
� Note that the term order xlters [15] concerns a generaliz-
ation of rank order "lters whereby the sorted array of signal
values is mapped by a real-valued not-necessarily linear func-
tion. When the function is linear, order "lters correspond to the
¸-"lters proposed earlier [16].
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Abstract

Rank order morphological operators have been designed to better cope with shape variations and noise than the
corresponding operators with plain structuring elements. In this paper, starting from a brief historical overview of rank
order "lters and erosions/dilations in digital image processing, rank order based morphological operators are surveyed.
We also highlight the relations between these operators and show that many are similar if not equivalent. An extensive
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1. Introduction

Medians and other order statistics have since long
been used and investigated in statistics as alternatives to
sample means in estimation of population means [1,2].
Moving median xltering has been suggested by Tukey
[3,4] (Limited Preliminary Edition 1971 referred to in
Refs. [8,12,29].) as a "ltering tool in economic time series
analysis by letting a window move over points of the
series and replacing the value at the window centre with
the median of the original values of the points falling
within the window. First applications of running median
"lters to digital� image data have been described in 1974
for correcting scanner noise by removing salt and pepper
artifacts [8] and in 1976 for enhancing edge gradients by
removing spurious oscillations [9]. In signal processing,
median "ltering has been "rst applied to digital speech
signals for eliminating pitches [10] and transmission
errors [11].

Order statistic xltering is performed similar to median
"ltering: a window is moved over the picture and the kth
order statistic of the values within the window is com-

puted. In image processing, order statistic "lters are also
known as percentile xlters [12, p. 195, 13] and, more
commonly, as rank xlters [14] or rank(ed) order xlters�
[17}19]. One of the earliest published application of rank
order "lters in image processing is due to Heygster [20]
in 1978 and deals with the "ltering of cell pictures. Many
additional references on median and order statistic "lters
can be found in the following three review papers
[21}23]. Hardware architectures for rank order "lters are
proposed in [24}27]. A fast algorithm for rank "lters
based on the moving histogram technique [28,29] ini-
tially introduced for median "lters is detailed in Ref. [30]
and adapted to arbitrary shaped structuring elements in
Ref. [31].

In discrete mathematical morphology [32}36], the min-
imum and maximum ranks play a key role since they
correspond to the fundamental erosion and dilation
operators (also called min and max operators in
Refs. [37,38] as a generalization of the binary shrink and
expand operators). The purpose of this paper is to
provide a detailed review of all morphological operators
based on rank order "lters. We also highlight various
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� The increasing property is sometimes called the stacking
property, see for example Ref. [40].

links between these operators. Alternate morphological
approaches aiming at dealing with more #exible structur-
ing elements (e.g., fuzzy mathematical morphology,
see Ref. [39] for a survey) are out of the scope of this
paper.

The paper is organised as follows. De"nitions and
notations of rank and erosion/dilation operators are
presented Section 2. Their relations together with other
related operators are then discussed. Section 3 reviews
opening/closing based on rank "lters and analyzes their
relations. Section 4 details rank based hit-or-miss trans-
forms and shows that they can all be viewed as instances
of the vector rank order operator. A summary table is
presented in the conclusion.

2. Basic de5nitions, notations, and links

2.1. Rank xlters

The output value of a rank "lter of rank k with a "nite
discrete window of arbitrary shape B is obtained by
sorting in ascending order the pixel values falling within
the window centred at the considered pixel and selecting
the kth value in the sorted array. We denote by �

���
the

rank "lter of rank k and window (structuring element) B,
i.e., k3�1,2,2, n� where n"card(B) is the number of
elements (cardinal number) of B.

Rank "lters are nonlinear, increasing,� and translation
invariant operations. They also satisfy the threshold de-
composition property [40] and therefore commute with
monotonically increasing functions (anamorphoses)
[41]. By construction, the following ordering relation is
always satis"ed: �

���
)�

���
)2)�

���
. Each rank "lter

�
���

has a corresponding dual �
�������

with respect to
complementation C, i.e., �

���
"C�

�������
C. The median

"lter requires n to be odd. It is then de"ned as the rank
"lter for the rank k"(n#1)/2. The median "lter is the
only self-dual rank "lter.

2.2. Erosion and dilation

As already pointed out in Ref. [42], considerable con-
fusion has arisen regarding the de"nitions and notations
of the erosion, dilation, and Minkowski subtraction. This
confusion has two reasons. First, while there is a unique
de"nition for the erosion, there exist two di!erent de"ni-
tions for the dilation and both are widely used in the
literature. Second, identical symbols are used by di!erent
authors to mean di!erent things. All these issues are
detailed hereafter.

Everyone agrees on a common de"nition for the ero-
sion, i.e., the erosion of a set X by a structuring element
B is the locus of the points x such that when B is centred
at x it is included in X (or, equivalently, as the intersec-
tion of the translations X

��
of X by the opposite vectors

!b of B):

erosion of X by B"�x � B
�
-X�"�

���

X
��

.

There exist however two distinct de"nitions for the dila-
tion. In one of the earliest publication [43, pp. 16,17]
devoted to mathematical morphology, the dilation is
referred to as Serra's transform by dilation (and the
erosion as Serra's transform by erosion). This dilation is
de"ned [33, p. 43] as the locus of the points x such that
when B is centred at x it has a non-empty intersection
with X:

dilation of X by B ("rst de"nition)

"�x � B
�
�XO��"�

���

X
��

.

The second de"nition is very similar but not identical to
the "rst because it is de"ned as the locus of the points
x such that when the reyection of B, denoted by B[ , is
centred at x it has a non-empty intersection with X:

dilation of X by B (second de"nition)

"�x � B[
�
�XO��"�

���

X
�
.

This latter de"nition originally appeared in Ref. [44] and
has been adopted by numerous researchers following Ref.
[45]. Notice that a similar type of confusion occurs in
linear signal processing where a convolution by a given
kernel is often de"ned as the weighted sum of the image
values falling within the kernel itself without re#ecting it
beforehand. If the re#ection is neglected, this &convolu-
tion' is in fact a cross-correlation with the kernel, or,
equivalently, a convolution with the re#ected kernel
[46, p. 86]. Indeed, it is a common practice to refer to the
impulse response of a "lter as the "lter itself.

In morphology, even more confusion arises when one
comes to the notations because identical symbols have
been used for di!erent operations. Indeed, the commonly
agreed de"nition for the erosion coincides with the Min-
kowski subtraction originally de"ned by Hadwiger
[47, p. 212]. The Minkowski subtraction is usually
denoted by*or �, in accordance with the signs # or
� used for the Minkowski dilation de"ned long before
Ref. [48]. However, in Ref. [43] and the subsequent
reference publications [32,33], the erosion of X by B is
denoted by X�B[ , i.e., the Minkowski subtraction is
rede"ned with the re#ected set! A functional notation of
erosions and dilations (resp.) has more recently been
adopted (e.g., Refs. [35,36]). In this case, the notation for
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Table 1
Basic transformations of a set X by a structuring element B

Transformation De"nition Notations

Minkowski addition [48] �
���

X
�

X#B or X�B
Minkowski subtraction [47] �

���
X

��
X!B or X�B

Rede"ned Minkowski subtraction [33,43] �
���

X
�

X�B
Erosion (1st notations,� e.g. [33,43]) �

���
X

��
X�B[ or �

�
(X)

Erosion (2nd notations,� e.g. [44,45]) idem X�B or �
�

(X)
Dilation (1st de"nition, e.g. [43,33]) �

���
X

��
X�B[ or 	

�
(X)

Dilation (2nd de"nition, e.g. [44,45]) �
���

X
�

X�B or 	
�

(X)

�Based on the rede"ned Minkowski subtraction.
�Based on the original Minkowski subtraction.

the commonly agreed de"nition for an erosion is � but the
same notation 	 is used for both de"nitions of the dila-
tion. Table 1 summarizes the existing de"nitions and
notations currently used in mathematical morphology
for erosions, dilations, and Minkowski operators.

Fortunately, everyone agrees on a common de"nition
for the erosion. As concerns the dilation, several important
practical reasons may be in favour of its "rst de"nition:

� As for the erosion, no re#ection of the structuring
element is required for de"ning the dilation.

� It is the dual transformation of the erosion with
respect to set complementation: 	

�
"C�

�
C, where

C denotes the complementation operator. When using
the second de"nition for the dilation, one has to re#ect
the structuring element on one side of the equality:
	
�[
"C�

�
C or 	

�
"C�

�[
C.

� It is a rank "lter with the same structuring element
(i.e., without having to re#ect it), as is the erosion
(see details in Section 2.3).

� It coincides with the usual de"nition of the so-called
max "lters [37] (as does the erosion with the min
"lters).

However, from a theoretical point of view, the concept
of adjunction [49], recently introduced in mathematical
morphology [50] for de"ning erosions and dilations
operators in the general context of complete lattices [51],
is in favour of the second de"nition of the dilation be-
cause it forms an adjunct pair with the commonly agreed
de"nition for the erosion. Recall that two transforma-
tions 


�
and 


�
form an adjunction between the two

complete lattices L and M if the following relationship
holds:



�

(>))X�>)

�

(X),

for every X3L and >3M. In this case, 

�

is called
a dilation and 


�
an erosion [52]. Note that, with the

adjunction relation, an erosion/dilation pair is de"ned
without using the complementation (contrary to the dual-
ity relation with respect to set complementation recalled

earlier). Nevertheless, the adjunction relation alone does
not either uniquely de"ne the erosion nor the dilation
because it characterises a pair of transformations. For
example, `Minkowski addition/Minkowski subtractiona,
`Serra's erosion by B/Minkowski addition by Ba, and
`Serra's dilation by B/Minkowski subtraction by B[ a are
all pairs of operators satisfying the adjunction relation.

In this paper, since we are dealing with relations be-
tween morphological and rank "lters, it happens to be
much more convenient to follow Serra's de"nition of the
dilation. We also adopt functional notations. That is, the
erosion � and dilation 	 of a grey scale image f by a #at
structuring element B positioned at a pixel x are denoted
and de"ned as follows:

[�
�

( f )](x)"min
���

f (x#b),

[	
�

( f )](x)"max
���

f (x#b).

Erosion and dilations are nonlinear, increasing, and
translation invariant "lters. Erosions and dilations form
dual pairs of transformations with respect to complemen-
tation. Erosions and dilations with #at structuring ele-
ments satisfy the threshold decomposition principle and
commute with anamorphoses of the intensity values
[33, p. 436]. By construction, �

�
)	

�
but the anti-exten-

sivity of the erosion and the extensivity of the dilation are
veri"ed if and only if the structuring element B contains
its origin:

�
�
)id)	

�
�B contains its origin,

where id denotes the identity transformation. The
dilation distributes the pointwise maximum operator and
the erosion the pointwise minimum operators.

2.3. Links

Obviously, the erosion is equivalent to a rank "lter of
rank 1 and the dilation to a rank "lter of rank n where n is
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� It is worth mentioning here that an even more general repres-
entation theorem whereby the increasing property is dropped has
been proven later by Banon and Barrera [54]. This theorem
states that any translation invariant mapping can be represented
as a union of a family of hit-or-miss transformations.

the cardinal number of the structuring element (see
details in Ref. [53, Section III]): �

�
"�

���
, 	

�
"�

���
,

where n"card(B). On the other hand, since rank "lters
are increasing and translation invariant, the representa-
tion theorem of Matheron [32]� implies that any of them
can be represented as a union of erosions (or, by duality
with respect to set complementation, as an intersection of
dilations). This led Maragos and Schafer [53] prove the
following theorem (see Theorem 1 [53, p. 1172]): for any
grey scale image f and any "nite structuring element
B containing n points, the rank "lter of order k by B is
equal to the pointwise maximum of the erosions of f by
all n!/(k!(n!k)!) subsets of B containing exactly k points,
or, by duality, it is equal to the pointwise minimum of the
dilations of f by all n!/(k!(n!k)!) subsets of B containing
exactly n!k#1 points.

Rank "lters on binary images can be obtained by
thresholding the convolution of the image with the
chosen structuring element as convolution kernel
[55}59] for all values larger or equal to n!k#1. This
idea is also at the basis of the so-called �-"lters introduc-
ed by Preston [60] in 1983. More precisely, �-"lters use
the threshold decomposition and stacking (i.e., increas-
ing) properties [18,40] of rank "lters for processing
grey scale images with a "nite number of grey scale levels:
the output image is obtained by summing up the
thresholds of the convolution of each level set of the
image. �-"lters may use an additional &level parameter'
which indicates whether a low rank/high rank or high
rank/low rank sequence must be applied below or above
the speci"ed level. �-"lters are also de"ned for non-#at
structuring element by thresholding the convolution of
the image subgraph (called &logical signal' in Ref. [60]) of
the signal.

The regulated binary erosion and dilation operators
recently introduced in Ref. [61] are simply rank order
"lters (although this link is already pointed in the latter
paper, an actual equivalence with rank order "lter would
have appeared if Serra's de"nition of the dilation would
have been adopted). The proposed strictness parameter
can be directly related to the rank parameter of the
corresponding rank "lter. Likewise, the election opera-
tion with a voting threshold proposed in Ref. [62] for
processing binary images is equivalent to a rank order
"lter with a rank equal to the voting threshold. Besides, it
is shown in Ref. [62] that the generalization voting logic
to grey scale images leads to rank order "lters.

Rank "lters have been generalized to weighted order
statistic "lters whereby weights are introduced in the
window (structuring element). The weights are integer

values indicating how many times the corresponding
value in the image must be duplicated before computing
the chosen rank [40, Eq. (7)] (see Ref. [12, p. 188] for
weighted median "lters). Note that Wilson [62] proposed
another de"nition of weighted rank order "lters which is
a generalization of erosions and dilations which non-#at
structuring elements. More precisely, the reference point
of the structuring element is placed at an image pixel; the
output value being obtained by (1) adding the weights of
the structuring element to the values of the correspond-
ing image pixels, (2) ordering the resulting sums, and (3)
selecting as output the kth element in the sorted list.

Soft erosions and dilations introduced in Refs. [63}65]
are a special case of weighted order statistic "lters. In-
deed, the basic idea of soft morphological operations is
that the structuring element B is split into two subsets:
the core subset A and the soft subset B�A. Soft mor-
phological erosion (dilation) of a grey scale image with
respect to a "nite discrete set B at a pixel x is de"ned
by sorting in ascending (descending) order the
card(B�A)#kcard(A) values of the input image includ-
ing the pixels inside B�A and repeating k times the values
of the pixels inside A, and then selecting the kth order
from the sorted list. Finally, beware that the binary soft
erosions and dilations de"ned in Ref. [66] are in fact
binary rank "lters and not soft operators in the sense
described before.

3. Rank order based openings and closings

Rank order "lters are at the basis of very powerful
openings and closings called rank-max openings and
rank-min closings. These operations have been originally
proposed by Ronse [67}69, p. 325] and later described in
Ref. [70, pp. 193}196] and [35, pp. 201}202] (see also
Ref. [71, p. 193] where they are called rank-openings and
[36, pp. 98}99] where they are called parametric open-
ings). Let us recall the de"nition of a rank-max opening,
starting from its geometrical interpretation and then
showing its equivalent formulation based on rank "lters.
Rather than using a plain discrete structuring element
B whose cardinal number equals n pixels (i.e.,
card(B)"n), the rank-max opening consists in unioning
the morphological openings by all possible subsets B

�
of

B containing k pixels (1)k)n). For discrete grey scale
images, the union operator simply generalises to the
pointwise maximum operator �. We denote by �

���
the

rank-max opening with a structuring element B and
parameter k by �

���
:

�
���

"S
�

��
��

�B
�
-B and card(B

�
)"k�, (1)

where 1)k)n and n"card(B). Notice that the smaller
k is, the less active is the corresponding rank-max
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� Contrary to Serra [71, p. 193] who refers to actual rank-max
openings using the term rank-opening.

opening. More precisely, the following ordering relation-
ship holds: �

���
"�

�
)�

�����
)2)�

���
)�

���
"id.

From a computational point of view, it can be seen that
the upper bound for the number of distinct structuring
elements B

�
in Eq. (1) equals n!/(k!(n!k)!). This number

is too large for most real applications. Fortunately, it can
be shown (e.g., Ref. [35, pp. 201}202]) that the rank-max
opening is equivalent to the intersection (pointwise min-
imum operator �) between the identity transform and
the dilation by B[ of the rank "lter � using B as kernel and
n!k#1 as rank:

�
���

"id�(	
�[
�
�������

). (2)

Rank-max openings deserve being called openings be-
cause they satisfy the three algebraic properties required
for a morphological opening, i.e., increasingness, anti-
extensivity, and idempotence. This follows directly from
their de"nition (Eq. (1)) because Matheron [32] has
shown that any union of openings is itself an opening.

The practical interest of rank-max openings (and the
dual rank-min closings) is illustrated in [67] for
the processing of digitized X-ray angiographic images.
Alternating sequential "lters [44] based on rank-max
openings and rank-min closings are investigated for "l-
tering noisy binary images in Ref. [72]. Rank-max open-
ings have also been used in Refs. [73,74] for the
extraction of the laid and chain lines in paper water-
marks, in Refs. [75,76] for the detection of the local
orientation of thin elongated objects in noisy images
using a bank of rank-max opening and rank-min closing
"lters, and in Ref. [77] for the "ltering of vein networks
appearing on the leaves of plants. All these applications
deal with the direct processing of grey scale images. Fast
algorithms for translation invariant rank-max openings
by line segments in arbitrary directions are proposed in
Ref. [76].

Note that Maragos [78] and Wilson [62] indepen-
dently introduced the related concepts of rank opening�
[78] and shape inference transform [62]. These two
transformations are in fact identical since they are both
de"ned as a rank "lter followed by a dilation with the
(re#ected) structuring element, i.e., the intersection be-
tween the identity transform and the rank opening (or,
equivalently, the shape inference transform) leads to the
rank-max opening. The term &rank opening' [78] may be
misleading in the sense that it is not an opening. Indeed,
although it is an increasing transformation, it does not
satis"es two additional properties required for an open-
ing: the anti-extensivity and idempotence properties. In
contrast, the so-called regulated opening for binary im-
ages proposed in Ref. [61, p. 962] is an opening. How-
ever, while it is very similar to a rank-max opening, it has

inferior performances. Indeed, the regulated opening
with a structuring element B and strictness s may be
interpreted as the intersection between the input set and
the union of all possible shifts of the structuring element
B for which the intersection with the shape is big enough
and the origin of the kernel is included in the shape. The
second condition is rather restrictive. Indeed, by
doing so, the result of the regulated opening depends on
the origin of the structuring element (remember that
the output of an ordinary opening is independent of the
position of the origin). In particular, the output of the
regulated opening is the empty set if the origin is outside
of the structuring element. In addition, the regulated
opening of a set such by a structuring element such as
a 2�2 square does not commute with rotations by a mul-
tiple of /2 of the input set because it is not possible to set
the origin of a 2�2 square at its centre. In fact, by
relaxing this second condition, i.e., by performing a regu-
lated erosion (i.e., a rank "lter) instead of an anti-exten-
sive regulated erosion in the "rst step of the regulated
opening [61, Eq. (74)], one obtains the already described
rank-max opening.

Finally, note it is questionable whether soft openings
(closings) [64,65] should actually be called openings
(closings) because although they do not satisfy all proper-
ties required for an opening (closing): although increas-
ing, they are neither idempotent nor anti-extensive
(extensive).

4. Rank order based hit-or-miss transform

The hit-or-miss transform [33] involves a structuring
element composed of two sets: the "rst has to "t the
object under study while the second has to miss it. In
mathematical terms, the hit-or-miss transformation,
HM¹, of a set X by a composite structuring element
B"(B

�
, B

�
) is the set of points, x, such that when the

origin of B coincides with x, B
�
"ts X and B

�
"ts X�:

HM¹
�

(X)"�x � (B
�

)
�
-X, (B

�
)
�
-X��. (3)

As suggested by Serra [33, p. 40] this de"nition can be
immediately generalized to the case where n*2 com-
ponent sets X

�
are de"ned. Then every point x has to

ful"ll as many conditions of the type B
�
-X

�
. Wilson

[62] formalized in 1989 this idea while further generaliz-
ing it by allowing for partial inclusions. The resulting
transform is called the vector rank order operator: any
number n of binary images X

�
and structuring elements

B
�

can be considered, the output value at a given pixel
being itself de"ned by sorting the output of each
component processed in parallel by a rank "lter with
structuring element B

�
and rank k

�
, and selecting a given

rank k:

�
�
(�

�� ���
(X

�
),2,�

�� ���
(X

�
)). (4)
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Table 2
Rank order based morphological operators: synoptic table

Transformation De"nition and/or comment

2-D �-"lter� [60] Equivalent to rank "lter
3-D �-"lter� [60] Thresholded convolution on subgraph (equivalent to binary rank "lter

on image subgraph)
Voting logic [62] Equivalent to binary rank "lter
Generalized voting logic [62] Equivalent to rank "lter
Regulated erosion/dilation [61] Equivalent to binary rank "lter
Soft erosion/dilation [63] Special case of weighted order statistic "lter (weight k for the hard part

and weight 1 for the soft part of the composite struct. elem.)
Weighted rank order "lter [62] Generalization of morphology with non-#at struct. elem.

(di!erent from weighted order statistic "lters!)

Rank-max opening [67] (also called S
�
��

��
�B

�
-B and card(B

�
)"k�

rank-opening in Ref. [71] and parametric "id�(	
�[
�
�������

) (it is an opening)
opening in Ref. [36])

Rank opening [78] 	
�[
�
�������

(it is not an opening!)
Shape inference transform [62] 	

�[
�
�������

Soft opening [63] In fact, it is not an opening (see text)

Vector rank order operator [62] �
�
(�

�����
(X

�
), 2, �

�� ���
(X

�
))

Rank order hit-or-miss [84] �
�����

(X)��
�� ���

(X�)
Rank hit-miss [87] �

�����
(X)��

�� ���
(X�)

Split threshold hit/miss [88] �
�����

(X
�

)��
�� ���

(X
�

), where X
�

and X
�

are obtained by performing
two thresholds on an input grey scale image

Regulated hit-or-miss [61] (�
�� ���

(X)�X)��
�� ���

(X�)

�Without considering the level parameter.

A massively parallel system (SIMD) allowing for bit
serial rank order "lter algorithms is described in Refs.
[79,80]. In Ref. [81], it is shown that a sequence of vector
rank order operators (they are called rank-order hit-
and-miss operations in this later reference) are isomor-
phic to multilayer feed-forward translation invariant
(iconic) neural networks with signals of 0 or 1 and
weights $1. The theory of matrix morphology which
encompasses vector operations such as the vector rank
order "lter is detailed in Ref. [82] and generalized later in
Ref. [83].

Vector rank order operators for two image compo-
nents, where X

�
"X and X

�
"X� and by considering

the intersection (i.e., minimum rank) for combining the
images processed in parallel, have been rediscovered in
1990 in Ref. [84] (see Refs. [85,86] for an optical correla-
tor realization) where they are called rank order hit-
or-miss and [87] where they are called rank hit-miss
transform (see also Ref. [35, pp. 118}119]):

�
�� ���

(X)��
�� ���

(X�). (5)

Similarly, the split threshold hit/miss transform pro-
posed in Ref. [88] is nothing but a vector rank order
operator whereby X

�
and X

�
are obtained by

thresholding an input grey scale image for di!erent grey

level ranges:

�
�� ���

(X
�

)��
�� ���

(X
�

).

Finally, another similar transform called the regulated
hit-or-miss transform has been de"ned recently in
Ref. [61, p. 967]:

(�
�� ���

(X)�X)��
�� ���

(X�). (6)

Therefore, regulated hit-or-miss and rank hit-miss (or the
more general vector rank order) "lters only di!er by the
fact that an anti-extensive regulated erosion is considered
in the left term of Eq. (6) instead of a regulated erosion
(remember that both regulated erosions and dilations
come down to a rank "lter, see Section 2.3).

Ranked hit-or-miss like transforms are best suited for
recognition tasks where the shape of the searched objects
are approximatively known and/or may be corrupted by
external factors. First applications dealt with optical char-
acter recognition tasks [62,81]. Complete systems for au-
tomatic target recognition are described in Ref. [84,88].

5. Concluding remarks

We have reviewed all morphological operators based
on rank order "lters. Links and sometimes equivalences
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between these operators have been highlighted. Most
of them are summarized in Table 2. Rank based
morphological operators are important for real applica-
tions because they are often more robust to noise and
shape variations than morphological operators with
plain structuring elements. We hope that this short com-
pendium will foster further research and contribute to the
dissemination of these useful, yet little known (as illus-
trated by their recurrent rediscovery in the literature),
operators.

Eventually, it seems that common names for common
transformations would certainly ease the development of
a coherent theory. For example, we could perhaps adopt
the following taxonomy &rank opening' (for the
identical transformations known as the rank-max, para-
metric, and rank opening), &rank closings' (for the dual
transformation), &rank hit-or-miss' for the basic generaliz-
ation (Eq. (5)) of the hit-or-miss transform and &vector
rank hit-or-miss' for the more general transform (Eq. (4)).
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