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Abstract

This paper presents a method for improving the quality of gray-level images by reducing the e1ect of noise using multiscale
morphology. The underlying concept of the work is to assign progressively less importance to features of smaller scales
as their possibilities of being noise particles are more. Features at various scales are extracted by means of morphological
4ltering. The proposed scheme is 4rst illustrated in one dimension. Morphological towers are built to implement the method
in two dimensions. The proposed algorithm has been tested on a set of real images corrupted with di1erent types of noise. The
results are compared with those of other standard noise removal algorithms based on some standard performance measures.
A modi4cation of the method considering noise statistics along with its results are also presented in this paper. ? 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

A very common source of degradation in a digital
image is noise contamination. Noise may be present
in an image due to di1erent reasons and its e1ect in
degrading the image is di1erent for di1erent kind of
noise. The image corrupted with noise generally suf-
fers from having low signal-to-noise ratio and may
not be suitable for further processing without remov-
ing or reducing the e1ect of noise in it. For exam-
ple, a biomedical image corrupted with noise cannot
be used reliably for clinical diagnosis of disease. A
satellite image corrupted with speckle noise fails to
represent the remote-sensed data of, say, a geographi-
cal terrain. Hence removal of noise from the image is
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of utmost importance in image processing and analy-
sis. However, removal of noise by every known noise
cleaning algorithm is associated with partial removal
of the desired signal component also. For example,
mean �lters generally blur the edges and the corner
points present in the image.
Since the removal of noise may a1ect information

content of the image it becomes quite relevant to deal
with the behavior of the noise. This mainly includes
statistical modeling, analysis and estimation of the as-
sociated noise. Most often the exact nature or type
of the noise are not known beforehand. However, the
type of noise degrading the image is dependent on the
imaging system. Accordingly a suitable mathematical
or statistical noise model may be 4t to quantify or
estimate the parameters of the model. The statistical
behavior of noise is generally described by a prob-
ability density function. The noise process may be
linear or non-linear and the noise may be additive or
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multiplicative. The noise may be signal dependent or
signal independent as well. As a result, a noise re-
moval scheme or algorithm cannot be identically e@-
cient in removing all kinds of noise from images.
There are various noise removal schemes each hav-

ing their own merits and demerits. Some of these are
spatial domain techniques while others are frequency
domain techniques. The spatial domain techniques,
usually, smooth noise by employing the knowledge
acquired from the neighborhood of each pixel in the
noisy image. For example, the well known mean �lter
[29] replaces intensity at each pixel of the noise cor-
rupted image by the average intensity computed over
a prescribed neighborhood. In other variants of mean
4lters this average is computed by assigning intuitive
weightages to the pixels contained in the neighbor-
hood.Median �lters [29], on the other hand, compute
median in lieu of the average. While mean 4lters
have the problem of blurring the edges present in the
image, median 4lters, by and large, preserve them by
reducing the e1ect of statistical outliers present in the
local neighborhood. Crimmins [8] developed a
geometric 4lter which has proved to be e@cient in
removing speckle noise from satellite image data.
Restoring an image from its noisy version is per-
formed in frequency domain by means of low pass
�ltering, inverse �ltering,Wiener �ltering [29]. How-
ever, almost all conventional noise removal algo-
rithms mentioned above do not take care of shapes and
scales of the objects or features present in the image.
The application of mathematical morphology

[23,35] to image processing and analysis has initiated
a new approach for solving a number of problems.
This approach is based on set theoretic concepts of
shape. The speciality of morphological processing
is that it treats the objects present in an image as
sets. The identi4cation of objects and object features
through their shapes makes mathematical morphol-
ogy a useful approach for various machine vision
systems and recognition processes. The popularity of
morphological processing has led to hardware imple-
mentation of morphological operators. These include
Golay logic processor [12], Leitz texture analysis sys-
tem (TAS) [17], CLIP processor arrays [9], and Delft
image processor DIP [19]. The extension of concepts
of morphological operations like dilation and erosion
(also known as Minkowski addition and subtraction
[25], respectively) of binary objects to the arena of

gray level images using max and min operations may
be found in [37,15]. Since its inception mathematical
morphology has observed a steady growth, and dur-
ing last two decades various morphological operators
and processing techniques have been proposed. These
include area (size) morphology [40,41], soft morphol-
ogy [11,28], regulated morphology [10], directional
morphology [1], etc. Morphological operations are
interpreted as set–set processing, function–function
processing, function–set processing [21], etc.
Morphological techniques are being used for solv-

ing various image processing problems including
noise smoothing. The most common noise removal
techniques using mathematical morphology are open-
ing and closing [14] or their cascades known as alter-
nating sequential �lters [36]. Safa and Flouziat [30]
have used mathematical morphology in removing
speckle from radar images. Schonfeld and Goutsias
[33] have done an optimal morphological pattern
restoration from noisy binary images. Lin et al. [7]
have used morphology in reducing noise of VQ en-
coded images through anti-gray coding. A scheme
for morphological anisotropic di1usion for smoothing
noise from gray-scale images has been suggested by
Segall and Acton [34]. In this paper we have devised
a noise smoothing technique using multiscale mor-
phology that also preserve edges. In the following
description we use similar notations of digital image
processing and mathematical morphology as used in
[14]. Section 2 gives a brief discussion on mathe-
matical morphology and multiscale morphology. In
Section 3 we have described the proposed method.
Section 3.1 describes the theoretical formulation of
noise smoothing technique using multiscale morphol-
ogy. Section 3.2 gives a simpli4ed illustration of the
proposed formulation on one-dimensional function.
Section 3.3 presents elaborately various steps of the
implementation of the proposed algorithm. The exper-
imental results and discussions are given in Section 4.
A modi4cation of the proposed scheme considering
the noise statistics is presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Multiscale morphology

Mathematical morphology is a potential tool for
solving a wide range of problems in the 4eld of image
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processing and computer vision. It is used for extract-
ing, modifying and combining image features that are
useful in the representation and description of objects
or shapes. Morphological operations are by and large
set theoretic operations de4ned between two sets: the
object and the structuring element (SE) [35,14]. The
shape and the size of SE play crucial roles in such
types of processing and are therefore chosen accord-
ing to the associated application. The two basic mor-
phological operations are erosion and dilation, and the
opening (closing) operation is the sequential combi-
nation of erosion (dilation) and dilation (erosion). In
this work, we adopt, the function- and set-processing
(FSP) system an elaborate description of which
may be found in [21]. FSP dilation of a gray-level
image g(r; c) by a two-dimensional point set B is
de4ned as

(g⊕ B)(r; c)= max
(k;l)∈B

{g(r − k; c − l)}: (1)

Similarly, FSP erosion of g(x; y) by B is de4ned as

(g� B)(r; c)= min
(k;l)∈B

{g(r + k; c + l)}: (2)

The shape of the structuring element B plays an im-
portant role in extracting or processing shape-based
features or objects present in the image. An SE of
a given shape, however, cannot treat objects of sim-
ilar shape, but of varying size identically. Thus, for
a categorical processing based on the shape as well
as size of objects in the image, we incorporate a sec-
ond attribute to the structuring element called scale.
A family of SEs consisting of the primitive SE and its
higher order homothetics is capable of processing fea-
tures based on shape and size. Such a scheme of mor-
phological operations where a structuring element of
varying scale is utilized is termed as multiscale mor-
phology [35,21]. Multiscale opening and closing [38]
are de4ned, respectively, as

(g ◦ nB)(r; c)= ((g� nB)⊕ nB)(r; c); (3)

(g • nB)(r; c)= ((g⊕ nB)� nB)(r; c); (4)

where B is a point set representing the structuring ele-
ment of a de4nite shape and n is an integer represent-
ing the scale factor of the structuring element. If B is
convex, we obtain nB by dilating B recursively n− 1

times with itself as shown below.

nB=B⊕ B⊕ B⊕ · · · ⊕ B︸ ︷︷ ︸
n−1 times

: (5)

By convention nB= {(0; 0)} when n=0. Multiscale
processing system should have the properties like (i)
causality and (ii) edge localization [27,20,3]. By the
term ‘causality’ we mean no regional extrema and,
consequently, no edge is introduced as the scale in-
creases. ‘Edge localization’ means an edge should not
drift from its original position. The system is also ex-
pected to be scale-calibrated, i.e. at a particular scale,
all features of only that scale are present in the output
image.
The multiscale opening produces Mat regions by re-

moving bright objects or its parts smaller than the SE.
The properties: g◦B6 g and g◦ iB¿ g◦ jB for i¡ j
imply that new relatively darker pixels may result at
higher scales due to opening. In the case of multiscale
closing, new relatively brighter pixels may result at
higher scales. Secondly, removal of parts of an ob-
ject introduces new edges. Thus, conventional open-
ing and closing do not satisfy the causality property.
This is elaborated in the next paragraph.
The basic assumption that the proposed algorithm

takes in smoothing noise is that the image contains
planar intensity patches corrupted with noise grains.
In one dimension, a translation invariant morpholog-
ical operator preserves the slope of the signal [4]. In
fact, a ‘single-slope signal’ — linear function — is
left unchanged by any morphological operator with
the exception of a translation of the function. How-
ever, in case of opening with a horizontal straight
line segment, i.e. the SE, the edges are 4rst drifted
inward due to erosion which is followed by dilation
that drifts the edges outward by the same amount.
This avoids any displacement of edges. In the case
of non-linear functions some peaks having width
smaller than the length of the SE vanish completely.
As a result, some edges may not be present in the
opened image. However, other edges are present in
their original positions. In the case of two or higher
dimensions the situation is not, in general, so. Since
we are dealing with image processing problems, our
discussion is con4ned to two dimensions only. The
SE we use is a disk of certain radius. Aforementioned
analysis is valid (i.e., edge localization problem does
not arise) only where the radius of curvature of the
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Fig. 1. (a) Original image; (b) result of conventional opening of
(a) using a disk SE; and (c) result of opening by reconstruction
of (a) with same SE.

edges is not less than that of the SE or the features
are not too narrow [6]. Otherwise, the features are
either completely removed or pruned. In the latter
case we see the edges are drifted inwards. For ex-
ample, if a rectangle is opened with a disk SE of
diameter less than the smaller side of the rectangle,
the rectangle is pruned at its corners. As a result,
corner edges are drifted inwards introducing an edge
localization problem [see Fig. 1(a) and (b)]. Similar
analysis holds for closing also in the complement
sense. Bangham et al. [3] suggested a scale-space
operator, called M - and N -sieves, which satis4es
causality and edge localization properties. However,
his operator relies only on the size of the features
and completely ignores the shape. On the other hand,
morphological multiscale opening (closing) by recon-
struction [18,31], as de4ned below, considers both
shape and size, and satis4es those properties.
Geodesic dilation of size one, i.e. the smallest size

in discrete domain, is de4ned as the minimum of the
dilation of the original function g with an SE X of
size one and a reference function � and is denoted by
�1X (g; �). Hence

�1X (g; �)=min(g⊕ X; �): (6)

Similarly, geodesic erosion of size one is de4ned as
the maximum of the erosion of the original function
g with an SE X of size one and a reference function
� and is denoted by �1X (g; �). Hence

�1X (g; �)=max(g� X; �): (7)

Now geodesic dilation and erosion of size larger than
one may be de4ned as

�iX (g; �)=min(�(i−1)
X (g; �)⊕ X; �); (8)

�iX (g; �)=max(�(i−1)
X (g; �)� X; �) (9)

for i=1; 2; 3; : : : . Conceptually this may con-
tinue inde4nitely, but for all practical purposes
iteration is terminated at an integer n such that
�nX (g; �)= �(n−1)

X (g; �) and, similarly, when �nX (g; �)
= �(n−1)

X (g; �), because no change would occur after
that. Let us call this stable output reconstruction by
dilation and denote it by �(rec)(g; �), i.e.,

�(rec)(g; �)= �nX (g; �)

and, similarly, we have reconstruction by erosion de-
noted by �(rec)(g; �), i.e.,

�(rec)(g; �)= �nX (g; �):

Based on this operation, opening by reconstruction
of opening or, simply, opening by reconstruction de-
noted by g P◦B may be de4ned as

g P◦B= �(rec)(g ◦ B; g) (10)

and closing by reconstruction denoted by g P•B may be
de4ned as

g P•B= �(rec)(g • B; g): (11)

Therefore, the ‘opening by reconstruction’ can recon-
struct the whole feature through geodesic dilation if
at least a part of it can contain the SE. Thus the basic
di1erence between conventional opening and opening
by reconstruction is as follows: Conventional opening
removes the parts of the bright features or objects that
do not 4t in the SE, whereas opening by reconstruc-
tion either removes the features completely or retains
the whole of it. The situation is evident in the exam-
ple shown in Fig. 1 generated following Pizer [20].
Similar analysis holds for ‘closing by reconstruction’
in case of dark features. As a result, problems like
introduction of new edges and edge displacement do
not arise in the case of opening by reconstruction and
closing by reconstruction. Hence, a multiscale sys-
tem designed with these operators satis4es causality
and edge localization properties. However, it should
be noted that conventional opening and closing oper-
ations are far more e@cient in removing noise than
opening by reconstruction and closing by reconstruc-
tion, respectively.
If these operators, i.e., opening and closing by re-

construction, are used with multiscale SEs, the output
image should contain only features of that scale and
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higher. The di1erence between the outputs at succes-
sive scales then contains features of a particular scale
only. In essence, in the di1erence image the features
which can contain the SE at that scale are present
completely and others are removed. Thus, the system
can be termed as scale calibrated. Another property
desirable for any 4lter, known as rotation invariance
property, is satis4ed by these systems because of use
of a disk SE which is isotropic up to the accuracy at-
tainable in discrete domain.
In the following discussion, unless otherwise men-

tioned, ‘open’ means ‘open by reconstruction’ and
‘close’ means ‘close by reconstruction’, and conse-
quently ‘◦’ stands for ‘ P◦’ and ‘•’ stands for ‘ P•’.

3. Proposed method

3.1. Noise smoothing using multiscale morphology

The noise smoothing technique using multiscale
morphology proposed here makes use of weighted av-
eraging of a sequence of morphologically 4ltered im-
ages stacked in di1erent layers of morphological tow-
ers [26] as depicted in Fig. 4. In general the presence
of noise over a region in an image is manifested in
terms of abrupt variation in the intensity as compared
to the relatively smoother variation of the desired sig-
nal and consequently the edges. This key feature helps
us discriminate noise from the image data. However,
features of smaller size are a1ected more as compared
to that of larger size. Hence, features of various sizes
must be separated out prior to the application of any
technique for reducing the noise.
In morphological 4ltering a bright top-hat transfor-

mation [24] extracts bright objects of size smaller than
the size of the structuring element present in image as
given by the following equation:

gtop(r; c)= g(r; c)− (g ◦ B)(r; c); (12)

where (g ◦ B)(r; c) is opening by reconstruction of
gray-level image g(r; c) by a disk structuring element
B and i=1; 2; : : : ; n is an integer representing the scale
of the structuring element.
The bright top-hat image resulting after 4ltering by

a SE of size i contains all bright features along with
noise that are smaller than i. In this sense the bright

top-hat transformation is scale calibrated. Also, using
the following equation the original image may be re-
covered as follows.

g(r; c)= (g ◦ iB)(r; c) + (g(r; c)− (g ◦ iB)(r; c)):
(13)

Modifying Eq. (13) with a notion of multiscale 4lter-
ing we get

g(r; c) = (g ◦ nB)(r; c) + ((g ◦ (n− 1)B)(r; c)

−(g ◦ nB)(r; c)) + ((g ◦ (n− 2)B)(r; c)

−(g ◦ (n− 1)B)(r; c)) + · · ·+ (g(r; c)

−(g ◦ B)(r; c)) (14)

or,

g(r; c) = (g ◦ nB)(r; c) + Fo
B(r; c)

+Fo
2B(r; c) + · · ·+ Fo

nB(r; c); (15)

where

Fo
iB(r; c)= (g ◦ (i − 1)B)(r; c)− (g ◦ iB)(r; c): (16)

Similarly a dark top-hat or a bottom-hat image result-
ing after 4ltering by an SE of size i contains all dark
image features along with noise that are smaller than i.
In this sense dark top-hat transformation is, too, scale
calibrated. Proceeding in the similar way, we have

g(r; c) = (g • nB)(r; c)− Fc
B(r; c)

−Fc
2B(r; c)− · · · − Fc

nB(r; c); (17)

where

Fc
iB(r; c)= (g • iB)(r; c)− (g • (i − 1)B)(r; c): (18)

Adding Eq. (15) and Eq. (17) and dividing the result
by 2 we get

g(r; c) = 1
2{(g ◦ nB)(r; c) + (g • nB)(r; c)}
+1

2�
n
1F

o
iB︸ ︷︷ ︸

part1

− 1
2�

n
1F

c
iB︸ ︷︷ ︸

part2

: (19)

Each (Fo
iB)(r; c) in part1 of Eq. (19) represents the

image consisting of bright features at scale i present
in the input noisy image. Similarly, each (Fc

iB)(r; c) in
part2 represents the image consisting of dark features
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at scale i present in the input noisy image. In the re-
construction process equal emphasis is given to each
of these feature images through equal weights (which
is 1) as suggested by Eq. (19). However, according
to our assumption the e1ect of noise is more in the
lower scales. That means noise dominates in the fea-
ture images of Eq. (19). So, it is expected that the ef-
fect of noise in the reconstructed image gets reduced if
we reconstruct the image by giving weights less than
one to the feature images. With such views we can
modify Eq. (19) to obtain a smooth image as given
below.

g̃(r; c) = 1
2{(g ◦ nB)(r; c) + (g • nB)(r; c)}
+1

2�
n
1k

o
i F

o
iB︸ ︷︷ ︸

part1

− 1
2�

n
1k

c
i F

c
iB︸ ︷︷ ︸

part2

; (20)

where 06 koi ¡ 1 and 06 kci ¡ 1.
Now the problem is to estimate the values of the

parameters koi s and kci s. One simple way of estimat-
ing these parameters is to maximize some goodness
criterion measured on the smooth image. The noise
smoothing algorithm generally aims at reducing the
abrupt changes and to maintain gradual changes (if
any) in the intensity surface of the image. The abrupt
changes in the intensity surface pro4le is manifested
in terms of edginess. Based on this we consider the
Euclidean norm of Laplacian of the smooth image as
a suitable goodness criterion to be minimized. How-
ever, minimization of such type of objective function
without any constraint usually leads to trivial solu-
tions. So we need to incorporate certain constraint in
the objective function to be minimized. Suppose, the
image is corrupted by additive noise as given by

g(r; c)=f(r; c) + �(r; c):

In that case
∑

r

∑
c(g(r; c)−g̃(r; c))2 =∑

r

∑
c �

2(r; c)=N (�2
� + �2

�) could be used as the
constraint, where �� and �� are the mean and the vari-
ance of noise term, respectively and N is the number
of pixels in the image. Thus the objective function to
be minimized takes the form

E(ko1 ; k
c
1 ; : : : ; k

o
n ; k

c
n)

=
∑
r

∑
c

{∇2g̃(r; c)}2

+�

{∑
r

∑
c

(g(r; c)− g̃(r; c))2 − N (�2
� + �2

�)

}
;

(21)

where, � is the Lagrange multiplier, and 06 koi ¡ 1
and 06 kci ¡ 1. Di1erentiating Eq. (21) with respect
to the parameters ko1 ; k

c
1 ; : : : ; k

o
n and kcn and equating

them to zero, we get 2n number of simultaneous equa-
tions. Solving them we get


ko1

ko2
· · ·
· · ·
kon

kc1

kc2
· · ·
· · ·
kcn




=2X−1




�(gFo
1 ) −�(AFo

1 ) −(LALo1)

�(gFo
2 ) −�(AFo

2 ) −(LALo2)
· · ·
· · ·

�(gFo
n ) −�(AFo

n ) −(LALon)

�(gFc
1) −�(AFc

1) −(LALc1)

�(gFc
2) −�(AFc

2) −(LALc2)
· · ·
· · ·

�(gFc
n) −�(AFc

n) −(LALcn)




;

(22)

where

X=




(Lo1L
o
1 + �Fo

1F
o
1 ) (Lo1L

o
2 + �Fo

1F
o
2 ) · · · (Lo1L

o
n + �Fo

1F
o
n ) −(Lo1L

c
1 + �Fo

1F
c
1) −(Lo1L

c
2 + �Fo

1F
c
2) · · · −(Lo1L

c
n + �Fo

1F
c
n)

(Lo2L
o
1 + �Fo

2F
o
1 ) (Lo2L

o
2 + �Fo

2F
o
2 ) · · · (Lo2L

o
n + �Fo

2F
o
n ) −(Lo2L

c
1 + �Fo

2F
c
1) −(Lo2L

c
2 + �Fo

2F
c
2) · · · −(Lo2L

c
n + �Fo

2F
c
n)

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

(LonL
o
1 + �Fo

n F
o
1 ) (LonL

o
2 + �Fo

n F
o
2 ) · · · (LonLon + �Fo

n Fo
n ) −(LonL

c
1 + �Fo

n F
c
1) −(LonL

c
2 + �Fo

n F
c
2) · · · −(LonLcn + �Fo

n Fc
n)

(Lc1L
o
1 + �Fc

1F
o
1 ) (Lc1L

o
2 + �Fc

1F
o
2 ) · · · (Lc1L

o
n + �Fc

1F
o
n ) −(Lc1L

d
1 + �Fc

1F
d
1 ) −(Lc1L

d
2 + �Fc

1F
c
2) · · · −(Lc1L

c
n + �Fc

1F
c
n)

(Lc2L
o
1 + �Fc

2F
o
1 ) (Lc2L

o
2 + �Fc

2F
o
2 ) · · · (Lc2L

o
n + �Fc

2F
o
n ) −(Lc2L

c
1 + �Fc

2F
c
1) −(Lc2L

c
2 + �Fc

2F
c
2) · · · −(Lc2L

c
n + �Fc

2F
c
n)

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

(LcnL
o
1 + �Fc

nF
o
1 ) (LcnL

o
2 + �Fc

nF
o
2 ) · · · (LcnLon + �Fc

nFo
n ) −(LcnL

c
1 + �Fc

nF
c
1) −(LcnL

c
2 + �Fc

nF
c
2) · · · −(LcnLcn + �Fc

nFc
n)



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Table 1
An example of estimated values of the parameters

Scale Type of feature

Bright feature Dark feature

Parameter Value Parameter Value

1 ko1 0.003480940 kc1 0.007203650

2 ko2 0.012613741 kc2 0.018714545

3 ko3 0.065167400 kc3 0.039894422

4 ko4 0.072803162 kc4 0.058386658

and

A(r; c)= 1
2{(g ◦ nB)(r; c) + (g • nB)(r; c)};

Loi (r; c)=∇2Fo
i (r; c);

Lci (r; c)=∇2Fc
i (r; c);

LA(r; c)=∇2A(r; c);

Loi L
c
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1L

o
i (r; c)L

c
i (r; c);

Fo
i F

c
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1F

o
i (r; c)F

c
i (r; c);

AFo
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1AF

o
i (r; c);

AFc
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1AF

c
i (r; c);

gFo
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1gF

o
i (r; c);

gFc
j =

1
(ht ∗ wd)�

ht
r=1�

wd
c=1gF

c
i (r; c);

LALoj =
1

(ht ∗ wd)�
ht
r=1�

wd
c=1LA(r; c)L

o
i (r; c); and

LALcj =
1

(ht ∗ wd)�
ht
r=1�

wd
c=1LA(r; c)L

c
i (r; c):

Value of � is chosen iteratively so as to satisfy
the given constraint [5,13,29]. The experiment has
been carried out on quite a few images corrupted
with various types of noise; however, for the sake
of presentation, we have taken an example image
along with its Gaussian noise corrupted version. The

Fig. 2. Illustrates Gaussian noise grains at di1erent scales:
(a) noisy image, (b) scale 1, (c) scale 2, (d) scale 3, and (e)
scale 4.

values estimated are shown in Table 1. Fig. 2 shows
the noise corrupted version and the noise grains
present in it at di1erent scales. The parameter values
follow an increasing order, i.e., ko1 6 ko2 6 ko3 · · ·6 kon
and kc16 kc26 kc3 · · ·6 kcn , which conform with the
observation that introduction of random noise, in
general, generates perturbation at lower scales [38].
However, estimation of the parameters incurs a

huge computational cost. To avoid such huge com-
putational cost and also to use 4xed point arithmetic
operations (for further speed up of the algorithm), we
have chosen kon = kcn =

1
2 ; k

o
i−1 =

1
2k

o
i and kci−1 =

1
2k

c
i

for i= n; n − 1; : : : . However, these weights are
set heuristically guided by the experimental results.
Therefore this algorithm is suitable for a class of im-
ages that satisfy the monotonies of the noise contents
with scale. The e@cacy of this selection is established
in Section 4.
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This selection leads to

g̃(r; c) =
1
2
{(g ◦ nB)(r; c) + (g • nB)(r; c)}

+
1
2

1
2F

o
1+Fo

2

2 +Fo
3

2 +Fo
4

...
+···

2 + Fo
n

2

−1
2

1
2F

c
1+Fc

2

2 +Fc
3

2 +Fc
4

...
+···

2 + Fc
n

2
: (23)

Let us de4ne

goav1 (r; c)=
1
2{Fo

B(r; c)} (24)

goavi(r; c)=
1
2{goav(i−1)(r; c) + Fo

iB} (25)

gcav1 (r; c)=
1
2{Fc

B(r; c)} (26)

gcavi(r; c)=
1
2{gcav(i−1)(r; c) + Fc

iB} (27)

and

Pg(r; c)= 1
2{(g ◦ nB)(r; c) + (g • nB)(r; c)}: (28)

Then Eq. (23) can be rewritten as

g̃(r; c)= Pg(r; c) + 1
2g

o
avn(r; c)− 1

2g
c
avn(r; c): (29)

Eq. (29) can be implemented on morphological
towers as described elaborately in the next sub-
section.
In the proposed scheme the scale speci4c feature im-

ages are extracted using top-hat transformation based
on multiscale opening by reconstruction and closing
by reconstruction. There exist other methods for ex-
tracting scale speci4c features from images which use
median 4lter [2], stack 4lter [22], alternate sequen-
tial 4lter [32,39],M - and N -sieves [3,16]. Second, we
have reconstructed the image from the decomposed
ones by their linear combination. However, non-linear
combinations are also employed for the purpose; for
example, Toet [38] used max operator to reconstruct
the image from morphological tree.

3.2. A simple illustration in one dimension

A simpli4ed illustration of the proposed scheme ap-
plied to one-dimensional signal is shown in Fig. 3
for easy understanding. The function f(t) has salient
features manifested as crests and troughs of di1erent
height (or depth) and width located at di1erent posi-
tions. The noise in the function is manifested in terms
of the narrow peaks and troughs at di1erent positions.
Our objective is to smooth the noise of the function
g(t). The line segment L of unit length and its higher
order dilates kL (where k =1; 2; 3) are used as struc-
turing elements (SE) for extracting the salient fea-
tures at di1erent scales from the function as described
below.
• The opening operation with the SE kL removes the
crests which are narrower than the width k while
the closing operation 4lls up the troughs narrower
than the width k.

• The function Fo
k (t)= (g◦ (k−1)L)(t)− (g◦ kL)(t)

contains only the crests of width smaller than k
but larger than (k − 1) and the function Fc

k (t)=
(g • kL)(t) − (g • (k − 1)L)(t) contains only the
troughs of width smaller than k but larger than
(k − 1). Proceeding in this way we construct the
function Fo

1 (t); F
o
2 (t); F

o
3 (t) and Fc

1(t); F
c
2(t); F

c
3(t)

(see Fig. 3).
• We take recursive averaging of the functions ob-
tained in the previous steps. We 4rst construct
the function goav1(t)=

1
2 [F

o
1 (t)]; then the functions

goav2(t)=
1
2 [g

o
av1 + Fo

2 (t)] and goav3(t)=
1
2 [g

o
av2 +

Fo
3 (t)]; respectively. In a similar way the function

gcav3(t) is constructed.
• The function Pg(t) is obtained by averaging
(g ◦ 3L)(t) and (g • 3L)(t).

• The smoothed function is then formed by combin-
ing the functions Pg(t); goav3(t) and g

c
av3(t) as shown

below:

g̃(t)= Pg(t) + 1
2g

o
av3(t)− 1

2g
c
av3(t): (30)

Comparing g̃(t) with f(t) at each sample point t it
is readily seen that the height (depth) of the crests
(troughs) have decreased but disproportionately. The
change in height is more for crests of narrower width.
This is true for crests also. This would not be possible
using mean 4ltering. The smooth function is found to
be less a1ected by noise spikes without any noticeable
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Fig. 3. Multiscale morphological noise smoothing of a function.
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Fig. 4. Noise smoothing scheme using morphological towers.

change in sharpness and location of valid edges. The
scheme explained for this one-dimensional case may
as well be extended to two dimension as described
below.

3.3. Implementation

The implementation of Eq. (29) describing feature
based noise smoothing scheme involves construction
of a number of morphological towers.

3.3.1. Construction of morphological towers
The noisy image to be smoothed is made to undergo

a sequence of gray-scale morphological opening by
reconstruction with a disc structuring element and its
higher order homothetics. The resulting sequence of
images is kept in a stack called the opening tower as
shown in Fig. 4. An identical tower, called closing
tower, is constructed with the sequence of the images
resulted from multiscale closing by reconstruction of
the input noisy image. Therefore, the ith entry in the
opening (closing) tower contains the image opened
(closed) with the structuring element iB as given
below.

(g ◦ iB)(r; c)= ((g� iB)⊕ iB)(r; c) (31)

(g • iB)(r; c)= ((g⊕ iB)� iB)(r; c) (32)

for i=1; 2; : : : ; n.

3.3.2. Construction of di7erence towers
As stated earlier the image resulting after morpho-

logical opening using a structuring element iB contains
only those features of the original image that are equal
to or larger than the size of the structuring element
iB. Likewise the image resulting after a morphological
opening using a structuring element (i+1)B contains
all those features of the original image that are equal
to or larger than the size of the structuring element
(i+ 1)B. Thus a di1erence of these two images gives
rise to another image which contains only those fea-
tures of the original image that have size greater than
or equal to that of iB but less than that of (i+1)B. This
holds good for the multiscale closings of the images
also.
Accordingly, two di1erence towers for opening and

closing are constructed by carrying out di1erence op-
erations between all successive pairs of images result-
ing after morphological opening (closing) operations.
Fig. 4 shows two such di7erence towers. Thus the ith
layer of the di1erence tower corresponding to bright
and dark features contain the images obtained by
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following operations.

Fo
iB(r; c)= (g ◦ (i − 1)B)(r; c)− (g ◦ iB)(r; c); (33)

Fc
iB(r; c)= (g • iB)(r; c)− (g • (i − 1)B)(r; c) (34)

for i=1; 2; : : : ; n.

3.3.3. Construction of smooth image

• A recursive averaging of the images stacked in dif-
ference tower corresponding to opening (closing)
is carried out. We start with a null image and select
the image at the lowest layer of the di1erence tower
and form another image by averaging them. Then
the average of the resulting image and the image in
the next higher layer of the corresponding di1erence
tower is computed to form another image. This is
continued until the top of the tower is reached. This
is described mathematically by Eqs. (24)–(27).

• The average of the images resulting after opening
and closing of the input image by the largest ho-
mothetic of the SE is also computed as described
by Eq. (28). Note that the average, everywhere, de-
notes pixel-wise average of images.

• Finally, the smooth image is obtained by combining
three images as given by

g̃(r; c)= Pg(r; c) + 1
2g

o
avn(r; c)− 1

2g
c
avn(r; c): (35)

The ‘+’ and ‘−’ operations are applied on corre-
sponding pixels of three di1erent images.

4. Experimental results and discussion

The proposed algorithm has been tested on sev-
eral images. However, the results are shown here
for a single image corrupted with di1erent kinds of
noise as shown in Fig. 5 [1(a)–7(a)]. Various kinds
of noise considered in the experiment include expo-
nential, Gaussian, Poisson, Rayleigh, shot, uniform
and speckle noise — the details of which are listed
in Table 2. For generating noise we made use of im-
age processing software Khoros210. The results of
proposed algorithm are shown in Fig. 5 [1(b)–7(b)].
We have compared our results with those of me-
dian �lter (see Fig. 5 [1(c)–7(c)]). Crimmins �lter
(see Fig. 5 [1(d)–7(d)]), and Anisotropic di7usion
smoothing [27,42] (see Fig. 5[1(e)–7(e)]). In the

experiment we have chosen n=6 for our proposed
method. For median 4lter and Crimmins 4lter the mask
size used is 7×7. For anisotropic di1usion smoothing
the value of �t; % and number of iterations are taken as
0.5, 1.0 and 20, respectively. The values of all these
parameters are chosen to obtain visually optimum re-
sults.
Qualitative evaluation (by human observer) reveals

that median 4lter has more or less blurred the thin
features of the image. Results of Crimmins 4lter are
better than those of median 4lter and it has proved
to be the best for smoothing speckle noise. Results
of the proposed method show relatively less blurring
of thin features with appreciable noise cleaning and it
has greatly outperformed other methods in smoothing
shot noise. However, the proposed method has higher
space complexity as compared to others. Consider-
ing overall performance it can be said in essence, that
the proposed multiscale morphological technique is a
good edge-preserving smoothing technique. For quan-
titative comparison of performances of the methods
referred here we have studied the followings measures.

4.1. Signal-to-noise ratio

Suppose I(r; c) and In(r; c) denote noise-free and
noisy image of the same scene. Signal-to-noise ratio
(SNR) is de4ned as the ratio of signal power to the
noise power as given below.

SNR=
�r�cI 2(r; c)

�r�c{I(r; c)− In(r; c)}2 : (36)

The more the value of SNR the better is the noise
smoothing method. It may be measured as ratio or in
terms of dB. In Table 3 we have presented SNR values
(as ratio) of the smooth images resulting from various
methods. We also have ranked the methods depending
on the SNR values. Higher relative score is assigned to
better method. From Table 3 it is evident that the total
score of our proposed method is the second highest
among all other methods. In most of the cases the SNR
value is either the highest or the second highest.

4.2. Mean busyness

Busyness pro4le of an image gives an idea of spa-
tial variation in intensity. Mean busyness value is an
average of busyness values of all the pixels in the
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Fig. 5. (a) Original noisy image; (b) result of proposed multiscale morphological noise removal 4ltering; (c) result of median 4ltering;
(d) result of Crimmins algorithm; (e) results of anisotropic di1usion smoothing. (1) Exponential noise; (2) Gaussian noise; (3) Poisson
noise; (4) Rayleigh noise; (5) shot noise; (6) uniform noise; (7) speckle noise.
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Table 2
Di1erent types of noise and their parameters used in the experiment

Fig. no. Type of noise Parameter attributes Values of the Whether additive or
parameters multiplicative

1(a) Exponential Variance 255.0 Additive

2(a) Gaussian Mean 0.0 Additive
Variance 255.0

3(a) Poisson Amount of time 2000 Additive
Variance 75.0

4(a) Rayleigh Variance 255.0 Additive

5(a) Shot Percentage of spikes 70 Additive
Real value of spike 255.0
Imaginary value of spike 0.0

6(a) Uniform Minimum value −50:0 Additive
Maximum value +50:0

7(a) Speckle Mean 1.0 Multiplicative
Standard deviation +0:28

Table 3
Signal-to-noise ratio (SNR) for di1erent noise removal schemesa

Noise type Input Signal-to-noise ratio and scores
SNR

MMS MF CA ADS

SNR Score SNR Score SNR Score SNR Score

Exp 60.695696 107.092369 3 128.374554 4 84.032957 1 101.385678 2
Gus 110.967612 521.394035 2 359.873484 1 554.378836 3 664.503600 4
Pos 6.323838 12.321112 1 13.584419 2 14.199405 4 13.864437 3
Ral 25.231925 30.637288 3 29.966759 2 26.847579 1 30.924575 4
Sht 2.597885 5.025113 4 2.479764 1 3.920223 3 3.184999 2
Uni 35.734041 249.829078 3 178.546900 2 390.640388 4 131.178951 1
Spk 17.507818 101.459861 3 89.792234 2 106.833882 4 30.123955 1

Total 19 14 20 17
aNoise type: Exp: Exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni: uniform

noise, Spk: speckle noise. MMS: multiscale morphological smoothing, MF: median 4ltering, CA: Crimmins algorithm, ADS:
anisotropic di1usion smoothing.

image. In general, the presence of noise in an im-
age raises the mean busyness value of the image. A
noise removal algorithm should reduce this raised
mean busyness value and bring it as close to that
of the original noise-free image as possible. In this
section we have studied the smoothing ability of the
algorithms in terms of deviation in mean busyness
(DMB) values of the noisy images and compared that
with other methods.
Wu et al. [43] computed busyness at each pixel in

an image as the median of the absolute vertical and

horizontal di1erences in gray values over a 3×3 mask.
The busyness values of all the pixels are then averaged
to get the mean busyness value of the image. Thus,
mean busyness MB is computed as

MB=
1
N
�r�c Median{|dk(r; c)|}; (37)

where dk(r; c) is the kth vertical and horizontal dif-
ference in a 3× 3 mask of the image. Finally, devia-
tion in mean busyness value of a smooth image g̃ is
obtained by subtracting the mean busyness value of
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Table 4
Deviation in mean busyness value (DMB) for di1erent noise removal schemesa

Type of noise Deviation in mean busyness value and score of the scheme

NI MMS MF CA ADS

DMB DMB Score DMB Score DMB Score DMB Score

Exp 10.921769 1.776302 1 0.061684 4 −0:663406 3 1.085721 2
Gus 14.009873 2.513388 1 0.228851 4 −0:670080 3 1.416486 2
Pos 3.561615 0.076848 4 −0:519846 2 −0:869204 1 −0:343052 3
Ral 12.423284 1.810181 1 0.213318 4 −0:672295 3 1.106729 2
Sht 56.100977 −0:485336 4 2.166444 3 15.512188 2 35.877724 1
Uni 26.590066 3.531104 2 1.396079 3 −0:540330 4 7.273403 1
Spk 31.357986 5.062269 2 1.696948 3 0.053672 4 14.632311 1

Total 15 23 20 12

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:
uniform noise, Spk: speckle noise. NI: noisy image, MMS: multiscale morphological smoothing, MF: median 4ltering, CA: Crimmins
algorithm, ADS: anisotropic di1usion smoothing.

Table 5
Correct processing ratio value CPR for di1erent noise removal schemesa

Type of noise Correct processing ratio value and score of the scheme

MMS MF CA ADS

CPR Score CPR Score CPR Score CPR Score

Exp 0.894104 3 0.912628 4 0.883774 2 0.882538 1
Gus 0.922318 3 0.930511 4 0.920120 2 0.902786 1
Pos 0.550140 2 0.636810 3 0.542679 1 0.755737 4
Ral 0.962555 3 0.973022 4 0.908737 1 0.941376 2
Sht 0.509003 4 0.503113 3 0.268234 1 0.501587 2
Uni 0.964340 3 0.970032 4 0.951797 2 0.933578 1
Spk 0.950699 3 0.957886 4 0.939911 2 0.921738 1

Total 21 26 11 12

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:
uniform noise, Spk: speckle noise. NI: noisy image, MMS: multiscale morphological smoothing, MF: median 4ltering, CA: Crimmins
algorithm, ADS: anisotropic di1usion smoothing.

the ideal noise-free image from that of the smoothed
image (see Eq. (38)).

DMB(g̃)=MB(g̃)−MB(f): (38)

For each kind of noise we have computed the abso-
lute di1erence between the mean busyness values of
the noisy image and the smooth images resulting from
di1erent methods. A method is ranked by its score.
Lower the magnitude of DMB better is the perfor-
mance of the smoothing algorithm and higher is the
score awarded to it. A negative value of DMB implies
the over-smoothing performed by the associated algo-

rithm and it also indicates the loss of certain edge fea-
tures. Table 4 summarizes the observation. From the
table it is evident that the overall (as well as individ-
ual) score of the proposed method falls behind those
of MF and CA. However, in almost all cases CA has
performed over-smoothing.

4.3. Correct processing ratio

A pixel in a smooth image is said to be noisy if its
gray value is not same as that of the ideal noise-free
image. This di1erence in gray value can be due to some
amount of noise still present or due to degradation
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of feature. The basic purpose of a noise smoothing
algorithm should be to modify the gray value of the
noisy pixels keeping those of the noise-free pixels un-
altered as far as possible. In this context the correct
processing ratio CPR is de4ned as [43]

CPR=
1
N
�r�c{IB(r; c) + IC(r; c)}; (39)

where N is the total number of pixels in the image,
and IB(r; c) and IC(r; c) are de4ned as

IB(r; c)

=

{
1 if g(r; c)=f(r; c) and g̃(r; c)= g(r; c);

0 otherwise
(40)

and

IC(r; c)

=

{
1 if g(r; c) 
=f(r; c) and g̃(r; c) 
= g(r; c);

0 otherwise;
(41)

where f(r; c), g(r; c) and g̃(r; c) are, respectively,
the ideal noise-free, noisy and the smooth image. A
good edge-preserving smoothing algorithm should
have CPR value very close to unity. Accordingly, we
have given scores to the methods. From the Table 5
it is evident that our proposed method has the second
highest ranking in terms of its overall score.

5. Modi cation of the proposed scheme considering
noise statistics: MMS-2

As mentioned earlier that the noise grains are ex-
pected to predominate in the lower range of scale.
With such view we have assigned progressively lower
weightages to the feature images of low scale. How-
ever, though it is agreed upon by many researchers
(e.g., [3,38]) that random unstructured noise domi-
nate at the lower scale, the way we assign weightages
to the feature images during reconstruction is purely

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 6 (a) Original noisy image; (b) result of proposed multiscale
morphological noise removal 4ltering (MMS-1); (c) result of
proposed multiscale morphological noise removal 4ltering using
noise statistics (MMS-2). (1) Exponential noise; (2) Gaussian
noise; (3) Poisson noise; (4) Rayleigh noise; (5) shot noise;
(6) uniform noise; (7) speckle noise.

ad hoc in nature. On the other hand, estimating the
weights through optimization of goodness criterion as
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Table 6
Signal-to-noise ratio (SNR) for MMS-1 and MMS-2a

Noise type Input SNR Signal-to-noise ratio and scores

MMS-1 MMS-2

SNR Score SNR Score

Exp 60.695696 107.092369 2 106.637728 1
Gus 110.967612 521.394035 1 526.863226 2
Pos 6.323838 12.321112 2 12.008656 1
Ral 25.231925 30.637288 1 30.986411 2
Sht 2.597885 5.025113 1 5.242757 2
Uni 35.734041 249.829078 1 258.817539 2
Spk 17.507818 101.459861 1 106.344694 2

Total 9 12

aNoise type: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh noise,
Sht: shot noise, Uni: uniform noise, Spk: speckle noise. MMS-1: multiscale morphological smoothing,
MMS-2: multiscale morphological smoothing using noise statistics.

suggested in Eq. (22) incurs a huge computational cost
for each image. A compromise between these two ap-
proaches might be assigning weightage depending on
the amount of noise present at a scale. Since we have
no a priori knowledge of noise statistics at individual
scale, we suggest an empirical formula for computing
weightages for bright and dark feature images at scale
i, respectively, as

koi =
�oi

�n
i=0�

o
i
; (42)

kci =
�ci

�n
i=0�

c
i
; (43)

where

�oi =
(image size)(size of iB)∑

r

∑
c F

o
iB(r; c)

; (44)

�ci =
(image size)(size of iB)∑

r

∑
c F

c
iB(r; c)

(45)

for i=1; 2; 3; : : : ; n. However, if the denominators of
Eqs. (44) and (45) are zero, we assign zero value
to koi and kci . Finally, smooth image is reconstructed
using Eq. (16). Let us call this scheme MMS-2 and
the previous one MMS-1.
We have reconstructed new sets of results following

this method and compared these with that of MMS-1
obtained previously. The images resulting after

executing MMS-2 on the same set of input noisy im-
ages are shown in Fig. 6.

5.1. Comparison between MMS-1 and MMS-2

Qualitative comparison by human observer reveals
that the performance of MMS-1 and MMS-2 are
almost same. Apart from visual judgment we have
compared the SNR, DMB and CPR values of the
images resulting from MMS-1 and MMS-2 for each
type of noise. The same convention of ranking a
method is followed. The measures are summarized in
Tables 6–8 as follows.
Table 6 shows the SNR values of the images result-

ing from MMS-1 and MMS-2 along with the ranks.
The SNR values in most cases are found to improve
when noise statistics is considered. Table 7 shows the
DMB values of the images resulting from MMS-1 and
MMS-2 along with the ranks. From the table it is evi-
dent that the performances of MMS-1 and MMS-2 in
terms of deviation in mean business value are almost
same. However, very precisely speaking the overall
performance of MMS-1 is slightly better. Again as be-
fore, we have computed the CPR values of the images
resulting from MMS-1 and MMS-2 and compared
them assigning ranks. Table 8 shows the CPR val-
ues of the images resulting from MMS-1 and MMS-2
along with the scores. The overall correct processing
of MMS-2 is found to be slightly better than that of
MMS-1.
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Table 7
Deviation in mean busyness values (DMB) for MMS-1 and MMS-2a

Type of noise Deviation in mean busyness value and score of the scheme

NI MMS-1 MMS-2

DMB DMB Score DMB Score

Exp 10.921769 1.776302 2 1.760339 1
Gus 14.009873 2.513388 2 2.580885 1
Pos 3.561615 0.076848 2 0.079354 1
Ral 12.423284 1.810181 2 1.898009 1
Sht 56.100977 −0:485336 2 −0:600246 1
Uni 26.590066 3.531104 1 3.470512 2
Spk 31.357986 5.062269 2 5.118432 1

Total 13 8

aType of noise: Exp: exponential noise, Gus: Gaussian noise, Pos: Poisson noise, Ral: Rayleigh
noise, Sht: shot noise, Uni: uniform noise, Spk: speckle noise. NI: Noisy image, MMS-1: multiscale
morphological smoothing, MMS-2: multiscale morphological smoothing using noise statistics.

Table 8
Correct processing ratio value (CPR) for MMS-1 and MMS-2a

Type of Correct processing ratio value and
noise score of the scheme

MMS-1 MMS-2

CPR Score CPR Score

Exp 0.894104 1 0.894684 2
Gus 0.922318 2 0.921860 1
Pos 0.550140 2 0.549713 1
Ral 0.962555 2 0.961853 1
Sht 0.509003 1 0.509415 2
Uni 0.964340 1 0.964981 2
Spk 0.950699 1 0.950806 2

Total 10 11

aType of noise: Exp: exponential noise, Gus: Gaussian noise,
Pos: Poisson noise, Ral: Rayleigh noise, Sht: shot noise, Uni:
uniform noise, Spk: speckle noise. MMS-1: multiscale morpho-
logical smoothing, MMS-2: multiscale morphological smooth-
ing using noise statistics.

6. Conclusion

In this paper we present a method for edge preserv-
ing smoothing of gray-scale images using multiscale
morphology. The method is based on manipulat-
ing the intensity of scale-speci4c features present
in the noisy image. The proposed scheme has been
illustrated in one dimension. Then it has been imple-
mented using morphological towers to smooth noise

in 2-D images. The algorithm has been tested on sam-
ple images corrupted with various kinds of noise. The
results have been compared with those of other stan-
dard methods. A comparative study of performance of
various methods have been carried out through some
standard performance measures, like signal-to-noise
ratio, deviation in mean busyness and correct pro-
cessing ratio. It is found that the performance of the
proposed method is satisfactory and in some cases
superior to other methods referred in this paper. The
proposed method is then modi4ed considering the
noise statistics.
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