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I. Introduction

Mathematical morphology is an active and growing area of image processing
and analysis. It is based on set theory and topology (Matheron, 1975; Serra,
1982; Haralick et al., 1986; Giardina and Dougherty, 1988). Mathematical
morphology studies the geometric structure inherent within the image. For
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this reason it uses a predetermined geometric shape known as the structuring
element. Erosion, which is the basic morphological operation, quantifies the
way in which the structuring element fits into the image. Mathematical mor-
phology has provided solutions to many tasks, where image processing can be
applied, such as in remote sensing, optical character recognition, radar image
sequence recognition, medical imaging, etc. Soft mathematical morphology
was introduced by Koskinen et al. (1991). In this approach the definitions of
the standard morphological operations were slightly relaxed in such a way
that a degree of robustness was achieved while most of their desirable proper-
ties were maintained. Soft morphological filters are less sensitive to additive
noise and to small variations in object shape than standard morphological fil-
ters. They have found applications mainly in noise removal, in areas such as
medical imaging and digital TV (Harvey, 1998).

The extension of concepts of mathematical morphology to color image
processing is not straightforward, because there is not an obvious and un-
ambiguous method of fully ordering vectors (Barnett, 1976). Component-
wise morphological techniques, which are based on marginal subordering,
do not take into consideration the correlation among color components; thus,
they are not vector preserving. Transformation techniques have been used
to decorrelate color components and then apply componentwise gray-scale
techniques (Goutsias et al., 1995). Morphological techniques that are based
on reduced or partial subordering imply the existence of multiple suprema
(infima); Thus, they could introduce ambiguity in the resultant data (Comer
and Delp, 1998). The crucial point in developing a vector morphology the-
ory for color image processing is the definition of vector-preserving infimum
and supremum operators with unique outcome in a properly selected color
space.

Another relatively new approach to mathematical morphology is fuzzy
mathematical morphology. A fuzzy morphological framework was introduced
by Sinha and Dougherty (1992). In this framework the images are treated
not as crisp binary sets but as fuzzy sets. Set union and intersection have
been replaced by fuzzy bold union and bold intersection, respectively, in order
to formulate fuzzy erosion and dilation, respectively. This attempt to adapt
mathematical morphology into fuzzy set theory is not unique. Several other
attempts have been developed independently by researchers, and they are all
described and discussed by Bloch and Maitre (1995). Several fuzzy math-
ematical morphologies are grouped and compared, and their properties are
studied. A general framework unifying all these approaches is also demon-
strated.

In this paper recent trends in soft mathematical morphology are presented.
The rest of the paper is organized as follows. Binary, gray-scale, and vec-
tor standard morphological operations, their algebraic properties, and fuzzy
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morphology are discussed in Section II. Soft mathematical morphology is
described in Section III. The definitions of vector soft morphological opera-
tions, their basic properties, and their use in color impulse noise attenuation
are also presented in this section. A soft morphological structuring element-
decomposition technique is introduced in Section IV. The definitions of fuzzy
soft morphological operations and their algebraic properties are provided in
Section V. Several implementations of soft morphological filters and an im-
plementation of vector morphological filters are analyzed in Section VI. Con-
cluding remarks are made in Section VII.

II. Standard Mathematical Morphology

The considerations for the structuring element used by Haralick et al. (1987)
have been adopted for the basic morphological operations. Also, the notations
of the extensions of the basic morphological operations (soft morphology,
fuzzy morphology and fuzzy soft morphology) are based on the same con-
sideration. Moreover, throughout the paper the discrete case is considered,
i.e., all sets belong to the Cartesian grid Z2.

A. Binary Morphology

Let the set A denote the image under process and the set B denote the structuring
element. Binary erosion and dilation are defined:

A � B =
⋂
x∈B

(A)−x and (1)

A ⊕ B =
⋃
x∈B

(A)x , (2)

respectively, where A, B are sets of Z2 and (A)x is the translation of A by x,
which is defined as follows:

(A)x = {c ∈ Z 2 | c = a + x for some a ∈ A} (3)

A case of binary erosion and dilation is illustrated in Examples II.1 and II.2,
respectively.

Example II.1 A � B results from A(0,0) ∩ A(0,−1), according to Eq. (1). The
adopted coordinate system is (row, column). The arrows denote the origin of
the coordinate system and its direction.
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Example II.2 A ⊕ B results from A(0,0) ∪ A(0,1), according to Eq. (2).
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The definitions of binary opening and closing are

A ◦ B = (A � B) ⊕ B and (4)

A • B = (A ⊕ B) � B, (5)

respectively.

B. Basic Algebraic Properties

The basic algebraic properties of the morphological operations are provided
in this section.

Theorem II.1 Duality Theorem
Erosion and dilation are dual operations:

(A � B)C = AC ⊕ BS, (6)

where AC is the complement of A, defined as

AC = {x ∈ Z 2 | x /∈ A}, (7)

and BS is the reflection of B, defined as

BS = {x | for some b ∈ B, x = −b}. (8)

Opening and closing are also dual operations:

(A • B)C = AC ◦ BS (9)

Theorem II.2 Translation Invariance
Both erosion and dilation are translation invariant operations:

(A)x ⊕ B = (A ⊕ B)x and (10)

(A)x � B = (A � B)x , (11)

respectively.

Theorem II.3 Increasing Operations
Both erosion and dilation are increasing operations:

A ⊆ B ⇒ A � C ⊆ B � C, (12)

A ⊆ B ⇒ A ⊕ D ⊆ B ⊕ D. (13)

Theorem II.4 Distributivity
Erosion distributes over set intersection and dilation distributes over set union:

(A ∩ B) � C = (A � C) ∩ (B � C) and (14)

(A ∪ B) ⊕ C = (A ⊕ C) ∪ (B ⊕ C), (15)

respectively.
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Theorem II.5 Antiextensivity-Extensivity
Erosion is an antiextensive operation, provided that the origin belongs to the
structuring element:

0 ∈ B ⇒ A � B ⊆ A. (16)

Similarly, dilation is extensive if the origin belongs to the structuring element:

0 ∈ B ⇒ A ⊆ A ⊕ B. (17)

Theorem II.6 Idempotency
Opening and closing are idempotent, i.e., their successive applications do not
further change the previously transformed result:

A ◦ B = (A ◦ B) ◦ B and (18)

A • B = (A • B) • B (19)

C. Gray-scale Morphology with Flat Structuring Elements

The definitions of morphological erosion and dilation of a function f: F → Z
by a flat structuring element (set) B are

( f � B)(x) = min{ f (y) | y ∈ (B)x} and (20)

( f ⊕ B)(x) = max{ f (y) | y ∈ (BS)x}, (21)

respectively, where x, y ∈ Z2 are the spatial coordinates and F ⊆ Z2 is the
domain of the gray-scale image (function).

Examples II.3 and II.4 demonstrate how we can use Eqs. (20) and (21) to
perform erosion and dilation, respectively, of a function by a flat structuring
element.

Example II.3 f (1, 2) = 3, x = (1, 2), B = {(0, 0), (0, 1), (−1, 0), (−1, 1)}.
According to Eq. (20):

f � g(1, 2) = min{ f (0 + 1, 0 + 2), f (0 + 1, 1 + 2), f (−1 + 1, 0 + 2),
f (−1 + 1, 1 + 2)}

= min{ f (1, 2), f (1, 3), f (0, 2), f (0, 3)} = min{3, 2, 7, 5} = 2
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Example II.4 f (1, 2) = 3, x = (1, 2), B = {(0, 0), (0, 1), (−1, 0), (−1, 1)}
and, consequently, BS = {(0, 0), (0, −1), (1, 0), (1, −1)}. According to
Eq. (21):

( f ⊕ B)(1, 2) = max{ f (0 + 1, 0 + 2), f (0 + 1, −1 + 2), f (1 + 1, 0 + 2),
f (1 + 1, −1 + 2)}

= max{ f (1, 2), f (1, 1), f (2, 2), f (2, 1)}
= max{3, 6, 8, 5} = 8.

)( yf

   8   5

   6    3

   0         1         2          3

  3

  2

  1

  0

  2),1)(B( ⊕f

 s
B

 2

8 1

  

   B

D. Gray-scale Morphology with Gray-scale Structuring Elements

The definitions of erosion and dilation of a function f : F → Z by a gray-scale
structuring element g: G → Z are

( f � g)(x) = min
y∈G

{ f (x + y) − g(y)} and (22)

( f ⊕ g)(x) = max
y∈G

x−y∈F

{ f (x − y) + g(y)}, (23)
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respectively, where x, y ∈ Z2 are the spatial coordinates and F, G ⊆ Z2 are the
domains of the gray-scale image (function) and gray-scale structuring element,
respectively.

An application of Eqs. (22) and (23) is illustrated in Examples 5 and 6,
respectively.

Example II.5 f (1, 2) = 3, x = (1, 2), G = {(0, 0), (0, 1), (−1, 0), (−1, 1)}.
According to Eq. (22):

f � g(1, 2) = min{ f (1 + 0, 2 + 0) − g(0, 0), f (1 + 0, 2 + 1) − g(0, 1),
f (1 − 1, 2 + 0) − g(−1, 0), f (1 − 1, 2 + 1) − g(−1, 1)}

= min{ f (1, 2) − g(0, 0), f (1, 3) − g(0, 1), f (0, 2) − g(−1, 0),
f (0, 3) − g(−1, 1)}

= min{3 − 2, 2 − 1, 7 − 4, 5 − 3)}
= min{1, 1, 3, 2} = 1.
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Example II.6 f (1, 2) = 3, x = (1, 2), G = {(0, 0), (0, 1), (−1, 0), (−1, 1)}.
According to Eq. (23):

( f ⊕ g)(1, 2) = max{ f (1 − 0, 2 − 0) + g(0, 0), f (1 − 0, 2 − 1) + g(0, 1),
f (1 + 1, 2 − 0) + g(−1, 0), f (1 + 1, 2 − 1) + g(−1, 1)}

= max{ f (1, 2) + g(0, 0), f (1, 1) + g(0, 1), f (2, 2) + g(−1, 0),
f (2, 1), +g(−1, 1)}

= max{3 + 2, 6 + 1, 8 + 4, 5 + 3)

= max{5, 7, 12, 8} = 12}
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Gray-scale erosion and dilation possess the properties of binary erosion and
dilation, respectively.

E. Vector Morphology for Color Image Processing

Morphological operations suitable for color image processing are defined tak-
ing into consideration the following: (1) They should treat colors as vectors
(i.e., they should not be componentwise operations), so they can utilize the
correlation between color components (Goutsias et al., 1995). (2) They should
be vector preserving, so that they do not introduce new vectors (colors) not
present in the original data (Talbot et al., 1998). (3) They should produce
unique results in all cases, so that they do not introduce ambiguity in the re-
sultant data (Comer and Delp, 1998. (4) They should have the same basic
properties with their gray-scale counterparts. (5) They should reduce to their
gray-scale counterparts when the vector dimension is 1.

Thus, the definitions for vector morphological operations are extracted by
means of vector-preserving supremum and infimum operators, properly de-
fined in a selected color space—i.e., the HSV color space that is user oriented;
it depicts colors in a way that approaches human perception. In this space a
color is a vector with the components hue (h ∈ [0, 360]), saturation (s ∈ [0, 1]),
and value (v ∈ [0, 1]). In the following sections such a color will be denoted
by c(h, s, v).

Consider that the HSV space is equipped with the <
c

conditional suborder
relationship (Barnett, 1976), so that

c1(h1, s1, v1) <
c

c2(h2, s2, v2) ⇔




v1 < v2

or
v1 = v2 and s1 > s2

or
v1 = v2 and s1 = s2 and h1 < h2

(24)
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and

c1(h1, s1, v1) =
c

c2(h2, s2, v2) ⇔ v1 = v2 and s1 = s2 and h1 = h2 (25)

Then, if SBn is an arbitrary subset of the HSV space, which includes n vectors
c1(h1, s1, v1), c2(h2, s2, v2), . . . , cn(hn, sn, vn), the ∧

c
infimum operator in SBn

is defined as follows:

∧
c

SBn =∧
c

{c1(h1, s1, v1), c2(h2, s2, v2), . . . , cn(hn, sn, vn)}

= ck(hk, sk,
1≤k≤n

vk):




vk = min{v1, v2, . . . , vn}
if� ∃i �= j

1≤i, j≤n
: vi = v j = min{v1, v2, . . . , vn}

or
vk = vi = v j = min{v1, v2, . . . , vn} and
sk = max{si , s j }
if ∃ i �= j

1≤i, j≤n
:vi = v j = min{v1, v2, . . . , vn} and si �= s j

or
vk = vi = v j = min{v1, v2, . . . , vn} and
sk = max{si , s j } and hk = min{hi , h j }
if ∃ i �= j

1≤i, j≤n
:vi = v j = min{v1, v2, . . . , vn} and si = s j

(26)

The ∨
c

supremum operator in SBn is defined in a similar way.
From previous definition it is obvious that the ∧

c
and ∨

c
operators are vector

preserving, because they always produce as a result one of the input vectors
included in SBn. These operators are used to define vector morphological op-
erations that are vector preserving, as well.

Let us consider two functions f, g : Rn → HSV, i.e., two n-dimensional
color images, where f is the image under process (the input image) and g is the
structuring element. If f (x) = c(hx f , sx f , vx f ), x ∈ Rn , then the definitions of
vector erosion and dilation, respectively, are

( f � g)(x) = ∧
c y∈G

{ f (x + y) − g(y)} (27)

( f ⊕ g)(x) = ∨
c

{ f
y∈G

(x − y) + g(y)} (28)

x−y∈F

where x, y ∈ Rn are the spatial coordinates and F, G ⊆ Rn are the domains of
the color input image (function) and the color structuring element, respectively.
Moreover, �, ⊕ denote vector subtraction and addition, respectively, which
are defined as follows:

f (k) − g(k) = c(hk f − hkg, sk f − skg, vk f − vkg), k ∈ Rn (29)
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with

hk f − hkg = 0 if hk f − hkg < 0

sk f − skg = 0 if sk f − skg < 0

vk f − vkg = 0 if vk f − vkg < 0

and

f (k) + g(k) = c(hk f + hkg, sk f + skg, vk f + vkg) (30)

with

hk f + hkg = 360 if hk f + hkg > 360

sk f + skg = 1 if sk f + skg > 1

vk f − vkg = 1 if vk f + vkg > 1

Vector opening and closing are defined similarly to their gray-scale counter-
parts.

It has been proven that the defined vector morphological operations possess
the same basic properties with their gray-scale counterparts: extensivity or
antiextensivity, increasing or decreasing monotony, translation invariance, and
duality. In addition, they are identical to their gray-scale counterparts when
the vector dimension is 1. Consequently, the proposed vector morphology is
compatible to gray-scale morphology.

Examples II.7 and II.8 demonstrate the cases of vector erosion and dilation,
respectively.

Example II.7 f (1, 2) = c(0, 0.8, 0.9), x = (1, 2), G = {(0, 0), (0, 1), (−1, 0),
(−1, 1)}. According to Eq. (27):

f � g(1, 2) = ∧
c
{ f (1 + 0, 2 + 0) − g(0, 0), f (1 + 0, 2 + 1) − g(0, 1),

f (1 − 1, 2 + 0) − g(−1, 0), f (1 − 1, 2 + 1) − g(−1, 1)}
= ∧

c
{ f (1, 2) − g(0, 0), f (1, 3) − g(0, 1), f (0, 2) − g(−1, 0),

f (0, 3) − g(−1, 1)}
= ∧

c
{c(0, 0.8, 0.9) − c(10, 0.4, 0.6), c(30, 0.5, 0.7)

− c(10, 0.4, 0.3), c(60, 0.5, 0.8)
− c(55, 0.4, 0.3), c(80, 0.9, 0.6) − c(75, 0.4, 0.3)}

= ∧
c
{c(0, 0.4, 0.3), c(20, 0.1, 0.4), c(5, 0.1, 0.5), c(5, 0.5, 0.3)}

= c(5, 0.5, 0.3)
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Example II.8 f (1, 2) = c(80, 0.6, 0.6),x = (1,2),G = {(0,0),(0,1),(−1, 0),
(−1, 1)}. According to Eq. (28):

( f ⊕ g)(1, 2) = ∨
c
{ f (1 − 0, 2 − 0) + g(0, 0), f (1 − 0, 2 − 1) + g(0, 1),

f (1 + 1, 2 − 0) + g(−1, 0), f (1 + 1, 2 − 1) + g(−1, 1)}
= ∨

c
{ f (1, 2) + g(0, 0), f (1, 1) + g(0, 1), f (2, 2) + g(−1, 0),

f (2, 1) + g(−1, 1)}
= ∨

c
{c(80, 0.6, 0.6) + c(30, 0.2, 0.2), c(40, 0.5, 0.6)

+ c(0, 0.2, 0.2), c(60, 0.4, 0.4)

+ c(20, 0.2, 0.2), c(0, 0.4, 0.7) + c(50, 0.2, 0.2)}
= ∨

c
{c(110, 0.8, 0.8), c(40, 0.7, 0.8), c(80, 0.6, 0.6),

c(50, 0.6, 0.9)} = c(50, 0.6, 0.9)
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F. Fuzzy Morphology

In this paper the definitions introduced by Sinha and Dougherty (1992) are
used. These are a special case of the framework presented by Bloch and Maitre
(1995). In this approach, fuzzy mathematical morphology is studied in terms of
fuzzy fitting. The fuzziness is introduced by the degree to which the structuring
element fits into the image. The operations of erosion and dilation of a fuzzy
image by a fuzzy structuring element having a bounded support are defined in
terms of their membership functions:

µA�B(x) = min
y∈B

[min[1, 1 + µA(x + y) − µB(y)]]

= min
[
1, min

y∈B
[1, +µA(x + y) − µB(y)]

]
(31)
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and

µA⊕B(x) = max
y∈B

[max[0, µA(x − y) + µB(y) − 1]]

= max
[
0, max

y∈B
[µA(x − y) + µB(y) − 1]

]
(32)

where x, y ∈ Z 2 are the spatial coordinates and µA, µB are the membership
functions of the image and the structuring element, respectively.

It is obvious from Eqs. (31) and (32) that the results of both fuzzy erosion
and dilation have membership functions whose values are within the interval
[0, 1].

III. Soft Mathematical Morphology

In soft morphological operations, the maximum or the minimum operations
used in standard gray-scale morphology are replaced by weighted order statis-
tics. A weighted order statistic is a certain element of a list, the members of
which have been ordered. Some of the members from the original unsorted list,
participate with a weight greater than 1, i.e. they are repeated more than once,
before sorting (David, 1981; Pitas and Venetsanolpoulos, 1990). Furthermore,
in soft mathematical morphology the structuring element B is divided into two
subsets; the core B1 and the soft boundary B2.

A. Binary Soft Morphology

The basic definitions of the binary soft erosion and dilation are (Pu and Shih,
1995):

(A � [B1, B2, k])(x) = {x ∈ A | (k × Card[A ∩ (B1)x ] + Card[A ∩ (B2)x ])
≥ kCard[B1] + Card[B2] − k + 1} (33)

and

(A ⊕ [B1, B2, k])(x) = {
x ∈ A | (

k × Card
[
A ∩ (

BS
1

)
x

])
+ Card

[
A ∩ (

BS
2

)
x

]) ≥ k
}

(34)

respectively, where k is called the order index, which determines the number of
times that the elements of core participate into the result, and Card [X ] denotes
the cardinality of set X, i.e., the number of the elements of X.
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In the extreme case when the order index k = 1 or, alternatively, B =
B1(B2 = ∅), soft morphological operations are reduced to standard morpho-
logical operations.

Example III.1 The following example demonstrates a case of soft binary
dilation and erosion.

A
B1 = {(0, 0)}
B2 = {(−1, 0), (0, −1), 

 (0, 1), (1, 0)}

A⊕ [B1, B2, 1] A⊕ [B1, B2, 2]

A⊕ [B1, B2, 1] A⊕ [B1, B2, 2]

If k > Card[B2], soft morphological operations are affected only by the
core B1, i.e., using B1 as the structuring element. Therefore, in this case
the nature of soft morphological operations is not preserved (Kuosmanen
and Astola, 1995; Pu and Shih, 1995). For this reason the constraint k ≤
min{Card(B)/2, Card(B2)} is used. In the preceding example min(Card(B)/2,

Card(B2)) = 2.5; therefore, only the cases k = 1 and k = 2 are considered. For
k = 1 the results of both dilation and erosion are the same as those that would
have been obtained by applying Eqs. (2) and (1), respectively.

B. Gray-scale Soft Morphology with Flat Structuring Elements

The definitions of soft morphology were first introduced by Koskinen et al.
(1991) as transforms of a function by a set. In the definition of soft dilation,
the reflection of the structuring element is used, so that in the case of k = 1 the
definitions comply with (Haralick et al., 1986).

( f � [B1, B2, k])(x) = min(k)({k ♦ f (y) | y ∈ (B1)x} ∪ ({ f (z) | z ∈ (B2)x})
(35)

and

( f ⊕ [B1, B2, k])(x) = max(k)
({

k ♦ (y) | y ∈ (
BS

1

)
x

} ∪ ({
f (z) | z ∈ (

BS
2

)
x

})
(36)
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respectively, where min(k) and max(k) are the kth smallest and the kth largest
element of the multiset, respectively; a multiset is a collection of objects, where
the repetition of objects is allowed and the symbol ♦ denotes the repetition,
i.e., {k ♦ f (x)} = { f (x), f (x), . . . , f (x)} (k times).

C. Gray-scale Soft Morphology with Gray-scale Structuring Elements

Soft morphological erosion of a gray-scale image f : F → Z by a soft gray-
scale structuring element [α, β, k]: B → Z is (Pu and Shih, 1995):

f � [α, β, k](x) = min
y∈B1

z∈B2

(k)({k ♦ ( f (x + y) − α(y))} ∪ { f (x + z) − β(z)})

(37)

Soft morphological dilation of f by [α, β, k] is

f ⊕ [α, β, k](x) = max(k)

(x−y),(x−z) ∈ F
({k ♦ ( f (x − y) + α(y))} ∪ { f (x − z) − β(z)})

z∈B1
z∈B2

(38)

where x, y, z ∈ Z 2 are the spatial coordinates, α: B1 → Z is the core of the
gray-scale structuring element, β: B2 → Z is the soft boundary of the gray-
scale structuring element, and F, B1, B2 ⊆ Z 2 are the domains of the gray-scale
image, the core of the gray-scale structuring element, and the soft boundary of
the gray-scale structuring element, respectively.

Figure 1 demonstrates one-dimensional soft morphological operations and
the effect of the order index k. The same structuring element is used for both
operations. It is a one-dimensional structuring element with five discrete values.
The central value corresponds to its core and it is equal to 30. Additionally, it
denotes the origin. The four remaining values belong to its soft boundary and
they are equal to 20. From both Figures 1a and b it is obvious that the greater
the value of the order index, the better the fitting.

D. Vector Soft Morphology for Color Image Processing

In this section an approach to soft color image mathematical morphology is
presented. This extends the vector standard morphology theory discussed in
Section II.E in the same way that gray-scale soft morphology extends the gray-
scale standard morphology theory. Vector soft morphology, like gray-scale soft
morphology, aims at improving the behavior of vector standard morphological
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(a)

(b)

Image Dilation (k = 1) Dilation (k = 2)

255

0

Image Erosion (k = 1) Erosion (k = 2)

250

0

Figure 1. Illustration of one-dimensional soft morphological operations and the effect of
the order index k; (a) soft erosion and (b) soft dilation.

filters in noisy environments. It retains the concept of splitting the structuring
element in two parts: the core and the soft boundary. It also preserves the
concept of the order index k, which implies that the core “weights” more than
the soft boundary in the calculation of the result. Furthermore, it uses the
relational operator <

c
(Eq. (24)) in order to rank the vector values included in
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a multiset of HSV space vectors. Here again the kth-order statistic is the result
of the vector soft morphological operation.

Let SBn be an arbitrary subset of the HSV space, which includes n vectors
c1, c2, . . . , cn , and SBn(ord) be the set of the ordered values c(1), c(2), . . . , c(n)

i.e.,

SBn(ord) = {
c(1), c(2), . . . , c(n)

}
, c(1) ≤

c
c(2) ≤

c
· · · ≤

c
c(n).

Then the kth smallest and the kth largest vector, respectively, in SBn are

min
c

(k)(SBn) = c(k), 1 ≤ k ≤ n (39)

and

max
c

(k)(SBn) = c(n−k+1), 1 ≤ k ≤ n (40)

Therefore, vector soft erosion and dilation of a color image f by a color struc-
turing element g( f, g : Rn → HSV) are defined as follows.

( f � [β, α, k])(x) = min
c

(k)({k ♦ ( f (x + y)
y∈B1

− a(y))} ∪ { f (x + z) − β(z)})
z∈B2

(41)

( f ⊕ [β, α, k])(x) = max
c

(k)({k ♦ ( f (x + y)
(x−y), (x−z )∈F

+ a(y))} ∪ { f (x − z) + β(z)})
z∈B1
z∈B2

(42)

where x, y, z ∈ Rn are the spatial coordinates, a: B1 → Rn is the core of
the color structuring element, β: B2 → Rn is the soft boundary of the color
structuring element, and F, B1, B2 ⊆ Rn are the domains of the color im-
age, the core of the color structuring element, and the soft boundary of the
color structuring element, respectively. In addition, (−) and (+) are the vector
subtraction and addition operations defined in Eqs. (29) and (30), respec-
tively. Vector soft opening and closing are defined similarly to their gray-scale
counterparts.

Vector soft morphology is compatible to gray-scale soft morphology. In
vector soft morphology, as in gray-scale soft morphology, the restriction k ≤
min{Card(B)/2, Card(B2)} for the order index k ensures that the nature of soft
morphological operations is preserved. Moreover, primary and secondary op-
erations of vector soft morphology are reduced to their gray-scale counterparts
when they are applied to gray-scale images. In addition, vector soft erosion,
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dilation opening, and dilation closing possess the same basic properties with
gray-scale soft erosion, dilation, opening, and closing, respectively.

Theorem III.1 Duality Theorem
Vector soft erosion and dilation are dual operations:

−( f ⊕ [β, α, k])(x) = (− f � [β ′, α′, k])(x) (43)

Vector soft opening and closing are also dual operations:

−( f ◦ [β, α, k]) = − f • [β ′, α′, k] (44)

Theorem III.2 Translation Invariance
Vector soft erosion and dilation are translation invariant:

( f � [β, α, k])y + j = ( fy + j) � [β, α, k], y ∈ Rn, j ∈ HSV (45)

( f ⊕ [β, α, k])y + j = ( fy + j) ⊕ [β, α, k], y ∈ Rn, j ∈ HSV (46)

Vector soft opening and closing are translation invariant, as well:

( f ◦ [β, α, k])y + j = ( fy + j) ◦ [β, α, k], y ∈ Rn, j ∈ HSV (47)

( f • [β, α, k])y + j = ( fy + j) • [β, α, k], y ∈ Rn, j ∈ HSV (48)

Theorem III.3 Increasing Operations
Vector soft erosion and dilation are monotonically increasing operations:

f1 � f2 ⇒
{

f1 � [β, α, k] � f2 � [β, α, k]

f1 ⊕ [β, α, k] � f2 ⊕ [β, α, k]
(49)

where g � f ⇔ G ⊆ F and g(x) ≤
c

f (x) ∀x ∈ G.

Vector opening and closing are monotonically increasing operations, as
well:

f1 � f2 ⇒
{

f1 ◦ [β, α, k] � f2 ◦ [β, α, k]

f1 • [β, α, k] � f2 • [β, α, k]
(50)

Theorem III.4 Extensivity–antiextensivity
If the origin lies inside the core of the structuring element, vector soft erosion
is antiextensive and vector soft dilation is extensive:

0 ∈ α ⇒
{

( f � [β, α, k])(x) ≤
c

f (x)

( f ⊕ [β, α, k])(x) ≥
c

f (x) (51)
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On the contrary, vector soft opening is not in general antiextensive and vector
soft closing is not in general extensive:

∃x ∈ Rn :

{
( f ◦ [β, α, k])(x) ≥

c
f (x)

( f • [β, α, k])(x) ≥
c

f (x) (52)

Theorem III.5 Idempotency
Like their gray-scale counterparts, vector soft opening and closing are not, in
general, idempotent.

∃ f, g : Rn → HSV such that

{
f ◦ [β, α, k] �= ( f ◦ [β, α, k]) ◦ [β, α, k]

f • [β, α, k] �= ( f • [β, α, k]) • [β, α, k]
(53)

The main characteristic of morphological methods is that they take into
consideration the geometrical shape of the objects to be analyzed. However,
standard morphological operations are highly sensitive to noise. In some ap-
plications this sensitivity may cause problems: prefiltering to remove noise
is necessary; if this prefiltering is not done very carefully, it may result in
corruption of the shape of objects to be studied, thus degrading the overall
performance of the system. Gray-scale soft mathematical morphology was
introduced by Koskinen et al. (1991), as an extension of gray-scale stan-
dard mathematical morphology, in order to improve the behavior of gray-
scale standard morphological filters in noisy environments: gray-scale soft
morphological operations are less sensitive to impulse noise and to small
variations in object shape (Koskinen and Astola, 1994) compared to the cor-
responding gray-scale standard morphological operations. Experimental re-
sults show that vector soft morphological operations act in a similar way
with their gray-scale counterparts: they are advantageous regarding small
detail preservation and impulse noise attenuation in comparison to the cor-
responding vector standard morphological operations. This is illustrated in
Figures 2 and 3.

More specifically, Figure 2 demonstrates the effect of the order index k in ob-
ject shape and small detail preservation. From Figures 2b–d it is obvious that,
as in gray-scale soft morphology, the greater the value of the order index, the
better the detail preservation. Comparing Figures 2b–d, it can be also observed
that the smaller the value of k, the closer the behavior of a vector soft morpho-
logical transform is to that of the corresponding vector standard morphological
transform, just as in the case of soft gray-scale morphology (Kuosmanen and
Astola, 1995). This is one more similarity of vector soft and gray-scale soft
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(a)                                                                                                   

    (c)                                                                                                   

(b)

(d)

Figure 2. (a) Original color image “Veta,” (b) image after vector standard erosion by g = [β,
α, 1], (c) image after vector soft erosion by [β, α, 2], and (d) image after vector soft erosion by
[β, α, 4].

morphological transforms. For instance, in Figure 2 it can be seen that, for soft
vector erosion, f � g ≤

c
f � [β, α, k] ≤

c
f � [β, α, k + 1] ≤

c
f , which holds

for gray-scale soft erosion as well.
Figure 3 illustrates that vector soft morphological transforms are advanta-

geous in color impulse noise elimination, in comparison to the corresponding
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(a)                                                                                 

                                       
(c)                                                                                

(e)

(b)

(d)
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vector standard morphological transforms. It can be seen that vector soft open-
ing (closing) removes both positive and negative color impulse noise, just as in
the gray-scale case. It can also be observed that the increase of the order index
k increases the noise-removal capability and the detail-preservation capability,
as well.

At this point it must be mentioned that a significant problem in the study of
impulse noise removal from color images is the lack of a generally accepted
multivariate impulse noise model. Recently various such models have been
proposed. The following color impulse noise model (Plataniotis et al., 1999)
has been used in our experiments:

cn =




c0 = c(h, s, v) with probability (1 − p)
c(d, s, v) with probabilityp1 p
c(h, d, v) with probabilityp2 p
c(h, s, d) with probabilityp3 p
c(d, d, d) with probabilitypS p

(54)

where c0 is the original vector (the noncontaminated color), cn is the noisy
vector, and d is the impulse value. Furthermore, P is the degree of impulse
noise distortion, pS = 1 − (p1 + p2 + p3), and p1 + p2 + p3 ≤ 1. The posi-
tive or negative impulse value d is properly placed in the range of each vector
component.

IV. Soft Morphological Structuring Element Decomposition

A soft morphological structuring element decomposition technique is de-
scribed in this section (Gasteratos et al., 1998c). According to this technique,
the domain B of the structuring element is divided into smaller, nonoverlapping
subdomains B1, B2, . . . , Bn. Also, B1 ∪ B2 ∪ · · · ∪ Bn = B. The soft mor-
phological structuring elements obtain values from these domains, and they are
denoted by [λ1, µ1, k], [λ2, µ2, k], . . . , [λn, µn, k], respectively. These have a
common origin, which is the origin of the original structuring element. Addi-
tionally, the points of B that belong to its core are also points of the cores of B1,
B2, . . . , Bn and the points of B that belong to the soft boundary are also points
of the soft boundaries of B1, B2, . . . , Bn. This process is graphically illustrated

Figure 3. (a) Original color image “Veta’s birthday,” (b) image corrupted by 6% positive
and negative HSV impulse noise with p1 = p2 = p3 = 0 and pS = 1, (c) resulting image after vector
standard opening by g = [β, α, 1], (d) resulting image after vector soft opening by [β, α, 2], and
(e) resulting image after vector soft opening by [β, α, 4].



07/16/2001 07:17 PM Adances in Imaging and Electron Physics-V.119 PS082B-01.tex PS082B-1.xml APserialsv2(2000/12/19) Textures 2.0

24 M. I. VARDAVOULIA, A. GASTERATOS, AND I. ANDREADIS

B2

B3

B9
B8

B7

B5

B6

B4

B1

Figure 4. Example of a 4 × 4 soft morphological structuring element decomposition.

in Figure 4. In this figure the core of the structuring element is denoted by the
shaded area.

Soft dilation and erosion are computed as follows:

f ⊕ [α, β, k](x) = n
max
i=1

(k)
[ k

max( j)

(x−y)∈B1

(x−z)∈B2

j=1

({k♦( f (x − y)

+ λi (y))} ∪ { f (x − z) + µi (z)})] (55)

f � [α, β, k](x) = n
max
i=1

(k)
[ k

max( j)

(x−y)∈B1

(x−z)∈B2

j=1

({k♦( f (x + y)

− λi (y))} ∪ { f (x + z) − µi (z)})] (56)

respectively, where B1 and B2 are the domain of the core and the soft boundary
of the large structuring element [α, β, k]: B → Z.
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Proof.

∀y ∈ B1 : α(y) =
n⋃

i=1

λi (y)

⇒ f (x − y) + α(y) =
n⋃

i=1

[ f (x − y) + λi (y)], (x − y) ∈ B1

⇒ k ♦ ( f (x − y) + α(y)) = k ♦
(

n⋃
i=1

[ f (x − y) + λi (y)]

)

= k ♦ ( f (x − y) + λ1(y), f (x − y)

+ λ2(y), . . . , f (x − y) + λn(y)), (x − y) ∈ B1

(57)

Also,

∀z ∈ B2 : β(z) =
n⋃

i=1

µi (z)

⇒ f (x − z) + β(z) =
n⋃

i=1

[ f (x − z) + µi (z)]

= f (x − z) + µ1(z), f (x − z) + µ2(z), . . . ,
f (x − z) + µn(z), (x − z) ∈ B2 (58)

Through Eqs. (38), (57), and (58) we obtain:

f ⊕ [α, β, k](x)

= max
(x−y)∈B1

(x−z)∈B2

(k)




{k ♦ ( f (x − y) + λ1(y), f (x − y)
+ λ2(y), . . . , f (x − y) + λn(y))} ∪
{ f (x − z) + µ1(z), f (x − z) + µ2(z), . . . ,
f (x − z) + µn(z)}




= max
(x−y)∈B1

(x−z)∈B2

(k)




{k ♦ ( f (x − y) + λ1(y))} ∪ { f (x − z) + µ1(z)},
{k ♦ ( f (x − y) + λ2(y))} ∪ { f (x − z) + µ2(z)},
. . .

{k ♦ ( f (x − y) + λn(y))} ∪ { f (x − z) + µn(z)}




= n
max(k)

(x−y)∈B1

(x−z)∈B2

i=1

[{k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)}]
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This equation can be expressed in terms of order statistics of the multiset as
follows:

f ⊕ [α, β, k](x)

= n
max
i=1

(k)[max(N)

(x−y)∈B1

(x−z)∈B2

({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)}),

max
(x−y)∈B1

(x−z)∈B2

(N−1)({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)}),

...

max
(x−y)∈B1

(x−z)∈B2

({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)})]

where N is the number of the elements of the multiset.
However, if an element is not greater than the local (N − k)th-order statistic,

then it cannot be greater than the global (N − k)th-order statistic. Therefore,
the terms max(N), . . . , max(k+1) can be omitted:

f ⊕ [α, β, k](x)

= n
max
i=1

(k)[ max
(x−y)∈B1

(x−z)∈B2

(k)({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)}),

max
(x−y)∈B1

(x−z)∈B2

(k−1)({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)}),

...

max
(x−y)∈B1

(x−z)∈B2

({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)})]

= n
max
i=1

(k)[
k

max( j)

(x−y)∈B1

(x−z)∈B2

j−1

({k ♦ ( f (x − y) + λi (y))} ∪ { f (x − z) + µi (z)})]

Equation (56) can be proved similarly.

Example IV.1 Consider the following image f and soft structuring element
[α, β]:
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Soft dilation at point (0, 0) for k = 2, according to Eq. (38), is

f ⊕ [α, β, 2](0, 0) = max(2)({2 ♦ (14, 13)} ∪ {16, 12, 12, 17})
= max(2)(14, 14, 13, 13, 16, 12, 12, 17) = 16

According to the proposed technique, the structuring is divided into three
structuring elements:

4 12 12 4

[ λ1, µ1 ] [ λ2, µ2 ] [ λ3, µ3 ]

3 3

The following multisets are obtained from the preceding structuring elements:
{2 ♦ (14), 16}, {2 ♦ (13), 12} and {12, 17}, for the first, the second, and
the third structuring elements, respectively. From these multisets the max and
max(2) elements are retained: ({16, 14}, {13, 13} and {17, 12}). The max(2)

of the union of these multisets, i.e., 16, is the result of soft dilation at point
(0, 0). It should be noted that although 16 is the max of the first multiset, it is
also the max(2) of the global multiset.

V. Fuzzy Soft Mathematical Morphology

A. Definitions

Fuzzy soft mathematical morphology operations are defined taking into con-
sideration that in soft mathematical morphology the structuring element is
divided into two subsets, i.e., the core and the soft boundary, from which the
core “weights” more than the soft boundary in the formation of the final result.
Also, depending on k, the kth-order statistic provides the result of the opera-
tion. Fuzzy soft morphological operation should also preserve the notion of
fuzzy fitting (Sinha and Dougherty, 1992). Thus, the definitions for fuzzy soft
erosion and fuzzy soft dilation are (Gasteratos et al., 1998a):

µA�[B1,B2,k](x) = min[1, min
y∈B1

z∈B2

(k) ({k ♦ (µA(x + y) − µB1 (y) + 1)} ∪

{µA(x + z) − µB2 (z) + 1})] (59)
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and

µA⊕[B1,B2,k](x) = max[0,max
(x−y)∈B1

(x−z)∈B2

(k)({k ♦ (µA(x − y) + µB1 (y) − 1)} ∪

{µA(x − z) + µB2 (z) − 1})] (60)

respectively.
where x, y, z, ∈ Z2, are the spatial coordinates and µA, µB1, µB2 are the mem-
bership functions of the image, the core of the structuring element, and the soft
boundary of the structuring element. Additionally, for the fuzzy structuring
element B ⊂ Z 2 : B = B1 ∪ B2 and B1 ∩ B2 = ∅.

It is obvious that for k = 1, Eqs. (59) and (60) are reformed to Eqs. (31) and
(32), respectively, i.e., standard fuzzy morphology.

Example V.1 Let us consider the image A and the structuring element B.
Fuzzy soft erosion and fuzzy soft dilation are computed for cases k = 1 and
k = 2.

0.3 0.9 0.7 0.80.9 0.3

0.2 0.8 0.8 0.91.0 0.2

0.1 1.0 0.2 0.20.8 0.2

0.8 1.0 0.81.0

A

B

0.8 1.0 0.81.0

Bs

µ

µµ

In order to preserve the nature of soft morphological operations, the con-
straint k ≤ min {Card(B)/2, Card(B2)} is adopted in fuzzy soft mathemati-
cal morphology as well as in soft mathematical morphology. In this example
only the cases of k = 1 and k = 2 are considered, in order to comply with this
constraint.

Case 1 (k = 1): The fuzzy soft erosion of the image is calculated as follows:

µE(0, 0) = µA�[B1,B2,1](0, 0) = min[1, min[0.3 − 1 + 1, 0.9 − 1 + 1, 0.9

− 0.8 + 1]] = 0.3

µE(0, 1) = min[1, min[0.3 − 0.8 + 1, 0.9 − 1 + 1, 0.9 − 1 + 1, 0.7

− 0.8 + 1]] = 0.5
...

µE(5, 2) = min[1, min[0.2 − 0.8 + 1, 0.2 − 1 + 1]] = 0.2
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Therefore, the eroded image is:

0.3 0.7 0.5 0.30.5 0.3

0.2 0.8 0.4 0.20.4 0.2

0.1 0.2 0.2 0.20.3 0.2

A Θ [B 1, B2, 1]
µ

The values of the eroded image at points (0, 2) and (1, 2) are higher than the
rest values of the image. This agrees with the notion of fuzzy fitting, because
the structuring element fits better only at these points than at the rest points
of the image. Fuzzy erosion quantifies the degree of structuring element fitting.
The larger the number of pixels of the structuring element, the more difficult
the fitting. Furthermore, fuzzy soft erosion shrinks the image. If fuzzy image
A is considered as a noisy version of a binary image (Sinha and Dougherty,
1992), then the object of interest consists of points (0, 1), (0, 2), (0, 3), (0, 4),
(1, 1), (1, 2), (1, 3), (1, 4), (2, 1) and (2, 2), and the rest is the background. By
eroding the image with a 4-pixel horizontal structuring element, it would be
expected that the eroded image would comprise points (0, 2) and (1, 2). This
is exactly what has been obtained.

Similarly, the dilation of the image is calculated as follows:

µD(0, 0) = µA⊕[B1,B2,1](0, 0)

= max[0, max[0.3 + 1 − 1, 0.9 + 0.8 − 1]] = 0.7

µD(0, 1) = max[0, max[0.3 + 1 − 1, 0.9 + 1 − 1, 0.9 + 0.8 − 1]] = 0.9
...

µD(5, 2) = max[0, max[0.2 + 0.8 − 1, 0.2 + 1 − 1, 0.2 + 1 − 1]] = 0.2

Therefore, the dilated image is:

0.7 0.9 0.9 0.80.9 0.8

0.8 1.0 0.8 0.91.0 0.9

0.6 1.0 1.0 0.80.8 0.2

A⊕ [B1, B2, 1]
µ

As it can be seen, fuzzy soft dilation expands the image. In other words the
dilated image includes the points of the original image and also the points
(0, 0), (0, 5), (1, 0), (1, 5), (2, 0), (2, 3) and (2, 4).
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Case 2 (k = 2): The erosion of the image is calculated as follows:

µE(0, 0) = µA�[B1,B2,2](0, 0) = min
[
1, min(2)[0.3, 0.3, 0.9, 0.9, 1.1]

] = 0.3

µE(0, 1) = min
[
1, min(2)[0.5, 0.9, 0.9, 0.9, 0.9, 0.9]

] = 0.9
...

µE(5, 2) = min
[
1, min(2)[0.4, 0.2, 0.2]

] = 0.2

The eroded image for k = 2 is:

0.3 0.7 0.7 0.30.9 0.3

0.2 0.8 0.8 0.20.8 0.2

0.1 0.2 0.2 0.20.4 0.2

A Θ [B1, B2, 2]
µ

In this case the values of the eroded image at points (0, 1), (0, 2), (0, 3), (1, 1),
(1, 2) and (1, 3) are higher than the rest values of the image. This is in agreement
with the notion of fuzzy soft fitting. At these points the k repeated “high-value”
pixels, which are combined with the core of the structuring element, and the
pixels that are combined with the soft boundary of the structuring element are
greater than or equal to k Card[B1] + Card[B2] − k + 1.

Similarly, the dilation of the image is calculated:

µD(0, 0) = µA⊕[B1,B2,2](0, 0) = max
[
0, max(2)[0.3, 0.3, 0.7]

] = 0.3

µD(0, 1) = max
[
0, max(2)[0.3, 0.3, 0.9, 0.9, 0.7]

] = 0.9
...

µD(5, 2) = max
[
0, max(2)[0.4, 0.2, 0.2, 0.2, 0.2]

] = 0.2

Therefore, the dilated image for k = 2 is:

0.3 0.9 0.9 0.80.9 0.8

0.2 1.0 0.8 0.91.0 0.9

0.1 1.0 1.0 0.20.8 0.2

A⊕ [B1, B2, 2]
µ
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Here again fuzzy soft dilation expands the image, but more softly than
when k = 1. This means that certain points ((0, 0), (1, 0), (2, 0), and (2, 4)),
which were considered image points (when k = 1, now k = 2), belong
to the background. The greater the value of k, the less the effect of
dilation.

Finally, fuzzy soft opening and closing are defined as

µA ◦ [B1,B2,k](x) = µ(A�[B1,B2,k])⊕[B1,B2,k](x) and (61)

µA • [B1,B2,k](x) = µ(A⊕[B1,B2,k])�[B1,B2,k](x) (62)

respectively.
Illustration of the basic fuzzy soft morphological operations is given through

one-dimensional and two-dimensional signals. Figure 5 depicts fuzzy soft mor-
phological erosion and dilation in one-dimensional space. More specifically,
Figure 5a shows the initial one-dimensional signal and fuzzy soft erosion for
k = 1 and for k = 2. Figure 5b shows the initial one-dimensional signal and
fuzzy soft dilation for k = 1 and for k = 2. Figure 5c shows the structuring ele-
ment. The core of the structuring element is the shaded area, and the rest area of
the structuring element is its soft boundary. From Figures 5a and 5b it becomes
clear that the action of the structuring element becomes more effective when
k = 1, i.e., the results of both fuzzy soft erosion and dilation are more visible in
the case of k = 1 than in the case of k = 2. Moreover, both erosion and dilation
preserve the details of the original image better in the case of k = 2 than in the
case of k = 1.

Figure 6 presents the result of fuzzy soft morphological erosion and dilation
on a two-dimensional image. More specifically, Figures 6a and 6b present the
initial image and the structuring element, respectively. The image in Figure
6b has been considered as an array of fuzzy singletons (Goetcharian, 1980).
The results of fuzzy soft erosion (k = 1) after the first and second interac-
tions are presented in Figures 6c and 6d, respectively. The white area is
reduced after each interaction. The white area of the eroded image (Figure
6c) is the area of the initial image, where the structuring element fits better.
Similarly, Figures 6e and 6f present the results of fuzzy soft erosion (k = 3)
after the first and second interaction, respectively. Comparing Figures 6c and
6e, it becomes clear that the greater k is, the less visible are the results of
fuzzy soft erosion. Figures 6g and 6h depict the results of fuzzy soft dilation
(k = 1) after the first and second interactions, respectively. In the case of fuzzy
soft dilation, the white area increases. Similarly, Figures 6i and 6j show the
results of fuzzy soft dilation (k = 3) after the first and the second interaction,
respectively. Again, the greater k is, the less visible are the results of fuzzy soft
dilation.
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(a)

(b)

Fuzzy Image Erosion (k = 1) Erosion (k = 2)

1

0

Fuzzy Image Dilation (k = 1) Dilation (k = 2)

1

0

1

0

(c)

Figure 5. Illustration of one-dimensional fuzzy soft morphological operations and the effect
of the order index k: (a) fuzzy soft erosion, (b) a fuzzy soft dilation, and (c) the structuring element.
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        (a)                  (b)             (c)

       (d)     (e)             (f )

        (g)     (h)     (i)

        ( j)

Figure 6. (a) Image, (b) structuring element, (c) fuzzy soft erosion (k = 1) after the first
interaction, (d) fuzzy soft erosion (k = 1) after the second interaction, (e) fuzzy soft erosion
(k = 3) after the first interaction, (f) fuzzy soft erosion (k = 3) after the second interaction, (g)
fuzzy soft dilation (k = 1) after the first interaction, (h) fuzzy soft dilation (k = 1) after the second
interaction, (i) fuzzy soft dilation (k = 3) after the first interaction, and (j) fuzzy soft dilation
(k = 3) after the second interaction.
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B. Compatibility with Soft Mathematical Morphology

Let us consider Example V.I. By thresholding image A and structuring element
B (using a threshold equal to 0.5), the following binary image and binary
structuring element are obtained:

0.0 1.0 1.0 1.01.0 0.0

0.0 1.0 1.0 1.01.0 0.0

0.0 1.0 0.0 0.01.0 0.0

1.0 1.0 1.01.0

A

B

By applying soft binary erosion and soft binary dilation to image A with
structuring element B, the following images are obtained for k = 1 and
k = 2:

0.0 1.0 0.0 0.00.0 0.0

0.0 1.0 0.0 0.00.0 0.0

0.0 0.0 0.0 0.00.0 0.0

1.0 1.0 1.0 1.01.0 1.0

1.0 1.0 1.0 1.01.0 1.0

1.0 1.0 1.0 1.01.0 0.0

0.0 1.0 1.0 0.01.0 0.0

0.0 1.0 1.0 0.01.0 0.0

0.0 0.0 0.0 0.00.0 0.0

0.0 1.0 1.0 1.01.0 1.0

0.0 1.0 1.0 1.01.0 1.0

0.0 1.0 1.0 0.01.0 0.0

k = 1:

k = 2:

It is obvious that these results are identical to those of Example V.1, when
the same threshold value is used. This was expected, because binary soft mor-
phology quantifies the soft fitting in a crisp way, whereas fuzzy soft erosion
quantifies the soft fitting in a fuzzy way. The same results are obtained us-
ing a threshold equal to 0.55. However, when fuzzy soft morphology and
thresholding with a threshold equal to or greater than 0.6 on the one hand and
thresholding with the same threshold and soft morphology on the other hand
are applied, different results will be obtained. This means that, in general, the
operations do not commute.
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C. Algebraic Properties of Fuzzy Soft Mathematical Morphology

Theorem V.1 Duality Theorem
Fuzzy soft erosion and dilation are dual operations:

µAC ⊕[B1,−B2,k](x) = µ(A�[B1,B2,k])C (x) (63)

Opening and closing are also dual operations:

µ(A•[B1,B2,k])C (x) = µAC ◦[−B1,−B2,k](x) (64)

Theorem V.2 Translation Invariance
Fuzzy soft erosion and dilation are translation invariant:

µ(A)u�[B1,B2,k](x) = (
µA�[B1,B2,k](x)

)
u

(65)

where u ∈ Z2.

Theorem V.3 Increasing Operations
Both fuzzy soft erosion and dilation are increasing operations:

µA < µA′ ⇒
{

µA�[B1,B2,k](x) < µA′�[B1,B2,k](x)

µA⊕[B1,B2,k](x) < µA′⊕[B1,B2,k](x)
(66)

where A and A′, are two images with membership functions µA and µA′ ,
respectively and µA(x) < µA′(x), ∀x ∈ Z 2.

Theorem V.4 Distributivity
Fuzzy soft erosion is not distributive over intersection, as it is in standard
morphology:

∃x ∈ Z 2 and ∃A1, A2, B ⊆ Z 2|µ(A1∩A2)�[B1,B2,k](x)

�= µ(A1�[B1,B2,k])∩(A2�[B1,B2,k])(x) (67)

Example V.2 Consider the following image A and structuring element B,
where image A is the intersection of images A1 and A2.

0.3 0.8 0.5 0.81.0 0.4

0.8 0.9 0.80.9

A

B

A1

= ∩

A2

0.3 1.0 0.7 0.81.0 1.0 0.8 0.8 0.5 0.91.0 0.4

µµµ

µ
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The fuzzy soft erosion for k = 2 of A, A1, A2 and the intersection of the eroded
A1 and the eroded A2 are:

0.4 0.6 0.6 0.50.7 0.5

A [B , B , 2]

0.4 0.8 0.8 0.90.9 1.0

A1

1.0 0.6 0.6 0.50.9 0.5

A2

0.4 0.6 0.6 0.50.9 0.5

1 2 [B , B , 2]1 2

[B , B  , 2]1 2 A1 [B , B  , 2]1 2 ∩A2 [B , B  , 2]1 2

µµ

µ µ
ΘΘ

Θ Θ

Θ

In general, fuzzy soft dilation does not distribute over union:
∃x ∈ Z 2 and ∃A1, A2, B ⊆ Z 2 | µ(A1∪A2)⊕[B1,B2,k](x)

�= µ(A1⊕[B1,B2,k])∪(A2⊕[B1,B2,k])(x) (68)

Theorem V.5 Antiextensivity–Extensivity
Fuzzy soft opening is not antiextensive. If it were antiextensive, then
µA ◦ [B1,B2,k](x) ≤ µA(x), ∀x ∈ Z 2. The following example shows that ∃x ∈
Z 2 | µA ◦ [B1,B2,k](x) > µA(x).

Example V.3 Consider the image A and the structuring element B for k = 2.
In this example

0.2 0.2 0.9 0.90.2 0.9 1.0 0.1 1.00.1

A B

A  B

0.1 0.9 0.9 0.90.1 0.1

µµ

µ

µA◦[B1,B2,k](0, 2) = 0.9 > µA(0, 2) = 0.2

which means that fuzzy soft opening is not antiextensive.
Similarly, it can be shown that, in general, fuzzy soft closing is not extensive:

∃x ∈ Z 2 and A,B ⊂ Z 2|µA•[B1,B2,k](x) < µA(x).

Theorem V.6 Idempotency
In general, fuzzy soft opening is not idempotent:

∃x ∈ Z 2 and ∃A, B ⊆ Z 2|µA◦[B1,B2,k](x) �= µ(A◦[B1,B2,k])◦[B1,B2,k](x) (69)

This is illustrated by the following example.
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Example V.4 Consider the image A and the structuring element B for k = 1.

1.0 0.0 0.0 0.01.01.0

A

1.01.0 0.5 0.5 0.90.00.9

(A B)

B

0.0 0.0 0.4 0.00.50.4 0.00.0

(A B)

0.0 0.0 0.0 0.00.30.0 0.00.0

B

µµ

µ

µ

From this example it is obvious that fuzzy soft opening is not idempotent.

By the duality theorem (Eq. (64)) it can be proved that, in general, fuzzy
soft closing is also not idempotent:

∃x ∈ Z 2 and ∃A, B ⊆ Z 2 | µA•[B1,B2,k](x) �= µ(A•[B1,B2,k])•[B1,B2,k](x) (70)

VI. Implementations

Soft morphological operations are based on weighted order statistics and, there-
fore, algorithms such as mergesort and quicksort, which were developed for
the computation of weighted order statistics, can be used for the computation
of soft morphological filters (Kuosmanen and Astola, 1995). The average com-
plexity of the quicksort algorithm is O(N log N), where N is the number of
elements to be sorted (Pitas and Venetsanopoulos, 1990). Therefore, the ave-
rage complexity for a soft morphological operation utilizing a soft structur-
ing element [α, β, k]: B → Z is O((k Card[B1]+ Card[B2])log(k Card[B1] +
Card[B2])).

Hardware implementations of soft morphological operations include the
threshold decomposition and the majority gate techniques. These structures,
along with an algorithm based on a local histogram, are described in some
detail in this section.
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A. Threshold Decomposition

The threshold decomposition (Wendt et al., 1985) is a well-known technique
for hardware implementation of nonlinear filters. The implementation of soft
morphological filters in hardware, using the threshold decomposition tech-
nique, has been described in Shih and Pu (1995) and Pu and Shih (1995).
According to this approach, both the gray-scale image and the gray-scale
structuring element are decomposed into 2b binary images f1 and 2b structuring
elements β i, respectively. Binary soft morphological operations are performed
on the binary images by the binary soft structuring elements and then a maxi-
mum or a minimum selection at each position is performed, depending whether
the operation is soft dilation or soft erosion, respectively. Finally, the addition
of the corresponding binary pixels is performed. Figure 7 demonstrates this
technique for soft dilation.

Figure 7. Illustration of the threshold decomposition technique for soft dilation.
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(B1)x

(B2)x

Parallel
counter

Comparator

(B1)x

(B2)x

Parallel
counter

Comparator

k k

(a) (b)

Figure 8. Implementation of binary (a) soft morphological dilation and (b) soft morpho-
logical erosion.

The logic-gate implementation of binary soft morphological dilation and
erosion are shown in Figures 8a and 8b, respectively. The parallel counter
counts the number of 1s of the input signal and the comparator compares them
to the order index k and outputs 1 when this number is greater than or equal
to k.

It is obvious that this technique, although it can achieve high-speed compu-
tation times, is hardware demanding because it is realized using simple binary
structures. Its hardware complexity grows exponentially both with the structur-
ing element size and the resolution of the pixels, i.e., its hardware complexity
is O(2N 2b).

B. Majority Gate

1. Algorithm Description

The majority gate algorithm is an efficient bit serial algorithm suitable for
the computation of the median filter (Lee and Jen, 1992). According to this
algorithm, the MSBs of the numbers within the data window are first processed.
The other bits are then processed sequentially until the less significant bits
(LSBs) are reached. Initially, a set of signals (named the rejecting flag signals)
are set to 1. These signals indicate which numbers are candidates to be the
median value. If the majority of the MSBs are found to be 1s, then the MSB of
the output is 1; otherwise, it is 0. The majority is computed through a CMOS
programmable device, shown in Figure 9. In the following stage the bits of
the numbers whose MSBs have been rejected by means of the rejecting flag
signals are not taken into account. The majority selection procedure continues
in the next stages until the median value is found.

Gasteratos et al. (1997a) have proposed an improvement of this algorithm
for the implementation of any rank filter using a single hardware structure.
This is based on the concept that by having a method to compute the median
value of 4N + 1 numbers and by being able to control 2N of these numbers,
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i 1 i 2 iN

o

V

V

ddVdd

ssVss

. . .

i1 i 2 iN, , ... Inputs

Outputo

Vdd Vss, Power supply

Output-wired inverters Inverter buffer

Figure 9. Programmable CMOS majority gate.

any order statistic of the rest 2N + 1 numbers can be determined. Suppose that
there are W = 2N + 1 numbers xi, the rth-order statistic of which is required.
The 2N + 1 inputs are the numbers xi, whereas the rest are dummy inputs
di (0 < l ≤ 2N). The binary values of the dummy inputs can be either 00 . . . 0
or 11 . . . 1. This implies that when the W ′ numbers are ordered in ascending
sequence, dl are placed to the extremes of this sequence.

2. Systolic Array Implementation for Soft Morphological Filtering

2a. A Systolic Array for a 3 × 3 Structuring Element
A pipelined systolic array capable of computing soft gray-scale dilation/erosion
on a 3 × 3-pixel image window using a 3 × 3-pixel structuring element, both
of 8-bit resolution, is presented in Figure 10 (Gasteratos et al., 1998b). The
central pixel of the structuring element is its core, whereas the other eight
pixels constitute its soft boundary. The inputs to this array are the nine pixels
of the image window and the nine pixels of the soft morphological structuring
element and a control signal MODE. Latches (L1) store the image window,
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TABLE 1
Use of Dummy Numbers in the Computation of Weight

Order Statistics

k Sequence of numbers Dummy numbers

1 9 8
2 10 7
3 11 6
4 12 5

latches (L∗1) store the structuring element, and latch (L∗∗1) stores the number
k. Signal MODE is used to select the operation. When this is 1, soft dilation is
performed, whereas when it is 0, a soft erosion operation is performed. Image
data are collected through multiplexers MUX1, which are controlled by the
signal MODE. The pixels of the structuring element remain either unchanged
for the operation of dilation or they are complemented (by means of XNOR
gates) for the operation of erosion. In the next stage of the pipeline, data are
fed into nine adders. In the case of soft erosion, the 2’s complements of the
pixel values of the structuring element are added to the image pixel values.
This is equivalent to the subtraction operation.

According to the constraint k ≤ min{Card(B)/2, Card(B2)}, in this case k
is in the range 1 ≤ k ≤ 4. Table 1 shows the number of the elements of the
image data window contained in the list, as well as the number of the dummy
elements. For soft dilation all the dummy inputs are pushed to the top, whereas
for soft erosion they are pushed to the bottom. Thus, the appropriate result
is obtained from the order statistic unit. A control unit controls an array of
multiplexers MUX2 (its input is number k). This is a decoder, and its truth
table is shown in Table 2. It provides the input to the order statistic unit, either
a dummy number or a copy of the addition/subtraction result of the core.

TABLE 2
Truth Table of the Control Unit

Input Outputs

k i1 i2 i3 i4 i5 i6 i7 i8

0001 0 0 0 0 0 0 0 0
0010 1 0 0 0 0 0 0 0
0011 1 1 0 0 0 0 0 0
0100 1 1 1 0 0 0 0 0
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The order statistic unit consists of identical processing elements (PEs) sep-
arated by latches (L∗∗4 to L∗∗11). The resolution of the latches, which hold
the addition/subtraction results or the dummy numbers (L3 to L11), decreases
by 1 bit at each successive stage, because there is no need to carry the bits,
which have been already processed. On the other hand, the resolution of the
latches that hold the result (L4∗ to L∗11), increases by 1 bit at each suc-
cessive stage. The circuit diagram of this PE is shown in Figure 11. In this
figure W ′ = 4N + 1; the 2N + 1 inputs are the numbers xi, whereas the rest

b j
r
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t

t

oj

oj

1,

b jW ,́

r
j1,

r
jW ,́

t j1,

t jW ,́
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1, j+1

W ,́ j+1

1 , j+1,

*

* Majority gate

i 1, j

iW ,́ j

- ri, j the rejecting flag signals 

- ti,j the setting flag signals  

- ii,j intermediate signals

- bi,j the binary representation

of the inputs

Figure 11. The basic processing element (PE).
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are the dummy inputs. Due to its simplicity, it can attain very short process-
ing times, independent of the data window size. Also, it becomes clear that
the hardware complexity of the PE is linearly related to the number of its
inputs.

2b. Order Statistic Module Hardware Requirements
for Other Structuring Elements

In the next describe a case study of the hardware requirements for the or-
der statistic unit of a more complex structuring element. The arithmetic unit
consists of a number of adders/subtractors equal to the number of pixels of
the structuring element. Figure 12a illustrates the structuring element. In this
case: Card(B) = 16, Card(B1) = 12, Card(B2) = 4, and k ≤ min{8, 4}, i.e., 1 ≤
k ≤ 4. When k = 4 the maximum number of the elements of the multiset is
Card(B2) + k Card(B1) = 52. The 49th- (4th-) order statistic of the multiset is
sought. Thus, the total number of the inputs to the order statistic unit is 97.
The dummy numbers, which are pushed to the top (bottom) in the operation
of soft dilation (erosion), are 45. When k = 3, the elements of the multiset are
40 and the 38th- (3rd-) order statistic is searched. Now the dummy numbers,
which are pushed to the top (bottom), are 46 and to the bottom (top) are 11.
In the same way, when k = 2 the elements of the multiset are 28 and the 27th-
(2nd-) order statistic is searched and the dummy numbers that are pushed to
the top (bottom) are 47 and to the bottom (top) are 22. Finally, when k = 1 the
elements of the multiset are 16 and the 16th- (1st-) order statistic is searched.
In this case the dummy numbers that are pushed to the top (bottom) are 48 and
to the bottom (top) are 33. For any structuring element, an order statistic unit
can be synthesized following this procedure. In this case hardware complexity
is linearly related both to the structuring element size and the resolution of the
pixels, i.e., the hardware complexity is O(Nb).

3. Architecture for Decomposition of Soft Morphological
Structuring Elements

An architecture suitable for the decomposition of soft morphological struc-
turing elements is depicted in Figure 13. The structuring element is loaded
into the structuring element management module. This divides the structur-
ing element into n smaller structuring elements and provides the appropriate
one to the next stage. The pixels of the image are imported into the image
window–management module. This provides an image window, which in-
teracts with the appropriate structuring element, provided by the structuring
element–management module. Both the previous modules consist of registers
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Input

Output

Array of
Registers

Clock mod n    counter

MUXs

Selection

Figure 14. Data window management for soft morphological structuring element
decomposition.

and multiplexers (MUXs), controlled by a counter mod n (Fig. 14). The second
stage, i.e., the arithmetic unit, consists of adders/subtractors (dilation/erosion)
and an array of MUXs that are controlled by the order index k, as the one shown
in Figure 11. The MUXs provide the multiple copies of the addition/subtraction
results to the next stage, i.e., an array of order statistic modules (OSMs). The
max(l)

/min(l) results (l = 1, . . . , k) of every multiset are collected through
an array of registers. These registers provide the n × k max(l)

/min(l) of the n
multisets concurrently to the last stage OSM, which computes the final result
according to Eqs. (55) and (56).

C. Histogram Technique

A method for computing an order statistic is to sum the values in the local
histogram until the desired order statistic is reached (Dougherty and Astola,
1994). However, instead of adding the local histogram values serially, a suc-
cessive approximation technique can be adopted (Gasteratos and Andreadis,
1994). This ensures that the result is traced in a fixed number of steps. The
number of steps is equal to the number b of the bits per pixel. In the successive
approximation technique the result is computed recursively; in each step of
the process the N pixel values are compared to a temporal result. Pixel values,
which are greater than, less than, or equal to that temporal result, are marked
with labels GT, LT, and EQ, respectively. GT, LT and EQ are Boolean vari-
ables. Pixel labels are then multiplied by the corresponding pixel weight (wj).
The sum of LTs and EQs determines whether the kth-order statistic is greater
than, less than, or equal to the temporal values.

The pseudocode of the algorithm follows:
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Notation: N: number of pixels; b: pixel value resolution (bits); im1, im2, . . . ,
imN: image pixels; w1, w2, . . . , wN: corresponding weights; k: the sought order
statistic; temp: temporal result; o: output pixel.
initial
o = 0
temp = 2b−1

begin
for i = 1 to b do

begin
compare(im1, im2, . . . imN: temp)
{if imj = temp then EQj = 1 else EQj = 0
if imj < temp then LTj = 1 else LTj = 0}
if

(
N∑

j=1

w j (EQ j + LT j ) ≥ k

)
AND

(
N∑

j=1

w j LT j < k

)

then o ← temp

elsif
N∑

j=1

w j LT j ≥ k

then temp ← temp − 2b−1−i

else temp ← temp + 2b−1−i

end
end

A module utilizing standard comparators, adders/subtractors, multipliers,
and multiplexers (for the “if” operations) can be used to implement this tech-
nique in hardware. Also, there are two ways to realize the algorithm. The first
is through a loop, which feeds the temp signal back to the input b times. Such a
module is demonstrated in Figure 15. Its inputs are the addition or subtraction
results of the image pixel value data with the structuring element pixel values,
depending on whether the operation is soft dilation or soft erosion, respec-
tively. Alternatively, b successive modules can be used to process the data in a
pipeline fashion. The latter implementation is more hardware demanding but
results in a faster hardware structure.

The preceding algorithm requires a fixed number of steps equal to b. Fur-
thermore, the number of steps grows linearly according to the pixel value
resolution (O(b)). Its main advantage is that it can directly compute weighted
rank order operations. This means that there is no need to reconstruct the local
histogram according to the weights of the image pixels. Comparative exper-
imental results using typical images showed that for 5 × 5 and larger image
data windows the combined local histogram and successive approximation
technique outperforms the existing quicksort algorithm for weighted order
statistics filtering (Gasteratos and Andreadis, 1999).



07/16/2001 07:17 PM Adances in Imaging and Electron Physics-V.119 PS082B-01.tex PS082B-1.xml APserialsv2(2000/12/19) Textures 2.0

Addition/
subtraction

results Weights

k

a 
=

 b

a 
<

 b

a b

Π Π Π Π Π Π
Σ

a 
≥ 

b 

a 
<

 b

Adder/
subtractor

M
U

X
2b-

1-
i

00

D
el

ay

Σ

Adder

1 2 N

D
el

ay

Fi
gu

re
15

.
B

lo
ck

di
ag

ra
m

of
a

ha
rd

w
ar

e
m

od
ul

e
fo

r
th

e
co

m
pu

ta
tio

n
of

w
ei

gh
te

d
or

de
r

st
at

is
tic

s,
ba

se
d

on
th

e
lo

ca
l

hi
st

og
ra

m
–s

uc
ce

ss
iv

e
ap

pr
ox

im
at

io
n

te
ch

ni
qu

e.

49



07/16/2001 07:17 PM Adances in Imaging and Electron Physics-V.119 PS082B-01.tex PS082B-1.xml APserialsv2(2000/12/19) Textures 2.0

50 M. I. VARDAVOULIA, A. GASTERATOS, AND I. ANDREADIS

D. Vector Standard Morphological Operation Implementation

The block diagram of a new hardware structure that performs vector erosion
or dilation of a color image f by a color 3 × 3-pixel structuring element g, both
of 24-bit resolution, is presented in Figure 16. The input image f may be of
any dimension. Consider that the 3 × 3-pixel window defined by the domain G
of g is located at spatial coordinates x, including the nine vectors of the input
image, vecimj (1 ≤ j ≤ 9). In each clock cycle the jth vector of the input image
(vecimj) and the corresponding jth vector of the structuring element (vecsej)
are imported into the input unit. This unit consists of an array of D-type flip-
flops and a MUX, which ensures that after the ninth clock cycle the nine vectors
of the structuring element are fedback to the input unit. Thus, the structuring
element is introduced only once.

In Figure 16 we assume that vecimj = c(himj, simj, vimj) and also vecimj =
c(himj, simj, vimj). As can be seen, in the next clock cycle the h, s, and v

components of the jth vectors under consideration are pairwise subtracted or
added in the summation/subtraction units, according to the value of the select
operation input signal, which determines the vector morphological operation
(erosion or dilation) that is carried out.

In the next stage, the h, s, and v differences or sums are normalized to
the upper or the lower bound of each vector component (see constraints in
Eqs. (29) and (30)) in the three normalization units. These three differences or
sums are the components of the jth vector (vectorj) in { f(x + y) − g(y)} or in
{ f(x − y) + g(y)}, respectively (see Eqs. (27) and (28)).

Consequently, vectorj is loaded into the supremum or infimum finding mod-
ule. The heart of this module is a mod-9 counter, which ensures that the nine
vectors in { f(x + y) − g(y)} or in { f(x − y) + g(y)} will be compared during nine
clock cycles and the infimum or the supremum of these nine vectors will be the
output of the module at the tenth clock cycle. The module also includes an array
of D-type flip-flops, which transmit the jth and the ( j + 1)st vectors (vectorj

and vectorj+1) simultaneously to an array of comparators (each comparator of
the array compares only one component of the vectors under consideration).
The outputs of the comparators are then fed to the control unit (a combinational
circuit), which, according to the select operation signal, determines whether
the jth or the ( j + 1)st vector will be compared to the next input of the module,
i.e., the ( j + 2)nd vector (vectorj+2). The result of the ninth comparison is
forwarded to the output of the module, through an array of MUXs.

The whole procedure is fully pipelined. After initialization, the hardware
structure of Figure 16 produces an output result every nine clock cycles.

The proposed circuit was designed and successfully simulated by means
of the MAX+plus II software of Alter a Corporation. The FPGA used is the
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EPF10K30EQC208-1 device of the FLEX10KE Altera device family. The
typical system clock frequency is 40 MHz.

VII. Conclusions

Soft morphological filters are a relatively new subclass of nonlinear filters.
They were introduced to improve the behavior of standard morphological fil-
ters in noisy environments. In this paper the recent descriptions of soft mor-
phological image processing have been presented. Vector soft mathematical
morphology extends the concepts of gray-scale soft morphology to color im-
age processing. The definitions of vector soft morphological operations and
their properties have been provided. The use of vector soft morphological fil-
ters in color impulse noise attenuation has been also demonstrated. Fuzzy soft
mathematical morphology applies the concepts of soft morphology to fuzzy
sets. The definitions and the algebraic properties have been illustrated through
examples and experimental results. Techniques for soft morphological struc-
turing element decomposition and its hardware implementation have been also
described.

Soft morphological operations are based on weighted order statistics. Algo-
rithms for implementation of soft morphological operations include the well-
known mergesort and quicksort algorithms for weighted order statistics com-
putation. An approach based on local histogram and a successive approxima-
tions technique has been also described. This algorithm is a great improvement
in speed for a 5 × 5 image data window or larger. Soft morphological filters
can be implemented in hardware using the threshold decomposition and the
majority gate techniques. The threshold decomposition technique is fast, but
its hardware complexity is exponentially related both to the structuring ele-
ment size and the resolution of the pixels. In the majority gate algorithm the
hardware complexity is linearly related both to the structuring element size
and the resolution of the pixels. A hardware structure that performs vector
morphological operations has been also described.
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