
1

Journal of Parallel and Distributed Computing 137 (2020) 134–147

Parallel Implementation of the Image Block Representation

using OpenMP

Iraklis M. Spiliotis, Michael P. Bekakos, Yiannis S. Boutalis

Department of Electrical and Computer Engineering

Democritus University of Thrace

GR-67100, Xanthi, Greece

e-mails: spiliot, mbekakos, ybout{@ee.duth.gr}

Abstract

Herein, a parallel implementation in OpenMP of the Image Block Representation

(IBR) for binary images, is investigated. The IBR is a region-based image

representation scheme that represents the binary image as a set of non-overlapping

rectangular areas with object level, called blocks. The IBR permits the execution of

operations on image areas instead of image points and therefore leads to a substantial

reduction of the required computational complexity. The experimental and the

analytically derived results from parallel implementation in OpenMP, on a multicore

computer, proved that a very good overall performance can be achieved.

Keywords

Image Block Representation, Image Processing, Karp-Flatt metric, Parallel

Computing, Parallel Algorithms, OpenMP

1 Introduction

In our days vast amounts of data are generated, processed, analyzed and transferred.

According to Cisco Inc., global IP traffic will reach 396 exabytes (EB) per month by

2022, and IP video traffic will be 82 percent of all IP traffic by 2022 [37]. Images

include large amount of information, thus, the majority of image processing and

2

analysis techniques are not fast; the acceleration of these techniques is of great

importance and vital for a number of applications.

The existence of various parallel computing platforms permits the parallel

implementation of various algorithms and operations. A popular parallel platform is

the Shared Memory Parallel Machine (SMPM) which is a multicore, shared memory

computer which usually uses the OpenMP (Open Multi Processing) API [14]. The

OpenMP parallelism is accomplished using threads, where a thread of execution is

the smallest sequence of programmed instructions that can be managed independently

by a scheduler and typically each CPU core executes a thread. The OpenMP is also

suitable for Intel ® Xeon Phi™ coprocessor accelerators.

A second parallel computing platform is the Distributed Memory Parallel Machine

(DMPM) model, usually consisted of a cluster of standalone machines, a

communication network infrastructure and the MPI API. The newer parallel

computing platform is the General-Purpose Graphics Processing Units (GPGPUs) and

the OpenCL API from ATI or the CUDA API created by Nvidia. All the above

platforms are in service today in supercomputers and High Performance Computing

(HPC) centers.

SMPM and the OpenMP API have been used for the parallel implementation of

various image processing and analysis algorithms. Specifically SMPM and OpenMP

have been used for the implementation of a fast neural network face detection system

[15], for the parallel object identification on multi-spectral imaging [16], for the

parallel implementation of the topological watershed operation for image

segmentation [17], for the parallel implementation of the separation of moving objects

from static background on real-time video processing [18] and for the efficient

parallel implementation of Connected Component Labeling on images [19] and for

the parallel Legendre moments computation [20]. Moreover, SMPM have been used

for the parallel computation of the local image features SIFT and SURF using p-

thread library [21].

In this paper, an image representation scheme which is called Image Block

Representation (IBR) and its parallel algorithm is investigated, which is suitable for

implementation on SMPMs with the OpenMP API. The proposed parallel

implementation of IBR, provides a basis for the development of parallel issues of

other image processing and analysis algorithms for block represented images.

3

2 Related Work

The classical image representation format is the 2-D array, where the value of an

array element represents the intensity of the respecting pixel. However, many research

efforts to derive alternative image representations have been motivated by the need

for fast processing of huge amounts of data. Such image representation approaches

aim to provide machine perception of images in pieces larger than a pixel and are

separated into two categories: region-based methods and boundary-based methods.

The region-based representations include quadtree [1], run length encoding [2], [3]

and interval coding representation [4]. The boundary-based representations include

chain code [5], contour control point models [6] and autoregressive models [7]. In the

context of binary images, the run length and interval coding representations are

identical. A region-based method, called IBR has been studied in the past [8]. In the

IBR process the whole binary image is decomposed into a set of rectangular areas

with object level, called blocks and the fact that many compact areas of a given binary

image have the same value is exploited.

As in every other region-based method, the most important characteristic of the IBR is

that a perception of image parts greater than a pixel is provided to the machine and

therefore, all the operations on the pixels, belonging to a block, may be substituted by

a simple operation on the block. This is a key point for block represented images and

the IBR process may be considered as the creation of an intrinsic data parallelism, in

comparison with the classical 2-D array image representation.

Taking this feature into account, the implementation of new algorithms for binary

image processing and analysis operations, leads to a substantial reduction of the

required time and computational complexity. Based on this representation, the fast

shift, scale and rotation, connected component labeling, logic operations [8], the real

time moments computation [9], a fast parallel skeletonization algorithm [10], a fast

thinning algorithm [11] and a fast algorithm for the computation of the Hough

transform [12] have been studied. The IBR scheme has been also used for gray image

analysis and specifically for the real time computation of image moments on a serial

computer [13].

3 Image Block Representation

4

Suppose that in a binary image the object pixels are assigned to level 1 and the

background pixels are assigned to level 0 and that the object pixels are represented by

a set of non-overlapping rectangles with edges parallel to the axes which are called

blocks. It is always feasible to represent a binary image with a set of blocks with

object level; this representation is called Image Block Representation (IBR)[8].

A binary image is called block represented, if it is represented by a set of blocks with

object level, and if each pixel of the image with object value belongs to one and only

one block. The IBR is an information lossless representation.

A block represented image is denoted as the set of the blocks, where each block is

described by four integers, the coordinates of the upper left and down right corner in

vertical and horizontal axes as shown in Fig. 1 (a). A block represented image is

denoted as:

1, 2, 1, 2,

(,) { : 0,1,..., 1}

(, , ,)
i i i i

i

i b b b b

f x y b i k

b x x y y

(1)

where k is the number of the blocks.

x

y

x b1, x b2,

y b2,

y b1,

b

(a) (b)

Fig. 1. (a) A block b. (b) Image of the character d and the blocks.

Considering a WxL binary image f(x,y), x=0,1, ... ,W-1, y=0,1, ... ,L-1, the block

extraction process requires a pass from each line y of the image. In this pass all object

level intervals are extracted and compared with the previous extracted blocks. In the

following, an IBR algorithm is given.

Algorithm 1. Serial Image Block Representation

1 kp:= 0; blockno:=0;

2 for (y:=0; y<L; y++){

3 kc:=0; intervalfound:=0; j_last:=0; j_curr:=0;

4 for (x:=0; x<W; x++){

5 try2match:=0;

6 if (img[y][x] && !intervalfound)

5

7 {intervalfound:=1; x1:=x; }

8 if (!img[y][x] && intervalfound)

9 { intervalfound:=0; x2:=x-1;

10 try2match:=1; }

11 if (x==W-1 && img[y][x] && intervalfound)

12 { x2:=x; try2match:=1; }

13 if (try2match) {

14 intervalmatched:=0;

15 for (j:=j_last; j<kp && x1>=block[p[j]].x1 ; j++)

16 if (x1==block[p[j]].x1 && x2==block[p[j]].x2) {

17 c[kc]:=p[j]; block[p[j]].y2:=y;

18 intervalmatched:=1; j_curr := j;

19 } // end if

20 j_last := j_curr;

21 if (! intervalmatched){

22 block[blockno].x1:=x1; block[blockno].x2:=x2;

23 block[blockno].y1:=y; block[blockno].y2:=y;

24 c[kc]:=blockno++;

25 } enf if (!intervalmatched)

26 kc++;

27 }// end if try2match

28 } end for x loop

29 for (i:=0;i<kc;i++) p[i]=c[i];

30 kp:=kc;

31 }// end for y loop

In the Algorithm 1, the input is the array img[][] which contains the input image and

the variables L, W are the length and width of the image in pixels. The output of the

Algorithm 1 is the vector block[] and the integer variable blockno which indicates the

number of the extracted blocks. In Fig. 1(b) the blocks that represent an image of

character d, as extracted when using Algorithm 1, are illustrated.

Usually the number of blocks in a binary image of size WxL containing one or two

objects, is smaller than the width W or the length L of the image, as it has been shown

experimentally in [8].

4 Parallel implementation of IBR

For the creation of the Parallel IBR Algorithm (PIBR), the Algorithm 1 is examined

for data or task decomposition. At first a data partitioning scheme was considered,

where the L image rows are partitioned among the p threads. This approach results to

the following important data dependencies:

D1. A dependency appears in the boundary between two successive threads,

specifically to match the intervals of first row of the bundle of rows that is

6

assigned to thread pi, to the intervals of the last row of the bundle of the thread

pi-1.

D2. A data race condition appears with the access on the variable blockno, which

stores the number of the extracted blocks. The number of blocks created from

an image row, is the number of intervals of the image row that do not match to

the intervals of the previous image row. Therefore, it is not possible to predict

or to precalculate this number for each row and each thread and this results to

a data race condition, since all threads should have a simultaneous access for

read and write operations in order to increase the value of blockno for each

new block.

D3. Another important issue is the arrangement of the indices of the extracted

blocks which is also related with the variable blockno. In certain applications

on block represented images, it is desirable that neighboring blocks or blocks

from successive image rows to allocate successive positions in the vector

block[]. Such applications include the connected component labeling [8],

skeletonization [10] and thinning [11]. Therefore it is not allowed to shuffle

the storage locations of the extracted blocks; for example, the i-th block starts

in row 100: block[i].y1=100 and the (i+1)-th block starts in row 50:

block[i+1].y1=50.

Due to the above dependencies the parallelization using data partitioning or

concurrent task partitioning is not possible in the current form of the Algorithm 1. In

order to parallelize the Algorithm 1, a divide and conquer strategy is followed: the

algorithm is decomposed into more elementary parts and the parallelization of these

parts is examined.

4.1 Decomposition of the serial IBR algorithm

In Algorithm 1 two discrete parts can be easily distinguished:

 Part1, Interval extraction, which extracts the object level intervals in every

row of the image.

 Part2, Interval matching, which matches the extracted intervals of each row

with the blocks of the previous row of the image. If an interval does not match

with a block from previous row, then a new block is created.

7

For the implementation of the above Parts 1 and 2, it is required to define a suitable

data structure for storing the output of Part 1, consisted of the object intervals, that is

used as input to the Part 2. This data structure called intervalrowt, and contains the

integer variable irno that stores the number of object level intervals in an image row

and an array of pointers to the triples (x1, x2, b) of the coordinates of each interval on

x-axis and the block in which the interval belongs. Also, an array called ir[] with

length L is defined; each element of the array is of type intervalrowt and corresponds

to a row of the image. This data structure is not required in Algorithm 1, since each

object level interval is matched immediately after its extraction and there is no reason

to store the intervals.

The decomposition of the serial Algorithm 1 leads to the following serial Algorithms,

2, 3, that implement sequentially the above Parts 1 and 2. Algorithm 2 scans each row

of the input image and extracts all object level intervals.

Algorithm 2. Serial Interval Extraction

1 for (y:=0;y<L; y++){

2 intervalfound:=0; ir[y].irno:=0;

3 for (x:=0; x<W-1; x++){

4 if (img[y][x] && !intervalfound){

5 intervalfound:=1;

6 ir[y].x1[ir[y].irno]:=x;

7 }

8 else if (!img[y][x] && intervalfound){

9 intervalfound:=0;

10 ir[y].x2[ir[y].irno++]:=x-1;

11 }

12 } // end x loop

13 if (!img[y][W-1]) { // last column

14 if (intervalfound) ir[y].x2[ir[y].irno++]:=W-2;

15 }

16 else { // case img[y][imagewidth-1] == 1

17 if (!intervalfound) ir[y].x1[ir[y].irno]:=W-1;

18 ir[y].x2[ir[y].irno++]:=W-1;

19 }

20 }// end y loop

The interval matching among consecutive image rows, results to the extraction of the

blocks, as shown in Algorithm 3. To achieve this goal, a scan on the array ir[] is

required. The intervals that have been extracted from the image row y are matched to

the blocks of row y-1, if an interval from the current row is matched to a block of the

8

previous row, then the end of the block is in the row y, otherwise a new block is

created.

Algorithm 3. Serial Interval Matching

1 blockno:=0;

2 for (i:=0; i<ir[0].irno; i++) {

3 block[blockno].x1:=ir[0].x1[i]; block[blockno].x2:=ir[0].x2[i];

4 block[blockno].y1:=0; block[blockno].y2:=0;

5 ir[0].b[i]:=blockno++;

6 } // end for i loop

7 for (y:=1;y<L; y++) {

8 j_prev:=0; j_curr:=0;

9 for (i:=0; i<ir[y].irno; i++) { // i for current row, j for previous row

10 intervalmatched:=0;

11 for (j:=j_prev; j<ir[y-1].irno && ir[y].x1[i] >= ir[y-1].x1[j]; j++)

12 if (ir[y].x1[i]==ir[y-1].x1[j] && ir[y].x2[i]==ir[y-1].x2[j])

13 {ir[y].b[i]:=ir[y-1].b[j]; block[ir[y].b[i]].y2:=y;

14 intervalmatched:=1; j_curr:=j; }

15 j_prev := j_curr;

16 if (! intervalmatched) {

17 block[blockno].x1:=ir[y].x1[i]; block[blockno].x2:=ir[y].x2[i];

18 block[blockno].y1:=y; block[blockno].y2:=y;

19 ir[y].b[i]=blockno++;

20 } // end if (!intervalmatched)

21 } // end i loop

22 } // end y loop

An example is shown in Fig. 2. Fig. 2(a) is the result of the execution of Algorithm 2,

while the form of the array ir[] is also shown. The first image row (row 0) has 2

intervals, the second image row (row 1) has 4 intervals, the row before the last (row

L-2) has no interval and the last row (row L-1) has 1 interval.

The execution of Algorithm 3 is described in Fig. 2 (b). The two intervals of row 0 are

assigned to blocks b0, b1. In row 1, three new blocks b2, b3, b4 are created and the

interval with (x1, x2)=(200,358) is assigned to block b1. Therefore, after the interval

matching of the first two rows, the following blocks have been created: b0={5,70,0,0},

b1={200,358,0,1}, b2={3,43,1,1}, b3={86,126,1,1}, b4={524,835,1,1}.

9

(a)

(b)

Fig. 2. (a) An example of array ir[] after the interval extraction procedure. (b) A

snapshot of the array ir[] after the execution of interval matching for the first two

rows.

4.2 Parallel implementation of the interval extraction

Algorithm 2, for interval extraction can be easily implemented in parallel, since the

image rows assigned to a thread are different from the image rows assigned to every

other thread; therefore, this data partitioning scheme among the threads is suitable for

parallelization. Each thread scans every image row assigned to it, finds all object level

intervals in this image row and stores the results in array ir[].

Algorithm 4, implements the parallel interval extraction using a parallel for loop. The

array ir[] is a shared variable, but each thread stores the range of image rows assigned

to it. The L image rows are partitioned among the P threads using guided loop

scheduling.

The term loop scheduling in OpenMP, refers to the type of the partitioning of the loop

iterations among the threads and the optional parameter chunksize specifies the

number of loop iterations assigned to a thread each time. The available loop

partitioning types are the static scheduling where the loop iterations are partitioned

equally among the threads and each thread is assigned L/P rows of the image, from

the first row t*L/P to the last row (t+1)*L/P - 1, where t is the thread id number; the

10

dynamic scheduling where the iterations are separated into chunksized bundles, each

available thread receives a bundle and when is finished receives another bundle from

the work queue; and the guided scheduling which is similar to the dynamic but starts

with a large number of iterations and decreases in order to utilize better by avoiding

threads' idling periods. As proved by the experimental data provided in Subsection

6.2, the faster execution of the Algorithm 4 is achieved using the guided loop

scheduling with smallest chunk size 1, which is the default value.

Algorithm 4. Parallel Interval Extraction

1 #pragma omp parallel for schedule(guided,1) shared(ir) private(x, intervalfound)

2 for (y:=0;y<L; y++){

3 intervalfound:=0; ir[y].irno:=0;

4 for (x:=0; x<W-1; x++){

5 if (img[y][x] && !intervalfound){

6 intervalfound:=1;

7 ir[y].x1[ir[y].irno]:=x;

8 }

9 else if (!img[y][x] && intervalfound){

10 intervalfound:=0;

11 ir[y].x2[ir[y].irno++]:=x-1;

12 }

13 } // end x loop

14 if (!img[y][W-1]) { // not last column

15 if (intervalfound) ir[y].x2[ir[y].irno++]:=W-2;

16 }

17 else { // case of last column

18 if (!intervalfound) ir[y].x1[ir[y].irno]:=W-1;

19 ir[y].x2[ir[y].irno++]:=W-1;

20 }

21 }// end y loop

4.3 Parallel implementation of interval matching

A parallel implementation of Algorithm 3, has to resolve the D2 and D3 data

dependency issues that were previously discussed. Using the vector block[] and the

variable blockno in their current form, the data race condition D2, cannot be resolved

efficiently in parallel. Also, there is no efficient solution for the dependency D3, for

the parallel arrangement of the indices of the vector block[].

A suitable data structure for the blocks is a 2D array b with number of rows equal to

the number of threads, or equivalently a vector b where each element is a pointer to a

vector of the extracted blocks from a specidic thread. Each block is stored in the array

b and specifically in the i-th row and the j-th column b[i][j], where the indices indicate

11

that is the j-th block extracted from the i-th thread. The numbers of the extracted

blocks are stored using the vector bno[], each element is the number of the extracted

blocks from the corresponding thread.

There are two types of blocks for the thread t: The regular blocks b[][] that start in

image rows which are assigned to the current thread t; thus, they belong to thread t.

The orphan blocks o[][] that start in previous image row, and are continued in the

rows of the current thread t; therefore is a list of temporary blocks that they belong to

different threads. The vector ono[] holds the number of orphan blocks for every

thread.

Algorithm 5, implements the parallel interval matching. In the following a description

of the algorithm is presented. P is the number of threads, L is the number of image

rows, each thread has id t = 0, 1, .., P-1, and initially bno[t] has the value 0. Each

thread is assigned a bundle of L/P image rows using a static partitioning scheme; the

static partitioning ensures that each thread t is assigned the following image rows

[t*L/P , (t+1)*L/P-1]. Each thread t examines and matches the intervals of its

corresponding rows from the vector ir[] and extracts the blocks.

For the first image row y assigned to the thread t, the thread checks the intervals of

ir[y] with the intervals of ir[y-1] of previous row y-1. In the case of no matching, then

a new block is created and stored to the b[t][bno[t]] and bno[t] is increased. In the

case of matching with an interval of row y-1 the corresponding block does not belong

to thread t, but to a previous thread t-1, t-2, e.t.c. At this specific time the previous

thread t-1 examines its first image rows and not its last row y-1, thus the intervals of

row y-1 are not yet assigned to any regular block b. Therefore, the matched interval of

row y is registered as orphan block o[t][ono[t]] by thread t. Fig. 3 demonstrates the

process of the creation of regular and orphan blocks.

As discussed in Subsection 3.1 and presented in Fig. 2, eash interval stores the block

id that is assigned to. The interval that is assigned to an orphan is designated by a

negative index, in order to be distinguished from the intervals that assigned to regular

blocks. In order to simplify the code, the initial value of ono[t] is 1 and increases.

Then an interval k of row y, that belongs to an orphan block is assigned the followind

block id, ir[y].b[k] = - ono[t];. Since ono[t] starts from value 1, the number of orphan

blocks at this thread is ono[t]-1. At the following image rows, intervals that match

with an interval of an orphan block are also assigned to the same orphan block.

12

After the extraction of regular and orphan blocks for each thread, there is a barrier for

thread's suncronization. In the sequel each thread t checks its regular block k that

exists on its last image row with the orphan block m of the next thread t+1. If there is

a matching then the end row y2 of the regular block is assigned the value of y2 of the

orphan block, i.e. b[t][k].y2 = o[t+1][m].y2. If the end of the orphan o[t+1][m].y2 is

the last row of thread t+1, then the process is repeated for the orphans of thread t+2,

etc., until the regular block is assinged the correct y2 value.

When the parallel region ends, the threads are joined and the structures ir[], o[][],

ono[] are released from memory.

The structure b[][] uses non contiguous memory and in cases that a block has to be

accessed isolated from previous block then the access time is O(P). Since P is the

number of threads, it has relatively small values and does not introduces any

drawback.

Fig. 3. The L image rows are partitioned among the P threads.The image has three

blocks, b[0][0] which lie entirely at the rows of thread 0, b[0][1] starts at thread 0 and

its continuation at thread 1 is initially registered as orphan o[1][0]; b[1][0] starts at

thread 1 and its part at thread 2 is initially registered as orphan o[2][0].

Algorithm 5. Parallel Interval Matching

1 #pragma omp parallel shared(ir, b, bno, P, first_y, M) private(intervalmatched,

j_prev, j_curr, t, i, j, y,flag, next_t)

2 {

3 t=omp_get_thread_num();

4 P=omp_get_num_threads();

13

5 M = L * W /(2*P); // max blocks per thread

6 bno[t]=0; ono[t]=1;

7 flag=0;

8 #pragma omp for schedule(static)

9 for (y=0; y<L; y++) {

10 if (!flag) { first_y[t]=y; flag=1; }

11 if (y == 0)

12 for (i=0; i<ir[0].irno; i++) {

13 b[t][bno[t]].x1=ir[y].x1[i];

14 b[t][bno[t]].x2=ir[y].x2[i];

15 b[t][bno[t]].y1=y;

16 b[t][bno[t]].y2=y;

17 ir[y].b[i]= t*M+(bno[t])++;

18 }

19 else {

20 j_prev=0;j_curr=0;

21 for (i=0; i<ir[y].irno; i++) { //for each interval i of current row y. Index j

indicates an interval of previous row

22 intervalmatched=0;

23 for (j=j_prev; j<ir[y-1].irno && ir[y].x1[i] >= ir[y-1].x1[j]; j++)

24 if (ir[y].x1[i]==ir[y-1].x1[j] && ir[y].x2[i]==ir[y-1].x2[j]) {

25 intervalmatched=1; j_curr=j;

26 if (y==first_y[t]) { // 1st row for thread t, matched interval

27 ir[y].b[i]=-ono[t]; //Intervals of orphan have negative b index

28 o[t][ono[t]].x1=ir[y].x1[i]; o[t][ono[t]].x2=ir[y].x2[i];

29 o[t][ono[t]].y1=y; o[t][ono[t]++].y2=y;

30 }

31 else { // other than 1st row of thread t, matched interval

32 ir[y].b[i]=ir[y-1].b[j];

33 if (ir[y].b[i] >=0) b[t][ir[y].b[i]-t*M].y2=y;

34 else o[t][-ir[y].b[i]].y2=y;

35 }

36 }

37 j_prev = j_curr;

38 if (! intervalmatched) { // create new block

39 b[t][bno[t]].x1=ir[y].x1[i]; b[t][bno[t]].x2=ir[y].x2[i];

40 b[t][bno[t]].y1=y; b[t][bno[t]].y2=y;

41 ir[y].b[i]=t*M+(bno[t])++;

42 }

43 }

44 }

45 }

46 #pragma omp barrier // wait to finish all threads

47 y = (t+1)*L/P-1; // y = last row of current thread t

48 for (i=0; i<ir[y].irno && t < P-1; i++) { // each interval of last row of thread t

49 if (ir[y].b[i] < t*M) continue; // only blocks that belong to thread t

50 next_t=t+1;

51 do { // check b[ir[y].b[i]] with the orphan blocks of next threads

52 flag=1;

53 for (j=1; j<ono[next_t]; j++) {

14

54 if (b[t][ir[y].b[i]-t*M].x1 == o[next_t][j].x1 && b[t][ir[y].b[i]-t*M].x2 ==

o[next_t][j].x2) {

55 b[t][ir[y].b[i]-t*M].y2 = o[next_t][j].y2;

56 if ((next_t < P-1) && (o[next_t][j].y2 == first_y[next_t+1] - 1)) {

57 flag = 0; next_t++;

58 }

59 break;

60 }

61 }

62 } while (! flag);

63 }

64 } // parallel region of interval matching

5 Theoretical analysis of the PIBR algorithm

The PIBR algorithm consists of the parallel Algorithm 4 for interval extraction and

the parallel Algorithm 5 for interval matching. We define 1 2 3, ,t t t , as the execution

times of the serial Algorithms 1, 2, 3; t4(P) and t5(P) as the execution times of parallel

Algorithms 4, 5, respectively, using 1P cores, and tPIBR(P) as the execution time of

the PIBR algorithm using P cores, where tPIBR(P) = t4(P) + t5(P).

A variety of performance metrics of parallel processing have been used [22]-[27].

According to the well known Amdahl's law [22], the maximum achievable speedup S

is defined as:

1

1
SIBR

PIBR

t
S

ft
f

P

(2)

where tSIBR and tPIBR are the serial and parallel execution times, respectively, P is the

number of the processors used and 0 1f is the fraction of the work that is

executed sequentially; thus 1-f is the parallel fraction of the work.

Gustafson [23] suggested the scaled speedup and according to the known as

Gustafson-Barsis's law the maximum achievable speedup is:

(1)S P P f (3)

Amdahl's and Gustafson-Barsis's laws they do not take into account the parallel

overhead and therefore overestimate the speedup.

The parallel overhead [25] incurs from the parallelization process, the idling time of

the processors caused by imbalanced workload and the communication among

processors when using shared variables in case of OpenMP. The parallel overhead is

in general a function of the problem size w and the number of processors P. Taking

15

into account the parallel overhead to and considering the PIBR algorithm, speedup is

written as:

2 3

2 3

() ()
(,)

() ()
(,)o

t w t w
S w P

t w t w
t w P

P

(4)

The problem size is defined in terms of the total number of basic operations of the

algorithm. It is beyond any doubt that the execution time of the IBR process depends

on the image size, i.e. the number of image pixels and on the content of the input

image [8], [9]. The qualitative characteristics that affect the execution time of the IBR

for a given image size, is the density and the patterns appeared in the image.

In the Appendix, a latency analysis is presented considering the estimation of the

clock cycles of the interval extraction of an image with size WxL, that contains m

intervals. The analysis concludes that the total required clock cycles of the serial

Algorithm 2 is:

lg2_ 14 25A lat WL m (5)

Therefore, the problem size w2 of Algorithm 2 is analogous to Alg2_lat and the

execution time t2=Θ(14WL+25m) , where Θ(x) is a function with the same growth

rate as x. Since the number of pixels WL is usually much greater than the number m of

the intervals, it is concluded without loss of generality that the term 14WL grows

much faster than the term 25m. Therefore, the main factor that affects the serial

interval extraction time is the image size, while the image density and content is a

secondary factor.

The problem size for the interval matching process, depends on the number L of

image rows, on the number m of the intervals and also on the number k of the blocks

which is related to the distribution of the intervals among the image rows.

In our analysis and the experiments, we use some real life images as representative

average cases and also some extreme image cases. The best image case for IBR is the

zero image (,) 0, ,f x y x y , since no intervals and blocks are contained. The worst

image case for IBR is the chessboard image, since it can reach the maximum number

LxW/2 of intervals and blocks, if the square size is (1x1) pixel.

5.1 Estimation of the execution time of PIBR Algorithm

Consider the subproblem of finding the object level intervals in a binary image, where

the binary image is located in memory and the object level intervals are stored in

16

memory using the data structure of Fig. 2 (a). Then, the Algorithm 2 is an effective

serial solution and the parallel Algorithm 4 is an effective parallel solution to this

problem. The same applies for the subproblem of interval matching.

Examining the pairs of serial Algorithm 2 with parallel Algorithm 4 and serial

Algorithm 3 with parallel Algorithm 5, it is concluded that the serial Algorithms are

fully parallelizable and there is no serial fraction in interval extraction and interval

matching. From parallel Algorithm 4, it is obvious that the processing of any image

row is independent of the processing of any other image row and there is no

communication among the threads using shared variables. Therefore, it is difficult to

derive a theoretical estimation of the parallel overhead. A similar conclusion applies

for the parallel Algorithm 5.

The parallel overhead acts like a serial fraction e of work that existed in parallel

execution, caused mainly by the imbalanced workload, thread synchronization and

other sources of overhead, such as, the architectural overhead. The Karp-Flatt metric

[25] for the experimentally determined serial fractions e4, e5 of Algorithms 4 and 5,

respectively, is defined as:

2
4 2

3
5 3

1/ (,) 1/
(,)

1 1/

1/ (,) 1/
(,)

1 1/

S w P P
e w P

P

S w P P
e w P

P

(6a)

(6b)

where 2 3, w w are the problem sizes of Algorithm 2, 3, where t2=Θ(w2) and t3=Θ(w3).

Profiling the Algorithms 1, 2, 3, 4 and 5 for zero images of different sizes and

different number of cores used, the execution times t Z1, t Z2, t Z3, t Z4(P) and t Z5(P) are

obtained. From these values the speedup values 4 2 5 3(,), (,)S w P S w P and the

experimentally determined serial fractions 4 2 5 3(,), (,)Z Ze w P e w P of Algorithms 4

and 5 for Zero images are calculated.

For any other input image, if the problem sizes 2 3, ww are known, or equivalently if

the serial times t2, t3 are known, it is feasible to estimate the parallel interval

extraction and parallel interval matching times, by making the assumption that the

values of the experimentally determined serial fractions 4 5, Z Ze e of zero image are

quite similar to the corresponding values 4 2 5 3(,), (,)e w P e w P of the input image with

same size, i.e., 4 2 4 2 5 3 5 3(,) (,), (,) (,)Z Ze w P e w P e w P e w P . This assumption is quite

17

reasonable taking into account the fact that the important factor that affects t2 and t3 is

the image size, while the number of intervals is a secondary factor as denoted by the

latency analysis. Therofore, the estimated PIBR execution time for any given input

image is defined as:

2 3 2 3
2 4 3 5

ˆ () () () ()PIBR o Z Z

t t t t
t P t P t e P t e P

P P

(7)

5.2 Speedup and Efficiency metrics

The relative speedup SR [26] is defined as the ratio of the execution time of the

parallel algorithm using 1 processor to the execution time of the parallel algorithm

using P processors.

(1)

()

PIBR
R

PIBR

t
S

t P

(8)

The absolute speedup SA [27] is defined as the ratio of the execution time of the best

sequential algorithm to the execution time of the parallel algorithm using P

processors.

()

SIBR
A

PIBR

t
S

t P

(9)

In (6a), (6b) the absolute speedup values are used and for P=1 the denominators are

zero and the serial fractions e4 and e5 are undefined. The overhead time ()ot P and the

estimated PIBR time ˆ ()PIBRt P are also undefined for P=1.

The efficiency metric is defined as the ratio of speedup to P, /E S P . They are

defined both absolute and relative efficiency metrics, depending on the speedup

values that were used.

5.3 Isoefficiency and scalability analysis

The scalability of a parallel system is the ability to increase performance as the

number of the processors increases. A scalable system should increase speedup in

such a rate that the efficiency is maintained as the number of processors increases.

However, the parallel overhead increases as the number of processors increases and

the efficiency decreases as the number of processors increases. Increasing the problem

size is a way to maintain efficiency. The isoefficiency [27], [28] analysis investigates

the rate of problem size increase with respect to the number of processors in order to

18

maintain a constant efficiency. Obviouly, the isoefficiency is related to the scalability

of a parallel system.

The total amount of overhead To(w,P) is the time spent by all processors carrying out

work not done by the sequential algorithm:

 2 4 3 5(,) (,) (,) (,)o oT w P Pt w P P t e w P t e w P (10)

Also, the total overhead time is interpreted as (,)o PIBR SIBRT w P P t t . Then, the

maximum achievable speedup in (2), is rewritten as:

 2 32 3

2 3 2 3

0

(,)
(,)

(,)

(,)
(,)

o
o

SIBR

SIBR

P t tt t
S w P

t t t t Pt w P
t w P

P

Pt
S w P

t T w P

(11)

The efficiency is the ratio of speedup to P:

0

0

(,)
(,) (,)

(,) 1 (,)

SIBR
SIBR

SIBR

t E w P
E w P t T w P

t T w P E w P

(12)

If a constant efficiency is maintained as the number of processors increases, the

fraction C=E/(1-E) in (12) is also a constant. In the analysis of Subsection 5.1, it has

been assumed that the experimentally determined serial fractions of the zero image

eZ4, eZ5 are equal to the corresponding values e4, e5 of the input image, and since

0 2 4 3 5t t e t e , (12) is rewritten as:

2 3 2 4 3 5()Z zt t CP t e t e (13)

This last relation is the isoefficiency relation and in order to maintain a constant

efficiency as the number of the processors increases, the problem size t2+t3 should be

increased so that the above inequality is satisfied. Solving for P, (13) is rewritten as:

2 3

2 4 3 5[]Z z

t t
P

C t e t e

(14)

This relation gives the number of processors required in order to maintain a constant

efficiency. It is concluded from (13) and (14), that the scalability of the PIBR

Algorithm depends on the input image and the serial execution times t2 and t3.

6 Experimental results

For the experimental evaluation, a platform consisting of DELL PowerEdge R820

nodes, with four Intel(R) Xeon(R) CPUs E5-4650v2 which is based on SandyBridge

19

EP microarchitecture, with nominal frequency 2.4GHz, each with 40 cores and 512

GB RAM, of the National HPC facility ARIS, of the Greek Research & Technology

Network (GRNET), was utilized. The operating system is Centos 6.7 Linux. All the

programs were implemented in C using the OpenMP API and were compiled using

the Intel compiler icc ver. 15.0.3.

In order to compare the sequential and the parallel algorithms, the execution time was

used as a measure. The computation times are measured from the execution of the

IBR algorithms only, excluding image reading from disk, etc. The execution time

starts when the relative function of IBR is called, with parameters, a pointer to the

address of the image in memory, the image width W and the image length L, and ends

when the function returns the number of the blocks bno[] and the blocks b[][].

All time complexities were measured using the omp_get_wtime() function of

OpenMP. To decrease random variation, all the execution time complexities were

measured as the average of 1000 runs.

(a) (b) (c)

Fig. 3. A set of test images: (a) Shapes, (b) the negative of the image Page, (c) Chess-

10. All the test images were used in different sizes from (1024x1024) to

(30000x30000) pixels.

Several sets of test images were used to evaluate the performance of the parallel

algorithms, with varying sizes from (1024x1024) to (30000×30000). In Fig. 3 three

samples of test images are presented. The test image Shapes, of Fig. 3(a), has small

number of transitions from 0 to 1, since there are large homogeneous areas; such

conditions often appear in industrial imaging applications, such as manufacturing and

robot vision. The test image Page, of Fig. 3(b), is the negative of the image of a book

20

page with printed characters and there is a significantly greater number of transitions

from 0 to 1 with smaller homogeneous areas; these conditions appear in document

processing and character recognition applications. The test image Chess-10, of Fig 3

(c), with square size of (10x10) pixel. The Chess-10 test image does not relate to any

vision applications and has been used in order to test the proposed algorithms. The

zero image has been used as a test image, while, the Chess-1, a chessboard image with

square size of (1x1) pixel was used. The Chess-1 image is the worst case image for

IBR since it reaches the maximum number of blocks LxW/2 where L,W are the image

sizes. The zero image is the simplest image case for IBR, since no block is extracted.

A large number of experiments has been conducted, on different algorithms and their

variations for the parallelization of the IBR, using different images with different

sizes and number of cores, from 1 to max 40. Actually, more than 55000 Core hours

on the ARIS HPC platform have been consumed on computations.

6.1 Compiler optimization levels

The experimental measurements have been repeated for three different compiler

optimization levels: O0 which means no compiler optimization; O2 which produces

executable code optimized for speed by enabling parallelization and vectorization;

and O3 which includes O2 optimization plus some more aggressive loop and memory

access optimizations, such as loop unrolling, IF statement collapsing and is suggested

in applications that have loops with many floating point operations or process large

data sets [29].

Table 1 demonstrates the time complexities of the Algorithms 1, 2 and 3, using the

compiler optimization levels O0, O2, O3. Since the O2 compiler optimization level

has the better results, all the following experimental results are measured from

executables that compiled using the "-O2 -xCORE-AVX-I" compiler optimization

flags, where the flag -xCORE-AVX-I produces Intel(R) Xeon(R) E5-v2 processor

specific code.

6.2 Loop partitioning type of Algorithm 4

As discussed in Subsection 4.2, the loop scheduling type in Algorithm 4 is guided

with the default chunk size value 1. All the available scheduling types, with different

chunk sizes, for p threads from 1 to 40 and for 1000 runs have been used in

experiments. The chunk size in static schedule is /L P , where L is the number of

21

image rows. The dynamic scheduling was evaluated for the following 5 chunksizes: 1,

/ 4L P , 2 / 4L P , 3 / 4L P , /L P . The chunk size parameter in the guided schedule

specifies the smallest chunk size, and was evaluated for the values 1, / 8L P , / 4L P .

The execution times are demonstrated in Table 2; it is observed that the guided

outperforms the other scheduling types, due to better utilization of the processors.

Moreover, the smallest chunk size 1 has the better results. Similar results have been

obtained for all number of threads, therefore the guided scheduling with chunk size of

1 efficiently handles the load balance among the threads and for this reason is used in

the parallel Algorithm 4.

6.3 Time complexities and performance

Table 3 presents the experimental data for the Zero images of different sizes. The first

(upper) part of Table 3 presents the execution times of the serial Algorithms 1, 2, 3;

the second part presents the execution time t4(P), the absolute speedup SA4 and the

Karp-Flatt metric of experimentally determined serial fraction eZ4 of Algorithm 4; the

third part presents the same data of Algorithm 5; and finally the fourth part presents

the execution time tPIBR(P) and its relative speedup SR and efficiency ER values. Table

3 and the subsequent Tables present results only for a specific number of cores

(powers of 2 and the maximum 40) in order to preserve the readability.

Tables 4, 5 and 6, present the estimated and the experimental values of time

complexities and performance metrics for the test images Shapes, Page and Chess-10

of different sizes. The first part of each Table presents the number of intervals and

blocks and the execution times of the serial Algorithms 1, 2 and 3. The second part of

each Table presents the estimated and the experimentally measured execution times of

PIBR Algorithm. The third part of each Table presents the relative speedup SR and

efficiency ER values of the PIBR Algorithm. A number of interesting observations

arise from Tables 3 - 6.

1. The execution times t2 and t3 of the serial interval extraction depends on the input

image; this observation validates the analysis of the execution cost of Algorithm 2

which is based on instruction latency and presented in the Appendix.

2. Significant speedup values of 32.58, 33.60, 30.38, 19.00 achieved for images Zero,

Shapes, Page and Chess-10 respectively using 40 cores have been obtained. Also, it is

observed that the efficiency values increase as the image size increases and decrease

as the number of cores increases.

22

3.The experimental and theoretically estimated times PIBR PIBR
ˆ, t t of PIBR Algorithm

are quite close for all the test images and these results validate the theoretical analysis.

The relative speedup values for the test images of different sizes are presented

graphically in Fig. 4.

6.4 Scalability

The scalability depends on the input image as demonstrated by the theoretical analysis

and by the experimental data. Table 7 demonstrates the number of cores and the

image size required in order to maintain relative efficiency at value 0.80, each row

presents the real and estimated number of cores for a test image at different sizes. The

real values received from the experimental data and the estimated values using eq.

(14) for C=4, which corresponds to E=0.80. Since (14) involves P, eZ4(P) and eZ5(P)

cannot be solved analytically, therefore a recursive approach from P=1 to 40 is used

until the maximum value of P that satisfies (14) is found, for any given image and

size. From these results it is observed that for the average case test images the PIBR

algorithm is scalable, but the PIBR algorithm has lower scalability for the Chess-10

images. These results are presented graphically in Fig. 5. Thus, it is concluded that the

scalability of PIBR Algorithm depends on the input image.

6.5 Memory bandwidth issues

The memory system bandwidth affects negatively high performance applications,

leaving the processors idle as they wait for memory. This is known as memory wall

and is a well known problem in parallel processing [32].

The granularity problem [33]-[35] mainly causes the memory bandwidth problem.

Also, the numerous occurring memory reads/writes trigger the cache coherence effect

leading to a memory wall. When these reads/writes are distributed in depth in

different cache lines [36] the whole effect and performance results are normalized.

In order to determine if the presented parallel algorithms are affected by the memory

bandwidth, a different image example is used. The Chess-1 image is a chessboard

with square size of (1x1) pixel and is the extreme case for IBR since it contains the

maximum number of intervals and blocks. In this image case although the granularity

size is not degenerated, the transition from 0 to 1 luminance values occurs in every

other pixel, therefore there is an interval to store every two-pixel values read. In Table

23

8, are presented the execution times of parallel interval extraction and the evaluated

minimum memory bandwidth due to pixel reads and interval writes (excluded several

other overheads, i.e., the read/write of variable intervalfound, addressing, instruction

fetch, etc.).

It is observed that due to the memory bandwidth problem for Chess-1 test images and

sizes from (4Kx4K) and greater, the fastest execution takes place for 8 cores. The

parallel interval matching algorithm is not affected and the speedup increases with the

number of cores. For the maximum image size of (30000x30000) pixels less than

1GB of memory required to fit, for the maximum number of blocks less than 8GB of

memory required to fit; since each node has 512GB of RAM there is no memory

amount limitation in the PIBR algorithm and the test images used.

7 Conclusions and Future work

In this paper, the parallelization of a sequential algorithm for the block representation

of binary images has been investigated. The sequential algorithm is not directly

parallelized due to data dependencies and has been decomposed into two discrete

parts and the corresponding algorithms. The two parts of interval extraction and

interval matching have been parallelized effectively using the OpenMP API and the

proposed parallel algorithm (PIBR) achieved significant speedup values.

The complexity of the proposed PIBR algorithm depends on the input image and

specifically to the image size and the content of the image. A theoretical analysis and

estimation of the parallel algorithm execution times and the corresponding

performance metrics is not directly feasible. The Karp-Flatt metric of experimentally

determined serial fraction, was used in the Zero test image in order to measure the

parallel overhead of the interval extraction and the interval matching tasks. The values

of the Karp-Flatt metric were used for the estimation of the execution times of PIBR

Algorithm for other input images and the predicted values were very close to the real

ones and this validates our analysis. A scalability analysis and the isoefficiency

relation has also been given.

In the Appendix, a latency analysis is given for the total required clock cycles for the

interval extraction process, as a function of the number of image pixels WL and the

number m of the extracted intervals. A similar analysis concerning the interval

24

matching process is not possible, since it depends on the number m of the intervals

and on the distribution of the m intervals among the L image rows.

The representation of binary images with blocks allows concurrent machine

perception of greater image areas than a pixel; this approach proved superior, as

compared to the 2D array image representation. This feature has been used in the past

for the performance enhancement of various image processing sequential algorithms

on von Neumann computers. There are many ideas and directions for future work as

the parallel implementation of the sequential algorithms presented in [8]-[13] on

block represented images and more computational time gains are expected. Also, the

parallel implementation of the IBR algorithm and the operations on block represented

images, presented in [8]-[13] using CUDA on GPGPUs, is another quite interesting

direction for our future work.

8 Acknowledgments

This work was supported by computational time granted from the Greek Research &

Technology Network (GRNET) in the National HPC facility - ARIS - under project

ID PA170601-PIBR. The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions that have improved the presentation of our

work.

Appendix. Instruction latency analysis of Algorithm 2

The clock cycle period tc is considered as the latency of the execution of the simplest

instruction, such as the execution of the instruction 'AND R1 R2'. According to

Intel(R) [30]: "Due to the complexity of dynamic execution and out-of-order nature of

the execution core, the instruction latency data may not be sufficient to accurately

predict realistic performance of actual code sequences based on adding instruction

latency data". There is a difficulty to derive the real execution time from the total

clock cycles periods and the reason is that today's processors are quite complex, they

decode and use micro-operations (or μops), they execute multiple instructions per

clock cycle (IPC) and they also use advanced hardware optimizations such as

pipelining and branch prediction. However, an instruction latency analysis gives an

indication of the complexity of an algorithm and an estimation of the execution time.

In order to estimate the execution cost of each operation of the Algorithm 2, the

25

Intel(R) microarchitecture with codename Sandy Bridge that used on the processors

of the experiments was considered [31].

For the zero image the loop of variable y at Line 1 requires L increments and L

conditional jumps each with cost 1tc and a total latency of 2Ltc. In Algorithm 2, in the

loop of Line 3 the loop control variable x increases up to W-2. In Lines 13-19, a

similar process is repeated for the last column of the image, therefore without loss of

generality it is assumed that the loop at Line 3 considered that has W repetitions. The

loop of variable x at Line 3 requires WL increments and WL conditional jumps and a

total of 2WL clock cycles. The movement of a pixel value from memory to register

depends on the data locality to memory hierarchy and a reasonable requirement is 4tc

and for all image pixels a minimum total of 4WLtc. The execution of each if statement

at Lines 4 and 8, requires the execution of two comparisons on the pixel value and the

flag intervalfound in registers, the execution of one logical AND between registers

and the execution of the conditional branch of the if statement each with cost 1tc,

therefore a total of 4WLtc for each of the two if statements. Since every pixel of zero

image has 0 value, the flag intervalfound is always 0 and the conditions of the two if

statements in Lines 4 and 8 are always false. This also means that both if statements

are always executed with a total of 8 WLtc. Moreover, L movements from register to

memory of the ir[].irno values with a minimum total of 4Ltc are required. Therefore, it

is concluded that a total of 14WLtc+6Ltc is required for the zero image.

In other images that contain a number m of intervals, there are m interval starting

pixels and m interval ending pixels. For the interval starting pixels the condition of the

1st if statement is true and therefore the execution of the first if statement with 4mtc,

the m settings of the flag intervalfound with mtc, the m settings of the coordinate x1

with mtc and m unconditional jumps to return to the next pixel checking with mtc are

required . The second if statement at Line 8 is not executed. Moreover, m movements

from register to memory of the values of x1 with a minimum total of 4mtc are required.

Therefore, for interval starting pixels, a total of 11mtc is required for the two if

statements.

For the m interval ending pixels, the two if statements are executed with 8mtc and also

the condition of the second if statement is true for interval ending pixels. Therefore

the two variable settings intervalfound and x2 and the increment of ir[].irno are

executed and also m unconditional jumps to return to the next pixel checking with a

total 4mtc are required for the execution of the branch of the 2nd if statement.

26

Moreover, m movements from register to memory of the values of x2 with a minimum

total of 4mtc are required and the total time units for the interval endings is 16mtc.

Since 2m pixels of the m intervals require different latency times, the term 2mtc

should be subtracted from the term 14WLtc+6Ltc of the zero images. Therefore, the

instruction latency of interval extraction for a WxL image that contains m number of

intervals using the Algorithm 2 is:

lg 2 _ 14 6 2 11 16 14 6 25

lg 2 _ 14 25

A lat WL L m m m WL L m

A lat WL m

(16)

According to the above relation, the significance of the image size to the execution

time of Algorithm 2 is much greater than the significance of the number of the

extracted intervals, since usually WL >> m. Even in the case of the Chess-10 image

with size (30000x30000), which contains 89 10 pixels and 645 10 intervals, the term

14WL is 11.2 times greater than the term 25m, while in Chess-1 image with size

(30000x30000), the term 14WL is 1.1 times greater than the term 25m.

References

[1] Samet H. (1984) The quadtree and related hierarchical data structures.

Computing Survey 16:187-260

[2] Capon J. (1959) A propabilistic model for run-length coding of pictures. IRE

Trans. Information Theory IT-5:157-163

[3] Pratt W.K. (1991) Digital Image Processing 3rd edn. John Wiley & Sons, New

York

[4] Piper J. (1985) Efficient implementation of skeletonisation using interval

coding. Pattern Recognition Letters 3:389-397

[5] Freeman H. (1974) Computer processing of line drawings. ACM Computing

Surveys 6:57-97

[6] Paglieroni D.W., Jain A.K. (1988) Control point transfroms for shape

representation and measurement. Computer Vision, Graphics and Image

Processing 42:87-111

[7] Kashyap R.L., Chellappa R. (1981) Stochastic models for closed boundary

analysis: Representation and reconstruction. IEEE Trans. Information Theory,

IT-27:627-637

27

[8] Spiliotis I., Mertzios B. (1996) Fast algorithms for basic processing and

analysis operations on block representated binary images. Pattern Recognition

Letters 17:1437-1450

[9] Spiliotis I., Mertzios B. (1998) Real-time computation of two-dimensional

moments on binary images using image block representation. IEEE Trans

Image Processing 7:1609-1615

[10] Spiliotis I., Mertzios B. (1997) A Fast Parallel Skeletonization Algorithm on

Block Represented Binary Images. Elektrik 1:161-173

[11] Spiliotis I., Mertzios B. (1997) A Fast Skeleton Algorithm on Block

Represented Binary Images. In: 13th International Conference on Digital

Signal Processing (DSP97)

[12] Gatos B., Perantonis S., Papamarkos N. (1996) Accelerated Hough Transform

using rectangular block decomposition. Electronic Letters 32:730-732

[13] Spiliotis I., Boutalis Y. (2011) Parameterized real-time moment computation

on gray images using block techniques. Journal of Real-Time Image

Processing 6:81-91

[14] R. Chandra, L. Dagum, D. Kohr , D. Maydan , J. McDonald, R. Menon (2001)

Parallel Programming in OpenMP, Academic Press, USA

[15] Chatzidoukas P.E., Dimakopoulos V.V., Delakis M., Carcia C. (2009) A high-

performance face detection system using OpenMP. Concurrency Comput:

Pract.Exper. 21:1819-1837

[16] Rasmussen M., Stuart M., Karlsson S., (2009) Parallelism and Scalability in

an Image Processing Application. Int J Parallel Prog 37:306–323

[17] Mahmoudi R., Akil M., Hedi Bedoui M. (2017) Concurrent computation of

topological watershed on shared memory parallel machines. Parallel

Computing 69 : 78–97

[18] Szwoch G., Ellwart D., Czyzewski A. (2016) Parallel implementation of

background subtraction algorithms for real-time video processing on a

supercomputer platform. Journal of Real-Time Image Proc 11:111–125

[19] Cabaret L., Lacassagne L., Etiemble D. (2016) Parallel Light Speed Labeling:

an efficient connected component algorithm for labeling and analysis on

multi-core processors. Journal of Real-Time Image Processing, DOI

10.1007/s11554-016-0574-2

28

[20] Hosny K. et al. (2017) Fast computation of 2D and 3D Legendre moments

using multi-core CPUs and GPU parallel architectures. Journal of Real-Time

Image Processing, DOI 10.1007/s11554-017-0708-1

[21] Lu Y. et al., (2016) Parallelizing image feature extraction algorithms on multi-

core platforms. Journal of Parallel and Distributed Computing 92: 1–14

[22] G.M. Amdahl (1967) Validity of the Single-Processor Approach to Achieving

Large-Scale Computing Capabilities. Proc. Am. Federation of Information

Processing Societies Conf., AFIPS Press: 483-485

[23] J. L. Gustafson (1988) Reevaluating Amdahl’s Law. Comm. ACM 31 : 532-

533

[25] Karp A.H., Flatt H.P. (1990) Measuring Parallel Processor Performance.

Comm ACM 33 : 539-543

[26] X-H. Sun and J. L. Gustafson (1991) Toward a better parallel performance

metric. Parallel Computing 17 : 1093-1109

[27] A.Y. Grama, A. Gupta, V. Kumar (1993) Isoefficiency: Measuring the

Scalability of Parallel Algorithms and Architectures. IEEE Parallel Distrib.

Systems 1: 12-21

[28] Quinn M.J. (2003) Parallel Programming in C with MPI and OpenMP.

McGraw-Hill.

[29] Intel Corporation (2017) Step by Step Performance Optimization with Intel®

C++ Compiler, https://software.intel.com/en-us/articles/step-by-step-

optimizing-with-intel-c-compiler,

[30] Intel Corporation (2016) Intel® 64 and IA-32 Architectures Optimization

Reference Manual. http://www.intel.com/content/dam/www/public/us/en

/documents/manuals/64-ia-32- architectures-optimization-manual.pdf

[31] Fog A. (2018) Instruction tables: Lists of instruction latencies, throughputs

and micro-operation breakdowns for Intel, AMD and VIA CPUs.

https://www.agner.org/optimize

[32] Hutcheson A., Natoli V. (2011) Memory Bound vs . Compute Bound : A

Quantitative Study of Cache and Memory Bandwidth in High Performance

Applications. Stone Ridge Technology, Internal White Paper.

[33] ChenJack S., Dongarra J., Hsiung C. (1984) Multiprocessing linear algebra

algorithms on the CRAY X-MP-2: Experiences with small granularity. Journal

of Parallel and Distributed Computing 1, 22-31.

29

[34] Chen D.-K., et al (1990) The Impact of Synchronization and Granularity on

Parallel Systems. Proc. 17th Annual Intern. Symposium Computer

Architecture, Seattle, Washington, USA.

[35] Gentile A.,Sander S., Wills L., Wills S., (2004) The impact of grain size on the

efficiency of embedded SIMD image processing architectures. Journal of

Parallel and Distributed Computing 64: 1318-1327.

[36] Intel Corporation (2011) Avoiding and Identifying False Sharing Among

Threads. https://software.intel.com/en-us/articles/avoiding-and-identifying-

false-sharing-among-threads

[37] Cisco inc. (2017) Visual Networking Index: Forecast and Trends, 2017–2022

White Paper. https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-741490.html

30

Table 1. The time complexities t1, t2, t3 of Algorithms 1, 2, 3 expressed in msec, using different compiler optimization levels, for the test images of size

(30000x30000).

Image Zero Shapes Page c10

Size 30000x30000 30000x30000 30000x30000 30000x30000

Opt level O0 O2 O3 O0 O2 O3 O0 O2 O3 O0 O2 O3

t1 3289.08 942.89 949.23 3285.56 1088.36 1089.34 3347.42 1028.78 1031.12 4383.37 2145.81 2200.24

t2 3063.28 1271.07 1286.11 3048.70 1399.74 1399.81 3073.11 1340.93 1336.96 3398.19 2367.19 2346.37

t3 0.092 0.082 0.079 7.74 4.69 4.70 27.74 14.28 13.52 1046.41 241.29 244.77

Table 2. The time complexities of Algorithm 4 expressed in msec, using different types and chunksize of loop scheduling, for test images of different sizes. L

is the number of image rows and P=40 is the number of threads. The results are similar for all the image sizes used.
Loop

Scheduling
Chunksize

Shapes

4Kx4K

Shapes

16Kx16K

Page

4Kx4K

Page

16Kx16K

Chess-10

4Kx4K

Chess-10

16Kx16K

Static L/P 1.43 23.38 1.40 22.61 1.70 29.24

Dynamic 1 0.90 13.74 1.89 19.31 7.18 112.66

Dynamic L/4P 0.87 14.31 0.98 18.78 1.47 23.99

Dynamic 2L/4P 1.08 20.93 1.12 18.69 1.71 28.30

Dynamic 3L/4P 1.12 18.73 1.23 17.43 2.00 30.77

Dynamic L/P 1.31 24.39 1.41 23.22 1.65 27.81

Guided Smallest 1 0.76 11.94 0.82 13.24 1.51 22.23

Guided Smallest L/8P 0.92 13.09 0.93 14.62 1.56 22.98

Guided Smallest L/4P 0.81 13.59 0.87 13.37 1.52 22.48

31

Table 3. First (upper) part:The execution times of Algorithms 1, 2, 3; second part: The execution time t4, the absolute speedup SA4 and the experimentally

determined serial fraction eZ4 of the parallel Algorithm 4; third part: The execution time t5, the absolute speedup SA5 and the experimentally determined serial

fraction eZ5 of the parallel Algorithm 5; fourth part: The execution time tPIBR, the relative speedup SR and the relative efficiency ER of the PIBR algorithm

using 1 to 40 cores for the Zero images of different sizes. All the time complexities are the average of 1000 runs and are expressed in msec.

Image size 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000

t1 1.12 2.2 4.41 17.51 69.99 279.8 942.9

t2 1.48 2.93 5.89 23.37 93.21 378.18 1271.07

t3 0.001 0.002 0.003 0.005 0.017 0.040 0.082

Cores t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4 t4 SA4 eZ4

1 1.49 0.99 2.96 0.99 5.97 0.99 23.40 1.00 93.27 1.00 379.02 1.00 1248.63 1.02

2 0.75 1.97 0.014 1.50 1.95 0.024 2.96 1.99 0.005 11.74 1.99 0.005 47.46 1.96 0.018 192.56 1.96 0.018 631.21 2.01 -0.007

4 0.38 3.89 0.009 0.75 3.91 0.008 1.50 3.93 0.006 5.92 3.95 0.004 23.58 3.95 0.004 96.08 3.94 0.005 318.53 3.99 0.001

8 0.20 7.40 0.012 0.40 7.33 0.013 0.78 7.55 0.008 3.07 7.61 0.007 12.30 7.58 0.008 51.04 7.41 0.011 166.17 7.65 0.007

16 0.12 12.33 0.020 0.22 13.32 0.013 0.41 14.37 0.008 1.60 14.61 0.006 6.29 14.82 0.005 26.40 14.33 0.008 86.42 14.71 0.006

32 0.09 16.44 0.031 0.13 22.54 0.014 0.23 25.61 0.008 0.82 28.50 0.004 3.17 29.40 0.003 13.57 27.87 0.005 43.57 29.17 0.003

40 0.08 18.50 0.030 0.12 24.42 0.016 0.20 29.45 0.009 0.69 33.87 0.005 2.66 35.04 0.004 12.26 30.85 0.008 38.29 33.20 0.005

Cores t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5 t5 SA5 eZ5

1 0.003 0.33 0.005 0.40 0.008 0.38 0.015 0.33 0.039 0.44 0.086 0.47 0.154 0.53

2 0.003 0.33 5.00 0.005 0.40 4.00 0.006 0.50 3.00 0.011 0.45 3.40 0.028 0.61 2.29 0.064 0.63 2.20 0.109 0.75 1.66

4 0.002 0.50 2.33 0.004 0.50 2.33 0.005 0.60 1.89 0.008 0.63 1.80 0.018 0.94 1.08 0.034 1.18 0.80 0.063 1.30 0.69

8 0.002 0.50 2.14 0.004 0.50 2.14 0.004 0.75 1.38 0.006 0.83 1.23 0.017 1.00 1.00 0.029 1.38 0.69 0.051 1.61 0.57

16 0.001 1.00 1.00 0.003 0.67 1.53 0.003 1.00 1.00 0.005 1.00 1.00 0.014 1.21 0.81 0.026 1.54 0.63 0.046 1.78 0.53

32 0.001 1.00 1.00 0.003 0.67 1.52 0.002 1.50 0.66 0.004 1.25 0.79 0.012 1.42 0.70 0.022 1.82 0.54 0.043 1.91 0.51

40 0.001 1.00 1.00 0.002 1.00 1.00 0.002 1.50 0.66 0.004 1.25 0.79 0.010 1.70 0.58 0.020 2.00 0.49 0.039 2.10 0.46

Cores tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER tPIBR SR ER

1 1.49 1.00 1.00 2.97 1.00 1.00 5.98 1.00 1.00 23.42 1.00 1.00 93.31 1.00 1.00 379.11 1.00 1.00 1248.78 1.00 1.00

2 0.75 1.98 0.99 1.51 1.97 0.99 2.97 2.02 1.01 11.75 1.99 1.00 47.49 1.96 0.98 192.62 1.97 0.98 631.32 1.98 0.99

4 0.38 3.91 0.98 0.75 3.93 0.98 1.51 3.97 0.99 5.93 3.95 0.99 23.60 3.95 0.99 96.11 3.94 0.99 318.59 3.92 0.98

8 0.20 7.39 0.92 0.40 7.34 0.92 0.78 7.63 0.95 3.08 7.61 0.95 12.32 7.58 0.95 51.07 7.42 0.93 166.22 7.51 0.94

16 0.12 12.34 0.77 0.22 13.30 0.83 0.41 14.47 0.90 1.61 14.59 0.91 6.30 14.80 0.93 26.43 14.35 0.90 86.47 14.44 0.90

32 0.09 16.41 0.51 0.13 22.29 0.70 0.23 25.77 0.81 0.82 28.42 0.89 3.18 29.32 0.92 13.59 27.89 0.87 43.61 28.63 0.89

40 0.08 18.43 0.46 0.12 24.30 0.61 0.20 29.59 0.74 0.69 33.74 0.84 2.67 34.95 0.87 12.28 30.87 0.77 38.33 32.58 0.81

32

Table 4. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Shapes images of

different sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs.

Image size 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000

Intervals 2,078 2,735 8,062 16,348 33,399 67,975 128,264

Blocks 1,672 2,302 7,041 11,247 16,547 22,942 36,207

t1 1.38 2.69 5.34 20.83 ` 326.23 1088.36

t2 1.71 3.33 6.72 26.50 105.09 416.73 1399.74

t3 0.035 0.043 0.165 0.469 1.138 2.290 4.693

Cores
ˆ
PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt

1 1.89 3.52 7.02 27.54 109.06 422.32 1436.64

2 1.07 0.92 1.94 1.76 3.97 3.56 15.21 13.97 57.65 54.75 222.20 213.47 700.47 732.63

4 0.53 0.47 0.97 0.90 2.07 1.85 7.70 7.09 28.20 27.26 108.84 107.34 355.47 361.94

8 0.31 0.25 0.56 0.49 1.15 1.01 4.14 3.79 15.25 14.37 58.69 56.51 187.39 189.78

16 0.18 0.15 0.32 0.27 0.65 0.56 2.32 2.11 8.12 7.47 30.87 29.34 98.47 99.14

32 0.14 0.11 0.22 0.17 0.38 0.31 1.32 1.16 4.41 3.88 16.31 15.00 50.65 50.53

40 0.13 0.11 0.18 0.15 0.34 0.28 1.17 0.99 3.69 3.25 14.76 12.72 44.64 42.80

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 2.06 1.03 2.01 1.00 1.97 0.99 1.97 0.99 1.99 1.00 1.98 0.99 1.96 0.98

4 4.04 1.01 3.90 0.97 3.80 0.95 3.89 0.97 4.00 1.00 3.93 0.98 3.97 0.99

8 7.51 0.94 7.23 0.90 6.94 0.87 7.26 0.91 7.59 0.95 7.47 0.93 7.57 0.95

16 12.79 0.80 13.08 0.82 12.65 0.79 13.05 0.82 14.60 0.91 14.39 0.90 14.49 0.91

32 17.69 0.55 20.34 0.64 22.72 0.71 23.84 0.75 28.13 0.88 28.16 0.88 28.43 0.89

40 17.86 0.45 23.15 0.58 25.44 0.64 27.73 0.69 33.60 0.84 33.20 0.83 33.57 0.84

33

Table 5. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Page images of different

sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs.

Image size 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000

Intervals 28,601 30,706 57,202 114,404 228,808 457,616 838,326

Blocks 18,753 22,092 21,563 26,385 27,972 29,972 119,471

t1 2.23 3.55 6.77 23.43 83.75 430.36 1028.78

t2 2.22 3.92 7.70 28.10 105.07 599.15 1340.93

t3 0.410 0.375 0.699 1.720 3.470 6.762 14.283

Cores
ˆ
PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt PIBRt ˆ

PIBRt PIBRt ˆ
PIBRt PIBRt

1 3.15 4.77 8.82 31.34 111.88 427.78 1388.82

2 3.40 1.97 3.74 2.70 6.34 4.88 20.89 17.72 64.16 58.07 328.83 216.76 692.17 701.45

4 1.63 1.26 1.98 1.66 3.47 2.79 10.68 9.33 31.29 30.88 160.13 111.26 349.75 352.30

8 1.23 0.92 1.39 1.03 2.08 1.81 6.05 5.27 17.87 17.27 87.20 58.46 186.30 187.06

16 0.62 0.68 0.90 0.69 1.28 1.15 3.76 3.53 10.16 9.85 46.78 31.44 100.15 99.20

32 0.56 0.43 0.76 0.47 0.78 0.81 2.41 2.15 6.11 5.82 25.42 17.17 53.81 51.55

40 0.54 0.41 0.55 0.43 0.74 0.76 2.24 1.87 5.10 5.27 23.00 15.64 47.53 45.72

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.60 0.80 1.76 0.88 1.81 0.90 1.77 0.88 1.93 0.96 1.97 0.99 1.98 0.99

4 2.49 0.62 2.87 0.72 3.16 0.79 3.36 0.84 3.62 0.91 3.85 0.96 3.94 0.99

8 3.41 0.43 4.63 0.58 4.88 0.61 5.94 0.74 6.48 0.81 7.32 0.91 7.42 0.93

16 4.62 0.29 6.88 0.43 7.69 0.48 8.87 0.55 11.36 0.71 13.60 0.85 14.00 0.88

32 7.40 0.23 10.21 0.32 10.88 0.34 14.57 0.46 19.24 0.60 24.92 0.78 26.94 0.84

40 7.73 0.19 11.01 0.28 11.55 0.29 16.81 0.42 21.21 0.53 27.36 0.68 30.38 0.76

34

Table 6. First part: The number of intervals, the number of blocks, the execution times of the Algororithms 1,2,3; second part: The predicted values ˆPIBRt and

the real values PIBRt of execution times of PIBR Algorithm; third part: The relative speedup and efficiency of PIBR Algorithm for the Chess-10 images of

different sizes. All the time complexities are expressed in msec and the real execution times are the average of 1000 runs.

Image size 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000

Intervals 52,734 103,584 209,916 839,680 3,358,720 13,426,686 45,000,000

Blocks 5,304 10,368 21,012 84,050 336,200 1,343,160 4,500,000

t1 2.66 4.95 9.91 41.37 162.72 633.43 2145.81

t2 2.74 5.44 10.98 43.90 174.80 688.31 2367.19

t3 0.288 0.569 1.391 6.070 19.877 74.220 241.287

Cores
ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

ˆ
PIBRt tPIBR

1 3.84 7.26 13.68 53.36 220.95 956.85 3168.01

2 2.99 1.87 5.41 3.97 10.41 7.51 45.83 30.76 146.15 117.42 557.18 526.26 1688.31 1715.82

4 1.35 1.07 2.44 2.32 4.80 4.18 18.58 16.92 49.26 67.67 214.58 286.72 507.44 912.45

8 0.98 0.72 1.83 1.39 3.06 2.45 11.50 10.63 34.83 41.80 134.47 178.31 321.95 524.11

16 0.51 0.49 1.21 0.86 2.00 1.46 8.21 6.29 23.85 26.40 89.75 98.00 226.86 289.63

32 0.45 0.35 1.07 0.55 1.26 1.01 5.92 3.90 17.73 15.67 61.97 57.20 172.58 178.33

40 0.44 0.32 0.77 0.51 1.23 0.94 5.77 3.64 14.83 14.67 56.54 51.27 157.84 166.74

Cores SR ER SR ER SR ER SR ER SR ER SR ER SR ER

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 2.05 1.02 1.83 0.91 1.82 0.91 1.73 0.87 1.88 0.94 1.82 0.91 1.85 0.92

4 3.58 0.90 3.14 0.78 3.27 0.82 3.15 0.79 3.27 0.82 3.34 0.83 3.47 0.87

8 5.35 0.67 5.24 0.65 5.59 0.70 5.02 0.63 5.29 0.66 5.37 0.67 6.04 0.76

16 7.90 0.49 8.42 0.53 9.36 0.59 8.49 0.53 8.37 0.52 9.76 0.61 10.94 0.68

32 11.10 0.35 13.12 0.41 13.50 0.42 13.67 0.43 14.10 0.44 16.73 0.52 17.77 0.56

40 11.85 0.30 14.12 0.35 14.60 0.36 14.68 0.37 15.06 0.38 18.66 0.47 19.00 0.48

35

Table 7. The number of cores and the image size required in order to maintain efficiency at value 0.80 for the test images of different sizes. Each

row presents the number of cores for a test image at different sizes.

1Kx1K 1920x1080 2Kx2K 4Kx4K 8Kx8K 16Kx16K 30000x30000

Image

Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores

Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted Real Predicted

Zero 14 14 22 20 30 28 40 >40 40 >40 38 38 40 >40

Shapes 16 8 13 4 18 6 21 9 40 20 40 34 40 >40

Page 2 1 3 1 4 1 6 1 7 7 28 22 36 28

Chess-10 6 1 3 1 3 1 4 1 4 1 4 3 6 4

Table 8. First part: The image size, the number of pixels in millions, the number of intervals in millions, the read transfer from memory in MB for

the image pixels, the write transfer to memory in MB for the intervals. Second part: The execution times of Algorithm 4 in msec for the Chess-1

images of different sizes; for sizes from 4Kx4K and greater the minimum memory bandwidth in GB/s.

LxW 1024x1024 1920x1080 2048x2048 4096x4096 8192x8192 16384x16384 30000x30000

Pixels (M) 1.05 2.07 4.19 16.78 67.11 268.44 900.00

Intervals (M) 0.52 1.04 2.10 8.39 33.55 134.22 450.00

Read (MB) 1.05 2.07 4.19 16.78 67.11 268.44 900.00

Write (MB) 4.19 8.29 16.78 67.11 268.44 1,073.74 3,600.00

Cores

t4

(ms)

t4

(ms)

t4

(ms)

t4

(ms)

Bandwidth

(GB/s)

t4

(ms)

Bandwidth

(GB/s)

t4

(ms)

Bandwidth

(GB/s)

t4

(ms)

Bandwidth

(GB/s)

1 2.33 4.57 9.35 45.10 1.86 173.52 1.93 646.65 2.08 2156.13 2.09

2 1.39 2.77 5.04 21.19 3.96 82.73 4.06 328.61 4.08 1094.78 4.11

4 0.81 1.60 2.57 10.63 7.89 41.43 8.10 163.75 8.20 536.53 8.39

8 0.47 0.89 1.51 5.75 14.59 34.22 9.81 119.13 11.27 379.26 11.87

16 0.33 0.53 0.97 8.39 9.99 101.28 3.31 588.56 2.28 1921.21 2.34

32 0.27 0.41 0.84 7.37 11.39 138.71 2.42 724.14 1.85 3012.83 1.49

40 0.25 0.38 0.81 6.06 13.84 142.80 2.35 795.09 1.69 2983.45 1.51

36

(a) (b)

(c) (d)

Fig. 4. The relative speedup from the execution of PIBR algorithm using up to 40 cores for (a) Zero, (b) Shapes, (c) Page and (d) Chess-10

images of different sizes.

37

Fig. 5. The number of cores required in order to maintain efficiency of the PIBR algorithm at level 0.80 for the test images of different sizes.

