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Abstract. The moments constitute a well-known tool for image analysis and recognition
tasks. The family of moments that has the most advantages is the discrete orthogonal moments.
A set of these moments is the Hahn moments, as they have a great number of advantages in
comparison with other sets of moments. The main disadvantage of moments, including Hahn
moments, is the high computational cost, which is increased as higher order moments are
involved in the computations, so the real-time analysis is hard to be done. We propose an effec-
tive approach for the computation of Hahn moments. The gray image is decomposed in a set of
binary images that are named as bitplanes. The most significant bitplanes are represented using
image block representation and their moments are computed fast using block techniques. The
least significant binary images are substituted by a constant ideal image called “half-intensity”
image, which has known Hahn moment values. The proposed method has low computational
error, low computational complexity, and under certain conditions is able to achieve real-time
processing rates. © 2020 SPIE and IS&T [DOI: 10.1117/1.JEI.29.1.013020]
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1 Introduction

The moments and moments functions are the main tools in image analysis,1–4 in image matching5

and retrieval,6 in image and object recognition,7,8 and in image watermarking applications,9

as they can be used as descriptors of features. Also 3-D images have been introduced recently,
so the fast computation of moments on them is another research field.10

The first moments that were used are based on geometric moments and their variations,
which are the central, normalized central, and moment invariants sets.11 The problem of these
moments was the large variations on the dynamic range of values and the numerical instabilities
due to the approximation of the integrals in digital images.11

For these reasons, the continuous orthogonal functions as basis set of moments are the most
suitable to be used, as they allow the representation of the image with no redundancy or infor-
mation overlap between the moment values. Well-known continuous orthogonal moment sets
are Zernike,12,13 Legendre,12 Fourier–Mellin.14

The discrete orthogonal moments are based on discrete orthogonal polynomials, and they
have better image representation ability than the continuous orthogonal moments. The most
familiar discrete orthogonal moment sets are the Tchebichef,15 the Krawtchouk,16 and the Hahn
moments.17,18 Also the reconstruction of the image from a finite number of moment values
(Refs. 15 and 16) is indicative of the discriminative power of the moments; for this reason,
moments have been used extensively as features for image description and analysis.

The most significant problem of the moments is that the computation of them requires high
computational effort, especially as the moment order increases. The order of the moments deter-
mines the type of image information described. The low-order moments represent the coarse
features of the image, whereas the high-order moments represent more detailed features and
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require a high computational time. As a result, a number of approaches have been proposed for
the reduction of this computational effort.

There were many tries to decrease this computational cost. Spiliotis and Mertzios19 proposed
a real-time method of geometric moment computation on binary images, which is based in an
innovative binary image representation called image block representation (IBR).20 Spiliotis and
Boutalis21,22 proposed an extension of the IBR for gray images, which permits the real-time
computation of geometric moments in gray images. On the other hand, Papakostas et al.23 pro-
posed the image slice representation (ISR) for gray images, which is used for the computation of
discrete orthogonal moments.

In this paper, the method of Spiliotis and Boutalis is employed for the computation of Hahn
moments on grayscale images. In the proposed method, the gray image is decomposed in a set of
binary images and the most significant binary images are represented using IBR. The least sig-
nificant binary images can be substituted by a constant ideal image called “half-intensity” image,
which has known Hahn moment values. The proposed method has very low computational com-
plexity with low computational error, as it will be shown.

The remainder of this paper is organized as follows. Section 2 reviews the Hahn moments and
their applications; in Sec. 3, the block representation of binary and gray images is presented; Sec. 4
presents the proposed method for the computation of Hahn moments on grayscale images; Sec. 5
presents the ISR method for the computation of Hahn moments in gray images; in Sec. 6, the
experimental results are demonstrated and discussed; and finally in Sec. 7, there is the conclusion.

2 Hahn Moments

The 2-D Hahn moment of order pq of an image intensity function fðx; yÞ with size N ×M is
defined as

EQ-TARGET;temp:intralink-;e001;116;429Hpq ¼
XN−1

x¼0

XM−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞfðx; yÞ; (1)

where p ¼ 0;1; 2; : : : ; N − 1, q ¼ 0;1; 2; : : : ;M − 1. The adjustable parameters μ; ν ðμ > −1;
ν > −1Þ can control the shape of polynomials. More specifically, if the parameters μ; ν ¼ 0,
then there will be global extraction of the features of the image. In any other case, there will
be local extraction of the features of the image, it depends on the values of the parameters
μ; ν.17,18 For example, if μ ¼ 25 and ν ¼ 75, then features will be extracted from the top left
of the image. In this paper, the values of the parameters that are used in experimental evaluation
are μ; ν ¼ 0, as the global extraction of the features of the image is wanted. The hðμ;νÞp ðx; NÞ is the
p’th order orthogonal Hahn polynomial, defined by the following recursive relation:

EQ-TARGET;temp:intralink-;e002;116;281Ahðμ;νÞp ðx; NÞ ¼ B

ffiffiffiffiffiffiffiffiffi
d2p−1
d2p

s
hðμ;νÞp−1 ðx; NÞ þ C

ffiffiffiffiffiffiffiffiffi
d2p−2
d2p

s
hðμ;νÞp−2 ðx; NÞ; p ¼ 2;3; : : : ; N − 1; (2)

where

EQ-TARGET;temp:intralink-;e003;116;218hðμ;νÞ0 ðx; NÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðxÞ
d20

s
hðμ;νÞ1 ðx; NÞ ¼ ½ðN þ ν − 1ÞðN − 1Þ − ð2N þ μþ ν − 2Þx�

ffiffiffiffiffiffiffiffiffi
ρðxÞ
d21

s
: (3)

Also the parameters A, B, and C are defined as
EQ-TARGET;temp:intralink-;e004;116;154

A ¼ pð2N þ μþ ν − pÞ
ð2N þ μþ ν − 2pþ 1Þð2N þ μþ ν − 2pÞ ;

B ¼ x −
2ðN − 1Þ þ ν − μ

4
−

ðμ2 − ν2Þð2N þ μþ νÞ
4ð2N þ μþ ν − 2pþ 2Þð2N þ μþ ν − 2pÞ ;

C ¼ ðN − pþ 1ÞðN − pþ μþ 1ÞðN − pþ νþ 1ÞðN − pþ μþ νþ 1Þ
ð2N þ μþ ν − 2pþ 2Þð2N þ μþ ν − 2pþ 1Þ : (4)

Spiliotis, Karampasis, and Boutalis: Fast computation of Hahn moments on gray images. . .

Journal of Electronic Imaging 013020-2 Jan∕Feb 2020 • Vol. 29(1)



The weighting function ρðxÞ can be solved using the recursive relation with respect to x as

EQ-TARGET;temp:intralink-;e005;116;723ρðxÞ ¼ ðN − xÞðN − ν − xÞ
xðxþ μÞ ρðx − 1Þ; x ¼ 1;2; : : : ; N − 1; (5)

with ρð0Þ ¼ 1
Γðμþ1ÞΓðNþνÞΓðN−pÞ.

The square norm d2p has the following expression:

EQ-TARGET;temp:intralink-;e006;116;650

d2p ¼ Γð2N þ μþ ν − pÞ
ð2N þ μþ ν − 2p − 1ÞΓðN þ μþ ν − pÞ
×

1

ΓðN þ μ − pÞΓðN þ ν − pÞΓðpþ 1ÞΓðN − pÞ : (6)

It should be mentioned that the method that is used for the computation of Gamma distribution
is ΓðxÞ ¼ ∫ ∞

0 t
x−1e−tdt, as the parameters μ and νmay not be integers. However, as has been said

before, in this paper, the μ; ν ¼ 0 and all the other parameters that are used in Eqs. (7) and (8) are
integers. So the function that is used to calculate the Gamma distribution is ΓðxÞ ¼ ðx − 1Þ!,
which is computed recursively.

The polynomial hðμ;νÞq ðy;MÞ is calculated in the same way as the hðμ;νÞp ðx; NÞ. For a square

image N × N, the two polynomials have identical values, hðμ;νÞp ðx; NÞ ¼ hðμ;νÞq ðy; NÞ, ∀ x ¼ y.
It is worth noting that the values of the polynomials are computed fast without significant

complexity, and also they can be precalculated, stored, and used in the computation of moments
in Eq. (1).

2.1 Image Reconstruction

An image with size N ×M can be reconstructed from a set of Hahn moments up to the order
P ×Q, using the following relation:

EQ-TARGET;temp:intralink-;e007;116;389fðx; yÞ ¼
XP−1
p¼0

XQ−1

q¼0

QpqKpðx; s1; NÞKqðy; s2;MÞ; (7)

where x ¼ 0;1; 2; : : : ; N − 1, y ¼ 0;1; 2; : : : ;M − 1, and P ≤ N, Q ≤ M. If the number of Hahn
moments used for reconstruction is equal to the number of image pixels, i.e., P ¼ N, Q ¼ M,
then the reconstructed image is identical to the original image.

2.2 Application of Hahn Moments

The Hahn moments are considered as a generalization of Tchebichef and Krawtchouk moments.
The Tchebichef moments are able to capture the global features of an image, whereas the
Krawtchouk moments capture local features. So the usage of Hahn moments is very useful since
the selection of the local or global descriptors can be chosen.

Since the introduction of Hahn moments from Zhou et al.18 in 2005 and from Yap et al.17 in
2007, a significant number of research papers concerning the applications of the Hahn moments
and their variations have been published; this fact indicates their ability for image description.
The Hahn moments and their variations have been used for face recognition,24 the description
and reconstruction of 3-D images,25,26 and feature extraction of encrypted images.27 The radial
Hahn moments have been used for 2-D and 3-D image recognition.28 The Hahn moment invar-
iants have been used for image watermarking29 and improved image classification.30,31

Hahn moments outperform Tchebichef and Krawtchouk moments in image description tasks;
this is implied by lower error on images reconstructed from Hahn moments in comparison with
the other moment sets as reported in Ref. 18. A similar study32 demonstrated that Hahn moments
have better image reconstruction quality in comparison with Tchebichef, Krawtchouk, Charlier,
Meixner, and Racah moments.
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3 Block Representation of Binary and Gray Images

3.1 Block Representation of Binary Images

In a binary image, the object level pixels have intensity 1, whereas the background pixels have
intensity 0. The pixels with object level are represented by a set of nonoverlapping rectangles,
whose edges are parallel to the axes, in such a way that every object pixel belongs to only one
rectangle. These formed rectangles are called blocks and this representation is called IBR. The
following definitions clarify the IBR.19

Definition 1 A block is called a rectangular area of the image with edges parallel to the axes
of the image, containing pixels with value 1, i.e., object level luminance. ▯

Definition 2 A binary image is block represented if it is represented by a set of nonoverlap-
ping blocks, and each image pixel with value 1 belongs to one and only one block. ▯

The IBR process as described in Algorithm 1 is a fast process without numerical compu-
tations and requires one image scan and simple pixel checking operations.

A binary image represented by blocks described as fðx; yÞ ¼ fbi∶i ¼ 0;1; : : : ; k − 1g, where
k is the number of the blocks and bi is the i’th block that is described by the coordinates of two
opposite diagonal angular points as

EQ-TARGET;temp:intralink-;e008;116;495bi ¼ ðx1;bi ; x2;bi ; y1;bi ; y2;biÞ: (8)

3.2 Image Block Representation of Gray Images

A gray image of dimensions N ×M has an intensity function gðx; yÞ and 2n gray levels. This
gray image can be decomposed into n binary images. Each of these binary images is a bitplane of
the original gray image derived from the bits of the same significance of the values of the cor-
responding pixel of the gray image. The first binary image is composed of the most significant
bits (MSB) of the pixel values of the gray image g and is defined as pn−1, the second most
important is defined as pn−2, and the bitplane with the least significant bits (LSB) is defined
as p0. The relation between the gray image gðx; yÞ and the n binary images is

EQ-TARGET;temp:intralink-;e009;116;353gðx; yÞ ¼ 2n−1pn−1ðx; yÞ þ : : : þ 21p1ðx; yÞ þ 20p0ðx; yÞ: (9)

An example of the decomposition of an image is presented in Fig. 1, where the initial image of
Fig. 1(a) with 256 gray levels is decomposed to the 8 corresponding binary images of
Figs. 1(b)–1(i).

It is easy to notice that the binary images of lower order are noisy. Particularly, the reduction
of the computational cost of moment calculation is based on this observation and in the fact that
the n binary images resulting from the decomposition of the gray image can be represented by
blocks.

Algorithm 1 Image block representation.

Step 1: Consider each line y of the image f and find the object level intervals in line y .

Step 2: Compare intervals of line y with blocks of line y − 1.

Step 3: If an interval does not match with any block, this is the beginning of a new block.

Step 4: If a block matches with an interval, the end of the block is in the line y .
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4 Proposed Method for Fast Computation of Hahn Moments on Gray
Images

4.1 Fast Computation of Hahn Moments on Block Represented Binary
Images

Since the background pixels have intensity 0, only the pixels that describing the object will
take part in the calculation of the moments. Thus the Hahn moments of a binary image can
be defined as

EQ-TARGET;temp:intralink-;e010;116;225Hpq ¼
X
x

X
y

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞ ∀ x; y∶ fðx; yÞ ¼ 1: (10)

Since all the pixels of image fðx; yÞ with value 1 belong to the k blocks, Eq. (10) rewritten as

EQ-TARGET;temp:intralink-;e011;116;169Hpq ¼
Xk−1
i¼0

Xx2;bi
x¼x1;bi

Xy2;bi
y¼y1;bi

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞ: (11)

Exploiting the rectangular form of the blocks with edges parallel to the image axes, the Hahn
moments of a block b are calculated as follows:

Fig. 1 Decomposition of the gray image Horses with size 1024 × 1024 and 256 gray levels into 8
binary images. (a) The original gray image. (b)–(i) The binary images p7 at (b) derived from the
MSB, and p0 at (i) derived from the LSB.
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EQ-TARGET;temp:intralink-;e012;116;735

Hb
pq ¼

Xx2;b
x¼x1;b

Xy2;b
y¼y1;b

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞ

¼ hðμ;νÞp ðx1;b; NÞ
Xy2;b
y¼y1;b

hðμ;νÞq ðy;MÞþ · · · þhðμ;νÞp ðx2;b; NÞ
Xy2;b
y¼y1;b

hðμ;νÞq ðy;MÞ

¼
Xx2;b
x¼x1;b

hðμ;νÞp ðx; NÞ
Xy2;b
y¼y1;b

hðμ;νÞq ðy;MÞ: (12)

Exploiting the rectangular shape of the block, the double sum of Hahn polynomials rewritten as
the product of two separate sums, each sum contains the polynomial terms for the horizontal and
vertical axis of the block, respectively. Using Eqs. (11) and (12) rewritten as

EQ-TARGET;temp:intralink-;e013;116;587Hpq ¼
Xk−1
i¼0

Xx2;bi
xk¼x1;bi

hðμ;νÞp ðx; NÞ
Xy2;bi

yk¼y1;bi

hðμ;νÞq ðy;MÞ: (13)

4.2 Fast Computation of Hahn Moments on Block Represented Gray Images

Suppose that the pixel values of a gray image are in range ½0; 2n − 1� and the gray image con-
sisted of n binary images. Substituting Eq. (9) into Eq. (1), the following relation that connects
the calculation of the Hahn moments of the gray image and the n binary images is obtained by

EQ-TARGET;temp:intralink-;e014;116;466

Hpq ¼
XN−1

x¼0

XM−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞgðx; yÞ

¼
XN−1

x¼0

XM−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞ½2n−1pn−1ðx; yÞþ · · · þ21p1ðx; yÞ þ 20p0ðx; yÞ�

¼
�
2n−1

XN−1

x¼0

XM−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞpn−1ðx; yÞþ · · ·

þ 20
XN−1

x¼0

XM−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞp0ðx; yÞ
�

¼ ð2n−1Hpðn−1Þpqþ · · · þ21Hp1pq þ 20Hp0pqÞ

¼
Xn−1
i¼0

2iHpipq; (14)

where pn−1ðx; yÞ; : : : ; p1ðx; yÞ; p0ðx; yÞ are the binary images that compose the gray image
gðx; yÞ and Hpðn−1Þpq; : : : ; Hp1pq; Hp0pq are the Hahn moments of these binary images, which
are calculated using IBR and Eq. (13).

It is easy to notice from Eq. (14) that due to the weight factors 2i, the moments of the bitplanes
pi do not contribute equally to the gray image. Thus the less important binary images contribute
less to the moments of the gray image. Moreover, the lower order bitplanes look noisy with con-
tinuous black-and-white transitions and are similar to a chessboard image or simply with a half-
intensity image h with constant intensity 1/2. This can be evaluated by the next Lemma.

Lemma 1. The moment values of an image with intensity 1/2 are the half of the moment
values of an image with intensity 1.

Proof. Considering the “full-intensity” image f ¼ 1 ∀ x; y as one block and exploiting
its rectangular form, then according to Eq. (12), the Hahn moment values of the full-intensity

image are Hfpq ¼
P

∀ xh
ðμ;νÞ
p ðx; NÞ · P∀ yh

ðμ;νÞ
q ðy;MÞ. Correspondingly, the moment values of

the half-intensity image h ¼ 1∕2, ∀ x; y are
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EQ-TARGET;temp:intralink-;st4;116;735Hhpq ¼
1

2

X
∀ x

hðμ;νÞp ðx; NÞ ·
X
∀ y

hðμ;νÞq ðy;MÞ ¼ Hfpq
2

: ▯

The approximated Hahn moments Hm;pq, by replacing the m least significant biplanes with the
half-intensity image hðx; yÞ is

EQ-TARGET;temp:intralink-;e015;116;671Hm;pq ¼
Xn−1
i¼m

2iHpipq þ
Xm−1

j¼0

2jHhpq ¼
Xn−1
i¼m

2iHpipq þHhpq
Xm−1

j¼0

2j: (15)

In Eq. (15), the Hahn moments Hpipq of the (n −m) higher order bitplanes are computed fast
using IBR and Eq. (12). The Hahn moments Hhpq of a half-intensity plane are computed fast
using Lemma 1. Additional computational time gains can be obtained if the Hahn moments
Hhpq are precalculated, stored, and used in Eq. (15).

4.3 Representation Performance Evaluation on Gray Images

As expected, there is an approximation error from the replacement of the lower order bitplanes
with the half-intensity image. The moments of different orders do not have the same significance
as features for image description, therefore, the direct measure of the error between the exact
HE;pq and the approximated moment values Hm;pq, using m half-intensity images, is not an
appropriate criterion for the evaluation of the proposed method. Since the moments are image
descriptors, a more suitable consideration of the moment error is the indirect measure of the
differences among the images described by the moments. Thus for the input gray image gðx; yÞ,
the exact moment values HE;pq are computed from order 0 × 0 up to the order P ×Q and are
used to reconstruct the image ĝE;PQðx; yÞ; whereas for the input image gm ¼ p7: : : pmhm−1: : : h0
composed from (8 −m) high-order bitplanes and m half-intensity planes the approximated
moment values Hm;PQ are computed up to the order P ×Q and are used to reconstruct the
image ĝm;PQðx; yÞ.

In order to evaluate the quality of the approximated reconstructed image ĝm;PQ in comparison
with the exact reconstructed image ĝE;PQ, a number of metrics was utilized is this research.
Initially, an intuitive indication is given from the observation of the two images by the human
visual system. Awell-known image quality metric is the normalized image reconstruction error
(NIRE),33,34 which is the normalized square error between the exact f and the approximated
image g function and defined as

EQ-TARGET;temp:intralink-;e016;116;322NIREðf; gÞ ¼
P

x

P
y ½fðx; yÞ − gðx; yÞ�2P
x

P
y
f2ðx; yÞ : (16)

The structural similarity index (SSIM)35 is an image quality metric that is related to known
characteristics of the human visual system and defined as

EQ-TARGET;temp:intralink-;e017;116;243SSIMðf; gÞ ¼ ð2μfμg þ C1Þð2σfg þ C2Þ
ðμ2f þ μ2g þ C1Þðσ2f þ σ2g þ C2Þ ; (17)

where f and g are the original and the distorted image; μf, μg, σf, σg, σfg are the local means,
standard deviations, and cross-covariance for images f, g; and the constants C1 ¼ ð0.01LÞ2,
C2 ¼ ð0.03LÞ2, where L is the dynamic range of the pixel values (L ¼ 255 for 8-bit gray
images). Experimental results from these metrics are demonstrated in Sec. 6.

5 ISR Method for Computation of Hahn Moments on Gray Images

The well-known ISR method for fast computation of Hahn moments is presented here for com-
parison with our method. Papakostas et al.23 proposed the ISR method, for the fast computation
of Hahn moments on the grayscale images. The main idea behind the ISR is that a grayscale
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image consists of pixels with different intensities with values in the range of [0, 255], as it is
shown in Fig. 2(a). The method aims at the decomposition of the gray image into L binary slices
as well as the maximum intensity value of the image’s pixels, as it is described in Fig. 2(b). For
example, if a grayscale image has 256 brightness levels, the number of slices that will be
extracted is 256. Each slice is a binary image that has only the values 0 or fi ∈ ½1;255�.

As the grayscale image has been decomposed into L binary slices, the IBR method can be
used on each of them. The Hahn moments of a grayscale image fðx; yÞ are computed by

EQ-TARGET;temp:intralink-;e018;116;481

HISR;pq ¼
XN−1

x¼0

XN−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞ
XL
i¼1

fiðx; yÞ

¼
XL
i¼1

XN−1

x¼0

XN−1

y¼0

hðμ;νÞp ðx; NÞhðμ;νÞq ðy;MÞfiðx; yÞ

¼
XL
i¼1

fiHISR;pqðiÞ; (18)

where HISR;pqðiÞ is the (pþ q)’th order Hahn moment of the i’th binary slice and can be
computed with the IBR.

Where fiðx; yÞ is
EQ-TARGET;temp:intralink-;e019;116;324fðx; yÞ ¼ ffiðx; yÞ; i ¼ 1;2; : : : ; Lg; fiðx; yÞ ¼ fbij; j ¼ 0;1; : : : ; Ki − 1g; (19)

where bij is the j’th block of slice i and Ki is the number of image blocks having intensity fi.
Each block is described by the coordinates of the upper left and down right corner in vertical and
horizontal axes.

Nevertheless, this method’s computational time of Hahn moments is similar with the 2-D
method, as will be shown in the next section.

6 Experimental Results

For the experimental evaluation, a Tyan computer with total 8 AMD Opteron cores at 2.2 GHz
and 16 GB of memory was used. The operating system was Linux, all the programs implemented
in C programming language, compiled with gcc for serial execution using one CPU core.

In this section, the experimental results for the computation of Hahn moments for binary
and gray images using the direct method, the ISR method and the proposed IBR method are

demonstrated. In the conducted experiments, the values of the Hahn polynomials hðμ;νÞp ðx; NÞ
hðμ;νÞq ðy;MÞ are precalculated, stored, and used in the computations. The computational com-
plexity for the computation of the Hahn polynomials is presented in Table 1. It is concluded
that the required execution time is negligible in comparison with the required execution time
for the computation of Hahn moments.

Fig. 2 (a) Grayscale image with intensity [0, 255] and (b) the ISR decomposition in 256 binary
intensity slices.
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6.1 Time Complexities for Binary Images

For the case of binary images, the Hahn moment values computed using the proposed method are
identical with the moment of the direct method. In Fig. 3, some test binary images that have been
used in the experiments in different sizes from (1K × 1K) to (30;000 × 30;000) pixels are
demonstrated.

In Table 2, the execution times and the speedup values for the computation of Hahn moment
from order 0 × 0 up to the different maximum orders, using the direct method of Eq. (1) and the
proposed method of Eq. (13) are presented. The execution time of the proposed method includes
the time for the IBR and the time for moments computation. In Fig. 4, the speedup values
achieved using the proposed method are demonstrated. The execution time of the proposed
method depends on the number k of the blocks of the image and the maximum moment order.
It is observed that the speedup values are very significant.

6.2 Gray Image Representation Quality

In this section, both subjective (optical) and objective evaluations of the proposed representation
quality are provided. A number of test gray images are presented in Fig. 5. As discussed earlier
for the evaluation of the representation quality, the images ĝE and ĝm are used, where ĝE recon-
structed from the exact Hahn moment values and ĝm reconstructed from Hahn moment values
computed with the proposed method with m half-intensity planes. The experimental results pre-
sented in this section are for moment values used up to the order N ×M, where N, M are the
image size; therefore, the image ĝE is exactly the same with the original image and the image ĝm
is exactly the same with the image of 8 −m higher bitplanes and m half-intensity planes.

The representation of images from (8 −m) high-order bitplanes and m half-intensity planes
are demonstrated in Figs. 6–8. Figure 6(a) shows the input gray image g, whereas in Figs. 6(b)–
6(h), the images ĝm represented from the (8 −m) most significant image bitplanes and m half-
intensity planes of the input image are demonstrated. The image ĝ0 is identical to g and is not
demonstrated. The images ĝ4, ĝ5 are the result of the substitution of the 4 or 5 least significant

Table 1 The required execution time in seconds, for the computation of Hahn polynomial for
size N from 512 to 4096 of signal samples and for different polynomial orders from N∕8 to N .

Size N

Polynomial order

N∕8 N∕4 N∕2 N

N ¼ 512 0.00 0.01 0.01 0.03

N ¼ 1024 0.01 0.02 0.06 0.11

N ¼ 2048 0.02 0.06 0.18 0.39

N ¼ 4096 0.20 0.25 0.47 0.76

Fig. 3 A sample of test binary images: (a) shapes, (b) text page, and (c) chessboard with
10 × 10 pixel squares.
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bitplanes with half-intensity images; the human visual system cannot distinguish particular
differences between these images ĝ4, ĝ5 and the original input image g, and this is a strong
qualitative indication for the acceptance of the proposed method. Also it is expected that an
identification system that uses the moments as features will classify patterns from the two images
in the same class. Thus it is proposed to preserve only the first three or four bitplanes, whereas
the rest of the others can be replaced with half-intensity images.

Last but not least, Table 3 presents the quality measures of the representation between the
images ĝE and ĝm, using the NIRE and SSIM metrics that discussed earlier and described by
Eqs. (16) and (17). The NIRE is an error metric, thus smaller values indicate better quality,
whereas the SSIM is a similarity metric and values closer to 1 indicate greater similarity. For
m ¼ 4 or m ¼ 5, the NIRE values are small and the SSIM values are high, and this substantiates
the validity of the proposed method. Similar results have been obtained for all test gray images
used in experiments.

6.3 Object Classification Experiment

In order to validate the ability of the proposed method for image classification, an experiment
has been conducted. The Columbia University Image Library (COIL-20)36 has been used in the
experiment. The COIL-20 consisted of gray images of 20 objects, where each object is captured
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Fig. 4 Speedup values achieved using the proposed method for the Hahn moment computation
from order 0 × 0 up to order P ×Q, for the test binary images of Fig. 3 for sizes (a) 1K × 1K,
(b) 4K × 4K, (c) 16K × 16K, and (d) 30;000 × 30;000 pixels.

Fig. 5 A sample of test gray images used in experiments: (a) boat with size 256 × 256, (b) baboon
with size 512 × 512, and (c) horses with size 1024 × 1024.
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from 72 different directions and the total number is 1440 images with size 128 × 128 pixels. In
Fig. 9, the collection of the 20 objects of the COIL-20 is demonstrated.

In pattern recognition applications, a small number of features are used to discriminate
among the patterns. The Hahn moments from order (0, 0) up to the order (3, 3) comprise a
16-dimensional feature vector that describes each object, where the vector Vk represents the
k’th class, and the vector Vi represents the input object. A Euclidean distance-based classifier
used and the input object is classified to the class with the minimum distance in the feature space.
The Euclidean distance37 between the class k and the input object is defined as

EQ-TARGET;temp:intralink-;e020;116;118d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX15
j¼0

ðvkj − vijÞ2
vuut : (20)

Fig. 7 (a) Original test image baboon with size 512 × 512 and (b)–(h) the reconstructed images
from the (8 −m) most significant image bitplanes and m half-intensity planes, where (b) m ¼ 7,
(c) m ¼ 6, etc. (h) m ¼ 1. The case of m ¼ 0 results in reconstructed image identical to (a).

Fig. 6 (a) Original test image boat with size 256 × 256 and (b)–(h) the reconstructed images from
the (8 −m) most significant image bitplanes and m half-intensity planes, where (b) m ¼ 7,
(c) m ¼ 6, etc. (h) m ¼ 1. The case of m ¼ 0 results in reconstructed image identical to (a).
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The moments of the input objects are computed using the direct method (M1), the proposed
method for four higher bitplanes and m ¼ 4 half-intensity bitplanes (M2), and the proposed
method for three higher bitplanes and m ¼ 5 half-intensity bitplanes (M3). The input objects
are presented to the classification system in their original form, with 2% salt and pepper noise
and with 4% salt and pepper noise.

The recognition rate R is defined as

EQ-TARGET;temp:intralink-;e021;116;184R ¼ hits

total
; (21)

where hits is the number of correctly classified input objects and total is the number of input
objects used in the experiment.

Table 4 demonstrates the experimental results, it is noted that the recognition rates of all
Hahn moment computing methods M1, M2, and M3 decrease with increasing noise. Also it is
observed that for noise-free input objects the recognition rate of the proposed method M2 is 1%
less than the recognition rate of direct method M1, whereas recognition rate of method M3 is
3% less than R of M1. Similar recognition rates achieved for input objects with 2% salt and

Fig. 8 (a) Original test image Horses with size 1024 × 1024 and (b)–(h) the reconstructed images
from the (8 −m) most significant image bitplanes and m half-intensity planes, where (b) m ¼ 7,
(c) m ¼ 6, etc. (h) m ¼ 1. The case of m ¼ 0 results in reconstructed image identical to (a).

Table 3 The NIRE and SSIM metrics between the original test image and the corresponding
reconstructed images from (8 −m) most significant image bitplanes and m half-intensity planes.

Image Boat 256 × 256 Baboon 512 × 512 Horses 1024 × 1024

Metric NIRE SSIM NIRE SSIM NIRE SSIM

m ¼ 7 8.45 × 10−02 0.572 5.71 × 10−02 0.538 3.63 × 10−02 0.711

m ¼ 6 1.45 × 10−02 0.740 1.68 × 10−02 0.708 9.85 × 10−03 0.767

m ¼ 5 4.26 × 10−03 0.851 3.84 × 10−03 0.871 3.06 × 10−03 0.812

m ¼ 4 1.13 × 10−03 0.935 9.57 × 10−04 0.958 7.00 × 10−04 0.897

m ¼ 3 2.89 × 10−04 0.979 2.44 × 10−04 0.989 1.70 × 10−04 0.963

m ¼ 2 7.88 × 10−05 0.994 6.65 × 10−05 0.997 5.39 × 10−05 0.988

m ¼ 1 2.62 × 10−05 0.999 2.23 × 10−05 0.999 1.65 × 10−05 0.998
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pepper noise and with 4% salt and pepper noise. Therefore, the recognition rates of proposed
methods M2 and M3 are close to the recognition rate of the exact method M3. The results show
the efficiency of our proposed method for pattern recognition applications.

6.4 Time Complexities for Grayscale Images

Table 5 presents the number of blocks at each bitplane of some grayscale test images that
extracted with IBR and ISR. It is concluded that the number of blocks increases as the signifi-
cance of the bitplane decreases in IBR; thus the substitution of 4 or 5 lower order bitplanes by
half-intensity planes dramatically decreases the total number of blocks. On the other hand, in ISR
the total number of blocks that extracted is comparable with the number of pixels. Moreover,
in ISR the number L of binary images is 256, whereas in the proposed method the number of
bitplanes used is 3 or 4.

Table 5 presents the computational time of Hahn moments for a number of test images with
different sizes, using four different methods: the direct method using Eq. (1); the ISR method
using Eq. (18); the proposed IBR method for m ¼ 4 half-intensity planes and four higher order
real bitplanes; and the proposed IBR method for m ¼ 5 half-intensity planes and three higher
order real bitplanes.

Fig. 9 The collection of the COIL-20 objects.

Table 4 The recognition rates R of the classification experiment, using noise free, noise 2%, and
noise 4% input objects. The Hahn moments computed using the direct method (M1), the proposed
method for m ¼ 4 (M2), and the proposed method for m ¼ 5 (M3).

Input M1 (%) M2 (%) M3 (%)

Noise free 100 99.16 97.87

Noise 2% 90.51 89.68 87.42

Noise 4% 78.31 77.24 75.19
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In Table 6 the execution times for the computation of Hahn moment, using the direct method,
the ISR method, the IBR method for m ¼ 4 and the IBR method for m ¼ 5 are presented. Also
the achieved speedup in relation to the direct method is demonstrated in Table 6. The execution
time of the proposed IBR method and the ISR method includes also the time for the block rep-
resentation of the binary image. It is observed that the proposed method achieves better perfor-
mance than the direct and the ISR methods, due to the substitution of lower order bitplanes with
half-intensity bitplanes. Also from Table 6, it is concluded that the proposed method in the occa-
sion of pattern recognition applications, where the images that are used have small dimensions
and a small number of moments are required, operates fast in rates that are near real time. The
real time is defined by video rate at 24 frames∕s.

Table 5 The number of blocks at each bitplane for some of the test images. p7 is defined the
most important bitplane and p0 the less important bitplane.

Image Size

IBR ISR

p7 p6 p5 p4 p3 p2 p1 p0

Total
number
of blocks

Total
number
of pixels

Boat 256 × 256 2517 3655 6614 9927 12,380 14,262 15,058 15,062 57,291 65,536

Baboon 512 × 512 17,241 31,882 44,577 55,208 59,715 60,079 60,049 59,619 247,619 262,144

Horses 1024 × 1024 3896 11,814 27,430 52,806 86,740 12,2731 16,5026 18,4534 570,666 1,048,576

Table 6 Time complexities in seconds and the corresponding speedup values, for the compu-
tation of Hahn moments of grayscale images for different orders, using the direct method, the ISR
method, the proposed IBR method for m ¼ 4, and the proposed IBR method for m ¼ 5. The pro-
posed method used for (8 −m) most significant bitplanes and m half-intensity images, m ¼ 4 and
m ¼ 5. The time for IBR of the bitplanes included in the execution times of the proposed method.

Order of
moments

Direct method ISR method
IBR method for

m ¼ 4
IBR method for

m ¼ 5

Time Time Speedup Time Speedup Time Speedup

Image boat with size 256 × 256

16 × 16 0.72 0.59 1.22 0.33 2.18 0.20 3.68

64 × 64 6.61 5.57 1.19 3.67 1.80 2.27 2.91

128 × 128 23.21 21.90 1.06 9.81 2.37 6.47 3.58

256 × 256 93.01 77.99 1.19 30.05 3.10 17.19 5.41

Image baboon with size 512 × 512

16 × 16 1.44 2.90 0.50 1.07 1.35 0.69 2.09

64 × 64 23.10 29.26 0.79 13.35 1.73 8.47 2.72

256 × 256 369.68 317.53 1.16 201.35 1.84 126.24 2.92

512 × 512 1470.93 1335.40 1.10 790.13 1.86 498.41 2.95

Image horses with size 1024 × 1024

16 × 16 5.82 8.30 0.70 1.21 4.83 0.68 8.60

64 × 64 92.32 65.47 1.41 9.73 9.49 4.63 19.94

256 × 256 1475.75 793.73 1.86 135.19 10.92 61.32 24.07

512 × 512 5909.74 3102.82 1.90 522.18 11.32 234.62 25.19
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Figure 10 demonstrates the achieved speedup values for the computation of Hahn moments
for the ISR, IBR for m ¼ 4 and IBR for m ¼ 5 methods in relation to the direct method, for
different gray images.

To conclude, it is qualitatively acceptable to use the images g5, g4 with three and four real
bitplanes and five and four half-intensity images, respectively, since for these images it is
observed that our proposed method is superior. This statement can be supported by the exper-
imental results for the quality of the representation and the classification recognition rates dis-
cussed in this section.

7 Conclusion

In this paper, a fast computation method of Hahn moments in grayscale images is presented.
The proposed method is based on the decomposition of the input image to the corresponding
bitplanes and the representation of binary images with blocks. The lower order bitplanes can be
substituted by a half-intensity image with moment values equal to the half of full-intensity image.
The computation of the Hahn moments on higher order bitplanes is performed fast using the
blocks. The proposed method characterized by significant acceleration and low approximation

Fig. 10 The speedup value achieved for the computation of Hahn moments from order 4 × 4
up to order P ×Q, using the proposed method for a number of gray test images of different sizes
and for using (8 −m) bitplanes and m half-intensity images, (m ¼ 5) and (m ¼ 4) and ISR
method.
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error. The magnitude of acceleration depends mainly on the image size, and a secondary param-
eter is the content of the image and the number of blocks.

The representation of an image with blocks allows concurrent machine perception and
processing of image areas greater than a pixel. This intrinsic parallelism of the IBR permits the
acceleration of sequential algorithms on serial computers. Moreover, the implementation of
the IBR and the related image analysis algorithms on various parallel computing platforms is
expected to achieve additional speedup values.

A popular parallel computer is the shared memory parallel machine, which is a multicore,
shared memory computer that usually uses the OpenMP (Open Multi Processing) parallel pro-
gramming API.38 Recently, a parallel IBR algorithm using OpenMP has been published by our
research team.39

The parallel implementation of the IBR algorithm and the computation of moments, on dis-
tributed memory parallel machines using MPI, GPGPUs, and FPGAs is another quite interesting
direction for our future research efforts.
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