0.69 33.60 0.84 33.20 0.83 33.57 0.84 
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Table 5. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and 

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Page images of different 

sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs. 

Image size   1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000 

Intervals 28,601 30,706 57,202 114,404 228,808 457,616 838,326 

Blocks 18,753 22,092 21,563 26,385 27,972 29,972 119,471 

t1 2.23 3.55 6.77 23.43 83.75 430.36 1028.78 

t2 2.22 3.92 7.70 28.10 105.07 599.15 1340.93 

t3 0.410 0.375 0.699 1.720 3.470 6.762 14.283 

Cores 
ˆ
PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  PIBRt  ˆ

PIBRt  PIBRt  ˆ
PIBRt  PIBRt  

1   3.15   4.77   8.82   31.34   111.88   427.78   1388.82 

2 3.40 1.97 3.74 2.70 6.34 4.88 20.89 17.72 64.16 58.07 328.83 216.76 692.17 701.45 

4 1.63 1.26 1.98 1.66 3.47 2.79 10.68 9.33 31.29 30.88 160.13 111.26 349.75 352.30 

8 1.23 0.92 1.39 1.03 2.08 1.81 6.05 5.27 17.87 17.27 87.20 58.46 186.30 187.06 

16 0.62 0.68 0.90 0.69 1.28 1.15 3.76 3.53 10.16 9.85 46.78 31.44 100.15 99.20 

32 0.56 0.43 0.76 0.47 0.78 0.81 2.41 2.15 6.11 5.82 25.42 17.17 53.81 51.55 

40 0.54 0.41 0.55 0.43 0.74 0.76 2.24 1.87 5.10 5.27 23.00 15.64 47.53 45.72 

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.60 0.80 1.76 0.88 1.81 0.90 1.77 0.88 1.93 0.96 1.97 0.99 1.98 0.99 

4 2.49 0.62 2.87 0.72 3.16 0.79 3.36 0.84 3.62 0.91 3.85 0.96 3.94 0.99 

8 3.41 0.43 4.63 0.58 4.88 0.61 5.94 0.74 6.48 0.81 7.32 0.91 7.42 0.93 

16 4.62 0.29 6.88 0.43 7.69 0.48 8.87 0.55 11.36 0.71 13.60 0.85 14.00 0.88 

32 7.40 0.23 10.21 0.32 10.88 0.34 14.57 0.46 19.24 0.60 24.92 0.78 26.94 0.84 

40 7.73 0.19 11.01 0.28 11.55 0.29 16.81 0.42 21.21 0.53 27.36 0.68 30.38 0.76 
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Table 6. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and 

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Chess-10 images of 

different sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs. 

Image size   1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000 

Intervals 52,734 103,584 209,916 839,680 3,358,720 13,426,686 45,000,000 

Blocks 5,304 10,368 21,012 84,050 336,200 1,343,160 4,500,000 

t1 2.66 4.95 9.91 41.37 162.72 633.43 2145.81 

t2 2.74 5.44 10.98 43.90 174.80 688.31 2367.19 

t3 0.288 0.569 1.391 6.070 19.877 74.220 241.287 

Cores 
ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

ˆ
PIBRt  tPIBR 

1   3.84   7.26   13.68   53.36   220.95   956.85   3168.01 

2 2.99 1.87 5.41 3.97 10.41 7.51 45.83 30.76 146.15 117.42 557.18 526.26 1688.31 1715.82 

4 1.35 1.07 2.44 2.32 4.80 4.18 18.58 16.92 49.26 67.67 214.58 286.72 507.44 912.45 

8 0.98 0.72 1.83 1.39 3.06 2.45 11.50 10.63 34.83 41.80 134.47 178.31 321.95 524.11 

16 0.51 0.49 1.21 0.86 2.00 1.46 8.21 6.29 23.85 26.40 89.75 98.00 226.86 289.63 

32 0.45 0.35 1.07 0.55 1.26 1.01 5.92 3.90 17.73 15.67 61.97 57.20 172.58 178.33 

40 0.44 0.32 0.77 0.51 1.23 0.94 5.77 3.64 14.83 14.67 56.54 51.27 157.84 166.74 

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 2.05 1.02 1.83 0.91 1.82 0.91 1.73 0.87 1.88 0.94 1.82 0.91 1.85 0.92 

4 3.58 0.90 3.14 0.78 3.27 0.82 3.15 0.79 3.27 0.82 3.34 0.83 3.47 0.87 

8 5.35 0.67 5.24 0.65 5.59 0.70 5.02 0.63 5.29 0.66 5.37 0.67 6.04 0.76 

16 7.90 0.49 8.42 0.53 9.36 0.59 8.49 0.53 8.37 0.52 9.76 0.61 10.94 0.68 

32 11.10 0.35 13.12 0.41 13.50 0.42 13.67 0.43 14.10 0.44 16.73 0.52 17.77 0.56 

40 11.85 0.30 14.12 0.35 14.60 0.36 14.68 0.37 15.06 0.38 18.66 0.47 19.00 0.48 
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Table 7. The number of cores and the image size required in order to maintain efficiency at value 0.80 for the test images of different sizes. Each 

row presents the number of cores for a test image at different sizes. 

 

1Kx1K 1920x1080 2Kx2K 4Kx4K 8Kx8K 16Kx16K 30000x30000 

Image 

Cores Cores  Cores Cores  Cores Cores  Cores Cores  Cores Cores  Cores Cores  Cores Cores  

Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted 

Zero 14 14 22 20 30 28 40 >40 40 >40 38 38 40 >40 

Shapes 16 8 13 4 18 6 21 9 40 20 40 34 40 >40 

Page 2 1 3 1 4 1 6 1 7 7 28 22 36 28 

Chess-10 6 1 3 1 3 1 4 1 4 1 4 3 6 4 

 

Table 8. First part: The image size, the number of pixels in millions, the number of intervals in millions, the read transfer from memory in MB for 

the image pixels, the write transfer to memory in MB for the intervals. Second part: The execution times of Algorithm 4 in msec for the Chess-1 

images of different sizes; for sizes from 4Kx4K and greater the minimum memory bandwidth in GB/s. 

LxW 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000 

Pixels (M) 1.05 2.07 4.19 16.78 67.11 268.44 900.00 

Intervals (M) 0.52 1.04 2.10 8.39 33.55 134.22 450.00 

Read (MB) 1.05 2.07 4.19 16.78 67.11 268.44 900.00 

Write (MB) 4.19 8.29 16.78 67.11 268.44 1,073.74 3,600.00 

Cores    

t4 

(ms) 

t4 

(ms) 

t4 

(ms) 

t4 

(ms) 

Bandwidth 

(GB/s) 

t4 

(ms) 

Bandwidth 

(GB/s) 

t4 

(ms) 

Bandwidth 

(GB/s) 

t4 

(ms) 

Bandwidth 

(GB/s) 

1 2.33 4.57 9.35 45.10 1.86 173.52 1.93 646.65 2.08 2156.13 2.09 

2 1.39 2.77 5.04 21.19 3.96 82.73 4.06 328.61 4.08 1094.78 4.11 

4 0.81 1.60 2.57 10.63 7.89 41.43 8.10 163.75 8.20 536.53 8.39 

8 0.47 0.89 1.51 5.75 14.59 34.22 9.81 119.13 11.27 379.26 11.87 

16 0.33 0.53 0.97 8.39 9.99 101.28 3.31 588.56 2.28 1921.21 2.34 

32 0.27 0.41 0.84 7.37 11.39 138.71 2.42 724.14 1.85 3012.83 1.49 

40 0.25 0.38 0.81 6.06 13.84 142.80 2.35 795.09 1.69 2983.45 1.51 
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(a) (b) 

  
(c) (d) 

Fig. 4. The relative speedup from the execution of PIBR algorithm using up to 40 cores for (a) Zero, (b) Shapes, (c) Page and (d) Chess-10 

images of different sizes. 
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Fig. 5. The number of cores required in order to maintain efficiency of the PIBR algorithm at level 0.80 for the test images of different sizes.   

 


