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Abstract : A new framework which extends the concepts of soft 

mathematical morphology into fuzzy sets is presented in this paper. Images 

can be considered as arrays of fuzzy singletons on the Cartesian grid. Based 

on this notion the definitions for the basic fuzzy soft morphological 

operations are derived. Compatibility with binary soft mathematical 

morphology as well as the algebraic properties of fuzzy soft operations are 

studied. Explanation of the defined operations is also provided through 

several examples and experimental results.  
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1. Introduction 

Mathematical morphology was firstly introduced by Matheron [1] and Serra 

[2, 3] as a methodology for image processing. In this early form, 

mathematical morphology handles binary images as sets and probes them 

with a structuring element. The latter is a set, normally smaller than the image 

on which it is translated. By translating the structuring element over an image, 

and by applying basic set operations, such as intersection or union, the basic 

morphological operations are obtained. Grey-scale mathematical morphology 

is a natural extension of binary mathematical morphology into grey-scale 

images. The operations of intersection and union used in binary mathematical 

morphology are replaced by minimum and maximum operations, 

respectively. A review of grey-scale mathematical morphology, with 

particular emphasis on algorithms and applications is presented in [4]. The 

two basic morphological operations are erosion and dilation, from which all 

the other morphological transforms can be composed. Morphological 

transforms can decompose complex shapes into more meaningful 

representations and separate them from undesirable parts [5]. Mathematical 

morphology has provided solutions to many computer vision problems, such 

as noise suppression, feature extraction, edge detection etc. [6].  

 

Sinha and Dougherty [7] have introduced fuzzy mathematical morphology. In 

this approach the images are not treated as crisp binary sets, but as fuzzy 

sets. The set union and intersection have been replaced by fuzzy bold union 

and bold intersection, respectively, in order to formulate fuzzy erosion and 

dilation, respectively. This attempt to adapt mathematical morphology into 

fuzzy set theory is not unique. Several other attempts have been developed 

independently by researchers, and they are all described/discussed in [8].  
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Another approach to mathematical morphology is soft mathematical 

morphology introduced by Koskinen et al. [9]. In this approach weighted 

order statistics are used instead of the minima or maxima. The weights 

depend on the structuring element, which is divided into two parts : the core, 

the pixels that participate with weights greater than one, and the soft 

boundary, the pixels that participate with weights equal to one. It has been 

shown that soft morphological operations are less sensitive to additive noise 

and to small variations in object shape [10-12]. 

 

In this paper a new framework which extends the concepts of soft 

mathematical morphology into fuzzy sets is presented. The definitions of the 

basic fuzzy soft morphological operations are given and their properties are 

also studied. It is shown that fuzzy soft morphological operations are dual, 

translation invariant and increasing, whilst they do not distribute over basic 

set operations, such as intersection and union. Furthermore, it is shown that 

fuzzy soft opening and closing are neither idempotent nor anti-extensive and 

extensive, respectively. The paper is organised as follows. In section 2 fuzzy 

sets are reviewed. Binary and grey-scale mathematical morphology are 

summarised in section 3. In section 4 binary and grey-scale soft mathematical 

morphology are presented. Fuzzy mathematical morphology is reviewed in 

section 5. In section 6 the new definitions of fuzzy soft mathematical 

morphology are presented and their algebraic properties are studied. 

Examples and experimental results illustrating the new definitions are 

presented in section 7. Concluding remarks are made in section 8.  

 

2. Fuzzy Sets Fundamentals  

Membership, in the N-dimensional Euclidean space EN, of a crisp set A, may 

be defined in terms of the characteristic function µA: EN→ {0,1} [13]: 
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( )µ x
          x
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if A
if A
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∈
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
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1
0

         (1) 

  

Likewise, membership of a fuzzy set A is characterised by its membership 

function µA : EN→ [0,1]. The value µA(x) of the membership function at 

point x of the N-dimensional Euclidean space denotes the degree that point x 

belongs to set A. 

 

The basic set operations, i.e. intersection, union, complement and difference, 

in terms of the characteristic functions (for crisp sets), or the membership 

functions (for fuzzy sets), are defined as follows: 

 

[ ]µ x µ x µ xA B A B∩ =( ) min ( ), ( )          (2) 

 

[ ]µ x µ x µ xA B A B∪ =( ) max ( ), ( )         (3) 

 
µ x µ xA AC ( ) ( )= −1           (4) 

 

[ ]µ x µ x µ xA B A B\ ( ) min ( ), ( )= −1         (5) 

 

Finally, the subset relation is : 

[ ] [ ]A B A A B B A B⊆ ⇔ = ⇔ =µ x µ µ µ x µ µ( ) min , ( ) max ,     (6) 

 

Let Z2 be the Cartesian grid and G={0, 1/L, 2/L, ... L/L} the set of L+1 

normalised grey-levels. A normalised image A is defined as a mapping A: 

Z2→G. Bearing the above definition in mind, an image can be considered as 

an array of fuzzy singletons, each with a membership function equal to the 

normalised grey-level value of the image at that point [14, 15]. A fuzzy 

singleton is a fuzzy set whose support is a single point. 
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3. Standard Morphology [5, 6] 

In this paper binary and grey-scale mathematical morphology are referred to 

as standard mathematical morphology. This distinction is made frequently in 

the literature, in order to be discriminated by their extensions, such as soft 

mathematical morphology and fuzzy mathematical morphology.  

 

3.1 Binary morphology 

Binary erosion and dilation are defined according to eqn.(7) and eqn.(8), 

respectively : 

 
A ? A

B
  x

x
È = −

∈
( )I           (7)  

 
A ? A

B
  x

x
⊕ =

∈
( )U           (8) 

 

where A, B are sets of Z2; (A)x is the translation of A by x, and -B is the 

reflection of B. These are defined as follows : 

 
( ) { }A Z for some A

x
c  c = a + x       a= ∈ ∈2 |       (9)  

 
{ }− = ∈B for some Bx       b  x = -b| ,        (10) 

Set A is the image under process and set B is the structuring element. 

 

The definitions of binary opening and closing are : 

 
( )A B A B Bo = ⊕È  and         (11) 

 

( )A B A B B• = ⊕ È          (12) 

respectively. 
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3.2 Grey-scale morphology 

In terms of grey-scale morphology erosion and dilation are : 

 
( )( ) min{ ( ) ( )}f  g x f x y g y

y
È = + −

∈G
 and      (13) 

 

( )

( )( ) max { ( ) ( )}f g x f x - y g y
y

x y

⊕ = +
∈

− ∈
G

F

       (14)  

respectively. 

 

where x, y ∈Z 2  are the spatial coordinates, 

 f :F Z→  is the integer value grey-scale image, 

 g :G Z→  is the grey-scale structuring element and  

 F G Z, ⊆ 2 , are the domains of the grey-scale image and grey-scale 

structuring element, respectively. 

 

4. Soft Mathematical Morphology [9, 10] 

In soft morphological operations the maximum or the minimum operations, 

used in standard morphology, are replaced by weighted order statistics. 

Furthermore, the structuring element B is divided into two subsets: the core 

B1 and the soft boundary B2=B\B1. 

4.1 Grey-scale soft mathematical morphology 

In soft morphological erosion and in soft morphological dilation of an image 

f the pixels of f are combined with the pixels of the structuring element as in 

traditional morphology; the results which are related with the soft boundary 

of the structuring element and the results which are related with the core of 

the structuring element (repeated k times) are put in an ascending or a 

descending order list. The kth element of this list is the result of soft 

morphological erosion or dilation. Let {k◊ f(x)} denote the repetition of f(x) 
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for k times, i.e.{k ◊  f (x )}={ f (x ), f (x ), ... f (x )} (k times). Soft 

morphological erosion of a grey-scale image f by a soft grey-scale structuring 

element [ß, a, k ] is [11]: 

 

[ ]( ) ( ) ( )( ){ } ( ) ( ){ }( )f  ß,a ,k x k   k f y a x y f z ß x z
x+ y
x z

È = ◊ − + ∪ − +
∈

+ ∈
( )
( )

K
K

th smallest of
1

2  

(15) 

 

Soft morphological dilation of f by [ß, a, k ] is : 

[ ]( ) ( ) ( )( ){ } ( ) ( ){ }( )f  ß,a , k x k   k f y a x y f z ß x z
x- y
x z

⊕ = ◊ + − ∪ + −
∈

− ∈
( )
( )

arg
K
K

th l est of
1

2  

(16) 

where x, y,  z ∈Z 2 , are the spatial coordinates, 

 f:F Z→  is the grey-scale image,  

 a:K Z1 →  is the core of the grey-scale structuring element,  

 ß:K Z2 →  is the soft boundary of the grey-scale structuring element, 

  F K K Z, ,1 2
2⊆  are the domains of the grey-scale image, the core of 

the grey-scale structuring element and the soft boundary of the grey-scale 

structuring element, respectively, and  

 K2 =K\K1, where K Z⊆ 2  is the domain of the grey-scale structuring 

element. 

 

 

4.2 Binary soft mathematical morphology 

The basic definitions of the binary soft erosion and dilation, are respectively 

[12] :  

 

( )( )
( )[ ] ( )[ ]( )

[ ] [ ]A ? ?

if Card A B Card A B
Card B Card B

otherwise

È [ , , ]1 2

1 2

1 2

1
1

0

k x

     k
         k k

   

x x

=

× ∩ + ∩ ≥
≥ + − +








  

(17) 
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( )( )
( )[ ] ( )[ ]( )

A ? ?
if Card A B Card A B

otherwise
⊕ =

× ∩ + ∩ ≥







[ , , ]1 2

1 21

0
k x

     k k

   

x x

 

(18) 

 

where, Card[X] denotes the cardinality of set X. 

 

5. Fuzzy Mathematical Morphology  

In the past several attempts have been made to apply fuzzy set theory to 

mathematical morphology. These attempts have resulted in different 

approaches and definitions. These are reviewed in [8], where a general 

framework is proposed. This framework leads to an infinity of fuzzy 

mathematical morphologies, which are constructed in families with specific 

properties. In this paper the approach described by Sinha and Dougherty [7] 

has been used. This is a special case of the framework presented in [8]. In 

this approach, fuzzy mathematical morphology is examined in terms of fuzzy 

fitting. The fuzziness is introduced by the degree to which the structuring 

element fits into the image. The operations of erosion and dilation of a fuzzy 

image by a fuzzy structuring element having a bounded support, are defined 

in terms of their membership functions as follows : 

 [ ][ ]
[ ]

µ x  µ x + y µ y

               µ x + y µ y

y

y

A B B A B

B
A B

È ( ) min min , ( ) ( )

min , min ( ) ( )

= + −

= + −





∈

∈

1 1

1 1
 and    (19) 

 
[ ][ ]

[ ]

µ x  µ x - y µ y

               µ x - y µ y

y

y

A B
B

A B

B A B

⊕
∈

∈

= + − =

= + −





( ) max max , ( ) ( )

max , max ( ) ( )

0 1

0 1
     (20) 

 

where x, y ∈Z 2  are the spatial coordinates and 
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 µA, µB are the membership functions of the image and the structuring 

element, respectively. 

 

It is obvious from eqns. (19) and (20) that the result of both fuzzy erosion 

and dilation have membership functions whose values are restricted to the 

interval [0,1]. 

 

6. Fuzzy Soft Mathematical Morphology 

6.1 Definitions 

Fuzzy soft mathematical morphology operations are defined taking into 

consideration that in soft mathematical morphology the structuring element is 

divided into two subsets, i.e. the core and the soft boundary, from which the 

core 'weights' more than the soft boundary in the formation of the final result. 

Also, depending on k, the kth order statistic provides the result of the 

operation. Also, fuzzy soft morphological operation should preserve the 

notion of fuzzy fitting [7]. Thus, the definitions for fuzzy soft erosion and 

fuzzy soft dilation are derived in this paper for the first time as far as we 

know, as follows :  

 

( ){ }
{ }

µ x k   k µ x + y µ y

                                                               µ x +z µ z

k y
z

A B B B
B

A B

A B

th smallest ofÈ  [ 1 2 1

2

1

2

1 1

1

, , ]
( ) min[ , ( ( ) ( )

( ) ( ) )]

≡ ◊ − + ∪

− +

∈
∈

 

(21) 

and 

( ){ }

{ }

µ x k   k µ x - y µ y

                                                               µ x - z µ z

k
y
z

A B B
B
B

A B

A B

th l est of
⊕

∈
∈

≡ ◊ + − ∪

+ −

[ 1 2
1

2

1

2

0 1

1

, , ]
( ) max[ , arg ( ( ) ( )

( ) ( ) )]  

(22) 

 

where x, y,  z ∈Z 2 , are the spatial coordinates and  

  µA, µB1, µB2 are the membership functions of the image, the core of 

the structuring element and the soft boundary of the structuring element. 
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 Additionally, for the fuzzy structuring element B⊂Z2 : B B B= ∪1 2  

and B B1 2∩ = ∅ . 

 

It is obvious that for k=1 eqns. (21) and (22) are reformed to eqns. (19) and 

(20) respectively, i.e. simple fuzzy morphology. 

 

Example 1 : In this example the adopted coordinate system is (row, column). 

The arrows denote the origin of the coordinate system and direction. Let us 

consider the image A and the structuring element B. The core in B is 

separated from the soft boundary by a bold line. Fuzzy soft erosion and 

fuzzy soft dilation are computed for cases k=1 and k=2. 

 

If k>Card[B2], where B2 is the soft boundary of the structuring element, the 

soft morphological operations are affected only by the core B1, i.e. using B1 

as the structuring element. Therefore, in this case the nature of soft 

morphological operations is not preserved [10, 11]. For this reason the 
constraint ( ) ( ){ }k  ≤ min / ,Card B Card B2 2  is adopted in fuzzy soft 

mathematical morphology, as well as in soft mathematical morphology. In 

this example only the cases of k=1 and k=2 are considered, in order to 

comply with this constraint. 

 
0.2 0.8 0.7 0.81.0 0.3

0.3 0.9 0.8 0.70.9 0.2

0.1 1.0 0.2 0.20.9 0.1

0.8 0.9 0.80.9

A

B

0.8 0.9 0.80.9

-B
ì

ì

ì
 

 

Case 1 : k=1 

The fuzzy soft erosion of the image is calculated as follows : 
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( ) [ ][ ]
( ) [ ][ ]

( ) [ ][ ]

µ = µ   
µ =    

µ =  

? A B B

?

?

0 0 0 0 1 0 2 0 9 1 1 0 9 1 0 8 0 8 1 0 3
01 1 0 2 0 8 1 1 0 9 1 0 8 0 9 1 0 7 0 8 1 0 4

5 2 1 0 2 0 8 1 01 0 9 1 0 2

1 2 1, ( , ) min , min . . , . , . . .
, min , min . . , . , . . , . . .

.

.

.
, min , min . . , . . .

, , ]È  [ = − + − + − + =
− + − + − + − + =

− + − + =

 

Therefore, the eroded image is : 

 
0.3 0.8 0.5 0.40.4 0.4

0.4 0.9 0.4 0.30.5 0.3

0.2 0.3 0.3 0.20.3 0.2  
 

The values of the eroded image at points (0, 2) and (1, 2) are higher than the 

rest values of the image. This agrees with the notion of fuzzy fitting, since 

only at these points the structuring element fits better than the rest points of 

the image. Fuzzy erosion quantifies the degree of structuring element fitting. 

The larger the number of pixels of the structuring element, the more difficult 

the fitting. Furthermore, fuzzy soft erosion shrinks the image. If fuzzy image 

A is considered as a noisy version of a binary image [7], then the object of 

interest consists of points (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 

4), (2, 1), (2, 2) and (2, 3) and the rest is the background. By eroding the 

image with a 4-pixel horizontal structuring element it would be expected that 

the eroded image would comprise points (0, 2) and (1,2). This is exactly 

what it has been obtained.  

 

Similarly, the dilation of the image is calculated as follows : 
( ) [ ][ ]
( ) [ ][ ]

( ) [ ][ ]

µ = µ  
µ =   

µ =   

D A B B

D

D

0 0 0 0 0 0 2 0 9 1 1 0 8 1 0 8
01 0 0 2 0 9 1 1 0 9 1 0 8 0 8 1 0 9

5 2 0 0 2 0 8 1 0 2 0 9 1 01 0 9 1 01

1 2 1, ( , ) max , max . . , . .
, max , max . . , . , . . .

.

.

.
, max , max . . , . . , . . .

, , ]⊕ = + − + − =
+ − + − + − =

+ − + − + − =

 [

 



 12 

 

Therefore, the dilated image is : 

 
0.8 0.9 0.8 0.70.9 0.7

0.7 0.8 0.8 0.70.8 0.6

0.7 0.9 0.9 0.80.8 0.1  
 

As it can be seen, fuzzy soft dilation expands the image. In other words the 

dilated image includes the points of the original image and also points (0, 0), 

(0, 5), (1, 0), (1, 5), and (2, 0). 

 

Case 2 : k=2 

The erosion of the image is calculated as follows : 
( ) [ ][ ]
( ) [ ][ ]

( ) [ ][ ]

µ = µ        

µ =        

µ =      

? A B B

?

?

nd smallest

nd smallest

nd smallest

0 0 0 1 2 0 3 0 3 11 11 1 0 3

01 1 2 0 4 11 11 0 9 0 9 0 9 0 9

5 2 1 2 0 4 0 2 0 2 0 2

1 2 2
, (0, ) min , . , . , . , . , .

, min , . , . , . , . , . , . .

.

.

.

, min , . , . , . .

, , ]È  [ = =

=

=

 

 

The eroded image for k=2 is : 

 
0.3 0.8 0.8 0.40.9 0.4

0.4 0.9 0.8 0.31.0 0.3

0.2 0.3 0.3 0.20.4 0.2  
 

In this case the values of the eroded image at points (0, 1), (0, 2), (0, 3), (1, 

1), (1, 2) and (1, 3) are higher than the rest values of the image. This is in 

agreement with the notion of fuzzy soft fitting. At these points the repeated k 

times "high value" pixels, which are combined with the core of the structuring 
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element, plus the pixels which are combined with the soft boundary of the 

structuring element, are greater than or equal to the kCard[B1]+Card[B2]-

k+1. 

 

Similarly the dilation of the image is calculated : 
( ) [ ][ ]
( ) [ ][ ]

( ) [ ][ ]

µ = µ     

µ =       

µ =       

D A B B

D

D

nd l est

nd l est

nd l est

0 0 0 0 2 01 01 0 8 01

01 0 2 01 01 0 9 0 9 0 6 0 9

5 2 0 2 0 0 01 01 0 0 0 0 01

1 2 2
, (0, ) max , arg . , . , . .

, max , arg . , . , . , . , . .

.

.

.

, max , arg . , . , . , . , . .

, , ]⊕
= =

=

=

 [

 

 

Therefore, the dilated image for k=2 is : 
0.1 0.9 0.7 0.70.9 0.7

0.2 0.8 0.8 0.70.8 0.6

0.0 0.9 0.9 0.10.8 0.1  
 

Here again fuzzy soft dilation expands the image, but more ‘softly’, than 

when k=1. This means that certain points which were previously belonging 

(k=1) to the image ((0, 0),(1, 0), (2, 0) and (2, 4)), now these belong (k=2) to 

the background. The greater the k, the less the effect of the dilation. 

 

Finally, fuzzy soft opening and closing are defined, as : 

 

( )µ x µ xk k kA B B A B B B Bo [ È  [ [1 2 1 2 1 2, , ] , , ] , , ]( ) ( )≡ ⊕       (23) 

and 

( )µ x µ xk k kA B B A B B B B• ⊕≡ [  [ È  [1 2 1 2 1 2, , ] , , ] , , ]( ) ( )       (24) 

 respectively. 

 

6.2 Compatibility with soft mathematical morphology 
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Lets us consider Example 1. By thresholding image A and structuring 

element B (using a threshold equal to 0.5), the following binary image and 

binary structuring element are obtained : 

 
0.0 1.0 1.0 1.01.0 0.0

0.0 1.0 1.0 1.01.0 0.0

0.0 1.0 0.0 0.01.0 0.0

1.0 1.0 1.01.0

A

B

 
By applying soft binary erosion and soft binary dilation to image A with 

structuring element B the following images are obtained for k=1 and k=2 : 

 

k=1 : 

 
0.0 1.0 0.0 0.00.0 0.0

0.0 1.0 0.0 0.00.0 0.0

0.0 0.0 0.0 0.00.0 0.0  

1.0 1.0 1.0 1.01.0 1.0

1.0 1.0 1.0 1.01.0 1.0

1.0 1.0 1.0 1.01.0 0.0  
 

k=2 : 

 
0.0 1.0 1.0 0.01.0 0.0

0.0 1.0 1.0 0.01.0 0.0

0.0 0.0 0.0 0.00.0 0.0  

0.0 1.0 1.0 1.01.0 1.0

0.0 1.0 1.0 1.01.0 1.0

0.0 1.0 1.0 0.01.0 0.0  
 

It is obvious that these results are identical to those of Example 1, when the 

same threshold value is used. This was expected, since binary soft 

morphology quantifies the soft fitting in a crisp way, whereas fuzzy soft 

erosion quantifies the soft fitting in a fuzzy way. The same results are 

obtained using a threshold equal to 0.55. However, when fuzzy soft 

morphology and thresholding with a threshold equal to 0.6 on the one hand 

and thresholding with the same threshold and soft morphology on the other 
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hand are applied, different results will be obtained. This means that the 

operations, generally, do not commute. 

 

6.3 Algebraic properties in fuzzy soft mathematical morphology 

The following algebraic properties for fuzzy soft erosion and dilation, as well 

as for fuzzy soft opening and closing operations are studied : 

 

Duality Theorem 

Fuzzy soft erosion and dilation are dual operations i.e.: 

 

( )µ x µ xk kA B B A B B
C C⊕ − − = [  [È1 2 1 2

, , ] , , ]
( ) ( )       (25) 

 

Proof:

( )

( ){ }
{ }

( ){ }

µ x µ x

                            k   k µ x + y µ y

                                                                         µ x + z µ z

                            k   k µ x + y µ y

                                                                               µ x + z

k k

y
z

y
z

A B B A B B

B
B

A B

A B

B
B

A B

A

C

th smallest of

th smallest of

È  [ È  [
1 2 1 2

1

2

1

2

1

2

1

1

1 1 1

1

1 1 1 1

, , ] , , ]
( ) ( )

min[ , ( ( ) ( )

( ) ( ) )]

max[ , [ ( ( ) ( )

( )

= −

= − ◊ − + ∪

− +

= − − ◊ − + ∪

∈
∈

∈
∈

{ }− +µ z  B2
1( ) )]]



 16 

( )( ){ }
( ){ }

                          k   k µ x + y µ y

                                                                     µ x + z µ z

y
z

= ◊ − − + ∪

− − +

∈
∈

max[ , arg ( ( ) ( )

( ) ( ) )]]

0 1 1

1 1

1

2

1

2

th l est of
B
B

A B

A B

( ){ }

{ }
( ){ }

{ }

                            k   k -µ x + y µ y

                                                                     -µ x + z µ z

                            k   k µ x + y µ y

                                                                     µ x + z µ z

                           µ x

y
z

y
z

k

= ◊ + ∪

+

= ◊ − + ∪

− +

=

∈
∈

∈
∈

⊕ −

max[ , arg ( ( ) ( )

( ) ( ) )]]

max[ , arg ( ( ) ( )

( ) ( ) )]]

( )
, , ]

0

0 1

1

1

2

1

2

1

2

1

2

1 2

th l est of

th l est of

B
B

A B

A B

B
B

A B

A B

A B B

C

C

 [-

 

 

Eqn. (4) and identities [16] : 

k   p, q k   -p, - qth l est of th smallest ofarg ( ) ( )= −  and 

k   p, q r k   p+r, q+rth l est of th l est ofarg ( ) arg ( )+ =  

have been used, to prove the duality theorem. 

 

Opening and closing are also dual operations i.e.: 

 

( )µ x µ xk kA B B A B BC C• = − − [  [
1 2 1 2, , ] , , ]( ) ( )o      

  (26) 

Proof:

 
( ) ( )

( )
( )

µ x µ x
                       µ x
                       µ x
                       µ x

k k k

k k

k k

k

A B B A B B B B

A B B B B

A B B B B

A B B

C C

C

C

• =
=
=
=

⊕

⊕ ⊕ −

− ⊕ −

−

−

−

−

 [  [ È  [

 [  [

È [-  [

 [

C

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

, , ] [ , , ] , , ]]

, , ] , , ]

, , ] , , ]

, , ]

( ) ( )
( )

( )
( )o

 

 

Translation Invariance 

Fuzzy soft erosion and dilation are translation invariant, i.e. : 

 

 ( ) ( )µ x µ x
k kA u B B A B B uÈ  [ È  [1 2 1 2, , ] , , ]

( ) ( )=        (27) 
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where u Z∈ 2 . 

 

Proof: 

( )
( ){ }

{ }
( )( ){ }

( )

µ x µ x +

                              k   k µ x + y µ y

                                                                       µ x + z µ z

                            k     k µ x + y µ y

                                                                        µ x + z µ

k k

y
z

y
z

A B B u A B B

B
B

A B

A B

B
B

A u B

A u

u

th smallest of u

u

th smallest of

È  [ È  [1 2 1 2

1

2

1

2

1

2

1

1 1

1

1 1

, , ] , , ]
( ) ( )

min[ , ( ( ) ( )

( ) ( ) )]

min[ , ( ( ) ( )

( )

=

= ◊ + − + ∪

+ − +

= ◊ − + ∪

−

∈
∈

∈
∈

{ }
( )

B

A u B B

2

1 2

1( ) )]

( )
, , ]

z

                            µ x
k

+

= È  [

 

Similarly, or by the duality theorem (eqn. (25)) it can be proven that fuzzy 

soft dilation is also invariant under translation. 

 

Increasing 

Both fuzzy soft erosion and dilation are increasing operations, i.e. : 

 

µ µ
µ x µ x

µ x µ x

k k

k k
? ?

A B B A B B

A B B A B B

< ⇒
<

<





 ⊕ ⊕
'

, , ] ' , , ]

, , ] ' , , ]

( ) ( )

( ) ( )

È  [ È  [

 [  [

1 2 1 2

1 2 1 2

     (28) 

 

where A and A?, are two images with membership functions µ?  and µA?, 

respectively and µ?  < µA? in the whole Z2 grid. 

 

Proof: 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

µ µ
µ x + y µ x + y

µ x + z µ x + z

              
µ x + y µ y + µ x + y µ y +

µ x + z µ z + µ x + z µ z +

? ?
? ?

? ?

? B ? B

? B ? B

< ⇒
<

<







⇒
− < −

− < −







'
'

'

'

'

1 1

2 2

1 1

1 1

 

( ){ }
{ }

( ){ }
{ }

              k   k µ x + y µ y

                                                         µ x + z µ z

                   k   k µ x + y µ y

                                                            µ x + z µ z

              µ x µ x

y
z

y
z

k k

⇒ ◊ − + ∪

− +

< ◊ − + ∪

− +

⇒ <

∈
∈

∈
∈

min[ , ( ( ) ( )

( ) ( ) )]

min[ , ( ( ) ( )

( ) ( ) )]

( ) ( )

'

'

, , ] ' , , ]

1 1

1

1 1

1

1

2

1

2

1

2

1

2

1 2 1 2

th smallest of

th smallest of

B
B

A B

A B

B
B

A B

A B

A B B A B BÈ  [ È  [

 

 

Similarly, or by the duality theorem it is proven that fuzzy soft dilation is also 

an increasing operation. 

 

Distributivity 

Fuzzy soft erosion is not distributive over intersection, as it is in standard 

morphology; i.e. in general : 

 

( ) ( ) ( )µ x µ x
k k  kA A B B A B B A B B1 2 1 21 2 1 2 1 2∩ ∩

≠È È È [  [  [, , ] , , ] , , ]
( ) ( )    (29) 

An illustrative example follows : 

 

Example 2 : Consider image A and structuring element B. Suppose that 

image A is the intersection of two images A1 and A2. 
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0.2 0.8 0.5 0.81.0 0.3

0.8 0.9 0.80.9

A

B

A1

= ∩

A2

0.2 1.0 0.7 0.81.0 1.0 0.8 0.8 0.5 0.91.0 0.3

ì ì ì

ì

The fuzzy soft erosion for k=2 of A, A1, A2 and the intersection of the 

eroded A1 and the eroded A2 are, respectively: 

 
0.2 0.6 0.6 0.40.7 0.4

A [B , B  , 2]

0.2 0.9 0.8 0.90.9 1.0

A1

0.9 0.6 0.6 0.40.9 0.4

A2

0.2 0.6 0.6 0.40.9 0.4

ì ì

ì ì

1 2 [B , B  , 2]1 2

[B , B  , 2]1 2 A1 [B , B  , 2]1 2 ∩A2 [B , B  , 2]1 2  
 
From the above example it is clear that ( )µ xkA A B B1 2 1 2∩ ≠È  [ , , ]( )  

( ) ( )≠ ∩µ xk  kA B B A B B1 21 2 1 2È È [  [, , ] , , ] ( ) , and thus fuzzy soft erosion generally 

does not distribute over intersection. 

 

Similarly, or by the duality theorem it can be proven that fuzzy soft dilation 

does in general not distribute over union : 

 

( ) ( ) ( )µ x µ xk k  kA A B B A B B A B B1 2 1 21 2 1 2 1 2∪ ⊕ ⊕ ∪ ⊕≠  [  [  [, , ] , , ] , , ]( ) ( )
 

  (30) 

 

Anti-extensivity - Extensivity 

Fuzzy soft opening is not anti-extensive. If it were anti-extensive, then : 
µ x µ x   xk? ? ? ?ß

Zo[ , , ]( ) ( ),
2

2≤ ∀ ∈ . However, in the following example it is 

shown that ∃ ∈x Z 2 , so that : µ x µ xkA B B Ao[ , , ]( ) ( )
1 2

> . Similarly, it is shown 

that, in general, fuzzy soft closing is not extensive too : ∃ ∈x Z 2 , so that : 
µ x µ xkA B B A• <[ , , ]( ) ( )

1 2
. 
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Example 3 : Consider the image A and the structuring element B, for k=2.  

 
0.1 0.1 1.0 1.00.1 1.0 1.0 0.1 1.00.1

A B

A  B

0.1 1.0 1.0 1.00.1 0.1

ì

ì

ì

A  B

0.9 0.1 0.1 1.00.1 1.0

ì
 

 
In the above example µ µkA B B Ao[ , , ]( , ) . ( , ) .

1 2
02 1 0 0 2 01= > = , which means that 

fuzzy soft opening is not anti-extensive. Also, 
µ µkA B B A• = < =[ , , ](0, ) . (0, ) .

1 2
3 01 3 10 , which means that fuzzy soft closing is 

not extensive too. 

 

Idempotency 

Fuzzy soft opening and closing have been defined as fuzzy soft erosion 

followed by fuzzy soft dilation and fuzzy soft dilation followed by fuzzy soft 

erosion, respectively. However, in algebra an application is said to be an 

opening if it is anti-extensive, increasing and idempotent [2]. It is 

straightforward that fuzzy soft opening is increasing, since both fuzzy soft 

erosion and dilation are increasing. It has been shown that fuzzy soft opening 

is not anti-extensive (Example 3). Also, in general, fuzzy soft opening is not 

idempotent : 

 

( )µ x µ xk k kA B B A B B B Bo o o [  [  [1 2 1 2 1 2, , ] , , ] , , ]( ) ( )≠        (31) 

 

This is illustrated by the following example : 
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Example 4 : Consider the image A and the structuring element B, for k=1.  

 
1.0 0.0 0.0 0.01.01.0

A

1.01.0 0.5 0.5 0.90.00.9

(A B)

B
ì

ì

ì

0.0 0.0 0.4 0.00.50.4 0.00.0

(A B)
ì

0.0 0.0 0.0 0.00.30.0 0.00.0

B  
 

From the above example it is obvious that fuzzy soft opening is not 

idempotent. By duality theorem (eqn. (26)) it can be proven that, in general, 

fuzzy soft closing is not idempotent too :  

 

( )µ x µ xk k kA B B A B B B B• • •≠ [  [  [1 2 1 2 1 2, , ] , , ] , , ]( ) ( )       (32) 

 

7. Experimental Results 

Illustration of the basic fuzzy soft morphological operations defined in this 

paper are given through 1-dimensional (1-d) and 2-dimensional  

(2-d) images. Figure 1 depicts fuzzy soft morphological erosion and dilation 

in 1-d space. More specifically, Figure 1a shows the initial 1-d image and 

Figure 1b shows the structuring element. The core of the structuring element 

is the shaded area and the rest area of the structuring element is the soft 

boundary. Figures 1c and 1d are the images for k=1 of fuzzy soft erosion 

and fuzzy soft dilation, respectively. Figures 1e and 1f are the images for k=2 

of fuzzy soft erosion and fuzzy soft dilation, respectively. In the latter four 
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Figures the original image is represented by a dotted line and the results by a 

continuous line. By comparing Figure 1c with Figure 1e and Figure 1d with 

Figure 1f it becomes clear that the action of the structuring element is more 

effective when k=1, i.e. the results of both fuzzy soft erosion and dilation are 

more visible in case of k=1, than in case of k=2. 

 

Figure 2 shows the result of fuzzy soft morphological erosion and dilation in 

a 2-d image. Figure 3a shows the initial image. Figure 2b shows the 

structuring element. The core of the structuring element is separated from the 

soft boundary by the bold line. Experiments have been performed using a 

commercial frame grabber. The image in Figure 2b has been considered as 

an array of fuzzy singletons [14]. The results of fuzzy soft erosion (k=1) 

after the first and the second interaction are presented in Figures 2c and 2d, 

respectively. The white area is reduced after each interaction. The white area 

of the eroded image (Figure 2c) is the area of the initial image, where the 

structuring element fits better. Similarly, in Figures 2e and 2f are presented 

the results of fuzzy soft erosion (k=3) after the first and the second 

interaction. Comparing Figures 2c and 2e it is made clear that the greater the 

k the less visible the results of fuzzy soft erosion. Figures 2g and 2h present 

the results of fuzzy soft dilation (k=1) after the first and the second 

interaction, respectively. In the case of fuzzy soft dilation the white area 

increases. Similarly in Figures 2i and 2j are presented the results of fuzzy soft 

dilation (k=3) after the first and the second interaction. Again the greater the k 

the less visible the results of fuzzy soft dilation. 

 

8. Conclusions  

A new approach to soft morphology has been presented in this paper. The 

proposed approach is based on fuzzy set theory. The definitions for the 

basic fuzzy soft morphological operations have been extracted and their 
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algebraic properties have been studied. Fuzzy soft morphological operations 

inherit properties and restrictions of both soft morphology and fuzzy 

morphology. More specifically, it has been shown that fuzzy soft 

morphological operations are dual, translation invariant and increasing, whilst 

they do not distribute over basic set operations, such as intersection and 

union and they are not extensive, anti-extensive and idempotent. The 

definitions and the algebraic properties have been illustrated through 

examples and experimental results. 
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FIGURE CAPTIONS 
 

Figure 1 : (a) Initial 1-d fuzzy set, (b) structuring element, (c) fuzzy soft 

erosion (k=1), (d) fuzzy soft dilation (k=1), (e) fuzzy soft erosion (k=2) and 

(f) fuzzy soft dilation (k=2). 

 

Figure 2 : (a) The initial image, (b) structuring element, (c) fuzzy soft 

erosion (k=1) after the first interaction, (d) fuzzy soft erosion (k=1) after the 

second interaction, (e) fuzzy soft erosion (k=3) after the first interaction, (f) 

fuzzy soft erosion (k=3) after the second interaction, (g) fuzzy soft dilation 

(k=1) after the first interaction, (h) fuzzy soft dilation (k=1) after the second 

interaction, (i) fuzzy soft dilation (k=3) after the first interaction and (j) fuzzy 

soft dilation (k=3) after the second interaction. 
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Figure 1a 
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Figure 1b 
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Figure 1c 
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Figure 1d 
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Figure 1e 
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Figure 1f 
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Figure 2a    Figure 2b    Figure 2c 

 

   
 

Figure 2d    Figure 2e    Figure 2f 
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Figure 2g    Figure 2h    Figure 2i 

 

 

 

  

 

Figure 2j 


